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Inversion of waveforms
for extended-fault kinematic parameters

Introduction

Solution of an inverse problem is required to interpret any measurements that are
indirect like inferences of the properties of the Earth's interior and of the seismic source.
The basic measurements of seismology are, in fact, arrival times and amplitudes of
different phases, or better, time series of ground motion. These data are controlled by
both the elastic and inelastic properties of the Earth, as well as the properties of the
source exciting the Earth. Inversion is a formal way to make inferences about these

properties.

The zeroth-order requirement for solution of any inverse problem is that before one can
hope to solve the inverse problem, one has to be able to solve the "forward problem".
This means that one has to understand the physical processes that produced the
observation well enough to make a reliable mathematicai model of the process.

The forward problem can be written schematically as

d; = Fi [m(r)]

where m(r) is a model describing some physical property of the Earth, d; i sthe predicted
value for datum i and F; is a functional whose existence implies that if we know m
exactly, we could predict the data perfectly.

This is the simplest class of inverse solutions, the forward modelling, involving an
educated guess (or a trial and error procedure) to derive an m that fits all the observable
data according to some defined measure of goodness of fit (e.g., a chi-square test,
minimum fit according to some norm etc.). The fundamental weakness of this procedure
is that once a model is found that fits the data, one does not know how reliable that
model is.

The fundamental difference between the construction of an inverse procedure compared
to forward modelling is that the data are used directly to construct a solution. We can
write this formally as:

m(r) = F; " 1d;]
Every inverse problem should address the following aspects:

Existence: Does any model fit the data?

Uniqueness:  Can the data uniquely constrain the model?
Construction: How can we find a solution?

Appraisal: How well do the data constrain the model.



Usually little attention is paid to the first two and much of the efforts go to the third
aspect, the construction. Sometimes even the fourth aspect is neglected, which should be
the most significant feature of a good inverse procedure. It answers the question of how
good the solution one constructs really is.

Most of the work done so far on this problem was concentrated on the third aspect and
only in recent years several researchers have focussed on the fourth aspect. In fact,
finding a solution means nothing. The focus of a good analysis must lie with apprasing
the nonuniqueness of the solution.

Since even by obtaining the global-minimum solution one does not know, when working
with real data, how close the obtained solution is to the "real” one, I will show for the
case of extended faults, how one can investigate the quality and non-uniqueness of the
solution by inverting artificially generated data.

Setup of the problem and general considerations
Problem:

Given the time series of motion recorded at a certain number of station around the
causative fault, find the temporal and space distribution of slip on the fault.

Using standard inverse methods it is not difficult to obtain a solution which fits the data
acceptably well.

Past studies until some time ago have concentrated on deriving a model that fits the
data, without assessing solution stability or resolution.

Parametrization:

Size of the cell

The rupture surface is subdivided into a grid work of small cells or subfaults.

They should be small enough in order for the solution to outline well the rupturing
process, but on the other end as the number of cells increases, the stability of the

problem decreases. The point-source spacing is such that the subfault synthetics look like
a continuous rupture over the bandwidth of the inversion and not as a bunch of separate
point-source releases. This is obvoiusly related to the minimum wavelength one wants to
resolve in the problem or equivalently to the maximum frequency involved. Cells should
be small enough in order for the time required to the rupture to traverse a subfault be
significantly less than the predominant period content of the data. However also the
directivity effect is important and a good check is therefore to make forward models
with smaller and smaller cells until the seismograms at the given stations are stable.

If the subfault synthetics are computed before the inversion process is initiated, the
speed of inversion increases significantly.



The focal mechanism is usually kept constant for all the cells, but some authors have
tried to resolve both the dip and slip components at each cell; others have tried to resolve
for the rise time at each cell.

The ground motion for a unit amount of slip on each subfault is computed by a time-
domain sum of point sources. Each subfault synthetic is lagged in time and scaled in
amplitude according to the present model estimation.

We have also to remember that the Green functions normally used are far-field
approximate solutions. Attention should be paid that all the used stations are at a
sufficient distance from the nearest element of the fault that this approximation is still
valid. A few wavelengths away from the nearest element of the fault is usually sufficient.

It is assumed many times that an earthquake starts at a point and grows outward with a
continuous rupture, i.e. the rupture may not jump. This last condition may be relaxed at
predetermined fault segments. Some people do not make this assumptions and leave the
fault to rupture spontaneously (with some causality constraints).

Rupture velocities usuallly range from 2 km/s to 4 km/s.

Rise times: cannot resolve rise times smaller than minimum period contained in the data.
Synthetics for the subfault containing the hypocenter are aligned with the first

significant arrival from the source region. Possible small time shifts to account for the
unknown structural model (which does not take into account lateral inhomogeneities).

Objective (or cost) function - Goodness of the solution

This is the function to be minimized in order to obtain an acceptable fit between the data
and the model.

> N Wil [xi(0-w (®]°dt = minimum

with x;(t) the synthetics, uj(t} the data and W; some weight given to the data.

This is the L2 norm, but also the L1 and other norms can be used. Even the choice of the
norm can be an ambiguous decision (see e.g. differences between L1 and L2 norm
solutions keeping all other aspects of the problem the same in Hartzell et al., 1991:
BS5A, 81, 1518-1539), but generally the choice is not a critical one.

Without weighting, close stations with larger seismogram amplitudes dominate the
least-squares inversion (e.g. Frankel, 1992: BSSA, 82, 1511-1518).



Instability and non-uniqueness

Increasing the model dimension results in a decrease of the solution uniqueness.
To stabilize the problem external constraints need to be placed on the inverison.

The parametrization itself severly restricts the possible solutions and has a big stabilizing
effect. Discretization of the fault with a limited number of cells, restricted to slipina
limited time interval.

Attention: a too restrictive parametrization can lead to the true solution lying outside the
solution space of the model.

Need to parametrize the problem with sufficient flexibility to encompass realistic models
of faulting: ---> physical constraints serve to stabilize the inversion.

Physical constraints are desirable stabilizing tools because they can be unambiguously
stated and easily adapted to reflect the current knowledge of the earthquake source
physics.

Some techniques require the use of several initial random models to verify that the
solution is stable with respect to the starting model and inversion procedure.
Important to understand what factors affect the solution.

Resolution

Absolute resolution is difficult to address, because one can evaluate the resolution only
for the specific problem, not for the actual earthquake source.

Therefore, usual resolution matrices (Menke, 1984) are of limited value and can give only
relative estimates of error.

One way is to compare solutions that utilize different data sets, parametrizations,
constraints, and inversion norms.

In terms of fitting the data many solutions give an equally acceptable model. The
similarities of these different solutions are considered to be the aspects of the rupture
model that are better resolved, in an absolute sense.

Robusiness

Use different methods --> the common features of these solutions point out robust
characteristicss of the slip distribution that are independent of the inversion
parametrization.

Dissimilarities in the solutions for 1989 Loma Prieta discussed by Wald et al., 1991:
BSSA, 81, 1540-1572 (stations used, data weighting, to less extent Green functions?}

For 1992 Landers by Hartzell and Liu, 1996: PEPI, 95, 79-99 --> actual inversions
For 1992 Landers by Cohee and Beroza, 1994: AdG, 37, 1515-1538 by using synthetic test.



Single-window vs. miulti-window inversion

Single-window inversion --> Fukuyama and Irikura, 1986: BSSA, 76, 1623-1640
Takeo, 1987: BSSA, 77, 490-513
Beroza and Spudich, 1988: JGR, 93, 6275-6296
Hartzell and lida, 1990: JGR, 95, 12475-12485

In the single-window method asumes that each point ruptures only once, when the
rupture front passes. Rupture time variations are allowed by admitting perturbations to
a constant-rupture-velocity model. The perturbations are found in a separate, nonlinear
inversion. Rise time is assumed to be constant and optimized by finding the value which
produces the best overall fit to the data.

Multi-time-window inversion - QOlson and Apsel, 1982: BSSA, 72, 1969-2001
Hartzell and Langer, 1993: JGR, 98, 22123-22134
Hartzell et al. 1994: BSSA, 84, 1703-1724

In these inversions each point on the fault is allowed to rupture multiple times.

The single-window method tends to recover the true seismic moment and the average
rupture velocity.

Linear inversions with multiple-time-window tend to overestimate the moment with
respect to single-time-window inversions.

Neither can resolve temporal details of the rupture propagation, unless constraints from
independent data (e.g. from geodesy) are applied.

For a comparison between the two methods see e.g..

Cohee and Beroza, 1994: AdG, 37, 1515-1538

If in term of the ability to fit the data some parametrization (e.g. variable rise time) is not
required, than drop it.

Physical constraints

Positivity of slip

Strong causality (limits on rupture velocity)

Weak causality (rupture velocity smaller than P-wave velocity)

Model fits observed surface offsets

Tapering of slip to zero at the bottom of the fault

Find least moment or predetermined moment model

Model which incorporates minimum and maximum limits on rupture velocity

QOther constraints

Find spatially smoothest model
Find minimum norm model

Incorporated as limits to the current model or as linear functions appended to the
calculation of the objective function.



Brief review of the work done in this field

A review of different extended-fault inversions with respect to some proposed
parametrizations is given below.

Each cell is allowed to rupture according to a preset timing. The assumption of a

constant rupture velocity is implied, leading to a linear problem.

Trifunac, 1974: BSSA, 64, 149-172 1971 San Fernando
Hartzell et al., 1991: BSSA, 81, 1518-1539 1989 Loma Prieta

The slip in each subfault is discretized in time. This allows for a variable rise-time
function on the fault.

Olson and Apsel, 1982: BSSA, 72, 1969-2001 1979 Imperial valley
Hartzell and Heaton, 1983: BSSA, 73, 1553-1583 1979 Imperial valley
Hartzell and Langer, 1993: JGR, 98, 22123-22134 1974 Peru

Wald and Heaton, 1994: BSSA, 84, 668-691 1992 Landers
Mendoza et al., 1994: BSSA, 84, 269-283 1985 Central Chile
Hartzell et al. 1994: BSSA, 84, 1703-1724 North American egs.

Use approximate Green functions, allowing for more time intervals
Frankel and Wenneberg, 1989: BSSA, 79, 515-541 1987 Superstition Hills

Solve for the timing, location and moment of a discrete sum of point sources, rather than
employing a continuous rupture

This is a flexible method, since it deals wiht a discontinuous sequencing of sources
One has though no guarantee to find a global minimum and physical constraints are
difficult to implement

Kikuchi and Kanamori, 1982: BSSA, 72, 491-506
Kikuchi and Kanamori, 1986: PEP], 43, 205-222
Kikuchi and Kanamori, 1991: BSSA, 81, 2335-2350

The time domain formulation implies a nonlinear and multimodal problem, i.e. the

objective function has more than one local minimum.

The problem is solved by linearizing it and using the iterative least squares.
Disatvantage: likely to find a local rather than global minimum.

Advantage: if the timing of the starting model is selected as the best-fitting constant
rupture velocity from linar analysis, then the optimal solution in the neighbourhood of
this model can be found.

Jackson and Matsu'ura, 1985: JGR, 90, 581-591

Yoshida, 1986: JPE, 34, 235-255

Fukuyama and Irikura, 1986: BSSA, 76, 1623-1640 1983 Akita-Oki
Takeo, 1987: BSSA, 77, 490-513

Beroza and Spudich, 1988: JGR, 93, 6275-6296 1984 Morgan Hill
Hartzell, 1989: IGR, 94, 7515-7534 1986 North Palm Springs
Hartzell and lida, 1990: JGR, 95, 12475-12485 1987 Whittier Narrows

Cohee and Beroza, 1994: AdG, 37, 1515-1538 1992 Landers



Solve the problem in the frequency domain

The calculation of rupture time and slip amplitude is linear and inversion for each
freqency component is done separately. Physical constraints are however difficult to

apply
Linearized, iterative, frequency-domain method

Cotton and Campillo, 1995: JGR, 100, 3961-3975 1992 Landers

Linear programming with 1.1 norm minimization

Used with only weak causality constraints on rupture times. Can incorporate many
Physical constraints and thus stablize the problem.

Das and Kostrov, 1990: JGR, 95, 6899-6913 1986 Andreanoff Isl.
Das and Kostrov, 1994: PEPI, 85, 293-318 1989 Macquarie Ridge
Das and Suhadolc, 1996: JGR, 101, 5725-5738 -

Das et al,, 1996: TP, in press -

Apply global search algorithms to the non-linear multimodal problem
Able to find global minimum, can apply time-domain cosntraints

Hybrid global search algorithm

Simulated annealing algorithm initially searches widely to find an appropriate model
that is not far from the global minimum, then the downhill simplex method moves to the
global minimum itself.

Liu et al., 1995: JGR 122, 991-1000
Hartzell and Liu, 1995: BSSA 85, 516-524
Hartzell and Liu, 1996: PEPI, 95, 79-99. 1992 Landers

Simulated annealing (SA)

Uses an analogy with physical annealing in thermodynamic systems: for slowly cooling
sysems, nature is able to find minimum energy states.

Throughout the process the non-zero probability of long jumps allows the method to
escape from local minima.

The method first searches widely (random walk) in model space (analog: high-
temperature system), then the search is restricted and the algorithm freezes to the global
minimurm.

Metropolis et al., 1953: J. Chem. Phys., 21, 1087-1092.
Kirkpatrick et al., 1983: Science, 220, 671-680



Genetic algorithms (GA)

Unlike SA, an initial population of models is selected at random and the GA seks to
improve the fit of the population generation after generation. This is accomplished by
the genetic process of selection, crossover and mutation.

Holland, 1975: Adaptation in natural and artificial systems. U. of Michigan Press.

Goldberg, 1989: Genetic Algorithms in Search, Optimization and Machine
learning, Addison Wesley.

Forrest, 1993: Genetic Algorithms: Principles of natural selection applied to
computation.

Stoffa and Sen, 1991: Nonlinear multiparameter optimization using genetic
algorithms: Inversion of plane wave seismograms. Geophysics, 56, 1794-

1810.

Qther strong motion data inversions

Mendez and Luco, 1990: JGR, 95, 327-340 California egs.

Mendez and Anderson, 1991: BSSA, 81, 844-861 1985 Michoacan

Cocco and Pacor, 1993.TP, 218, 157-177 1980 Irpinia

Cotton and Campillo, 1994: AdG, 37, 1539-1564 1985 Michoacan, 1992 Landers

Other works on earthquake rupture on extended faults

Heaton, 1990: PEP], 64, 1-20. "Heaton pulse”

Langer and Hartzell, 1996: PEPI, 94, 121-132 1977 Western Argentina eq.
Hartzell and Heaton, 1986: BSSA, 76, 649-674 1984 Morgan Hill

Wald et al., 1990: BSSA, 80, 1079-1098 1987 Superstition Hills
Beroza, 1991: BSSA, 81, 1603-1621 1989 Loma Prieta

Steidl etal., 1991: BSSA, 81, 1573-1602 1989 Loma Prieta

Wald et al.,, 1991: BSSA, 81, 1540-1572 1989 Loma Prieta
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On the inverse problem for earthquake rupture:
The Haskell-type source model

S. Das

Department of Earth Sciences, University of Oxford, Oxford, England

P. Suhadolc

Istituto di Geodesia e Geofisica, Universita di Trieste, Trieste, Italy

Abstract. In order to gain insight into how to invert seismograms correctly to estimate
the details of the earthquake rupturing process, we perform numerical experiments using
artificial data, generated for an idealized faulting model with a very simple rupture and
moment release history, and solve the inverse problem using standard widely used inversion
methods. We construct synthetic accelerograms in the vicinity of an earthquake fora
discrete analog of the Haskell-type rupture model with a prescribed rupture velocity in a
layered medium. A constant level of moment is released as the rupture front passes by.
We show that using physically based constraints, such as not permitting back slip on the
fault, allow us to reproduce many aspects of the solution correctly, whereas the minimum
norm solution or the solution with the smallest first differences of moment rates in space
and time do not reproduce many aspects for the cases studied here. With the positivity of
moment rate constraint, as long as the rupturing area is allowed to be larger than that in
the forward problem, it is correctly found for the simple faulting model considered in this
paper, provided that the rupture velocity and the Earth structure are known. If, however,
the rupture front is constrained either to propagate more slowly or the rupturing area is
taken smaller than that in the forward problem, we find that we are unable even to fit the
accelerograms well. Use of incorrect crustal structure in the source region also leads to poor
fitting of the data. In this case, the proper rupture front is not obtained, but instead a *“ghost
front” is found behind the correct rupture front and demonstrates how the incorrect crustal
structure is transformed into an artifact in the solution. The positions of the centroids of the

moment release in time and space are generally correctly obtained.

Introduction

With the deployment of high dynamic range, broad band
digitally recording seismometers, and the availability of su-
percomputers, it has become feasible to consider the problem
of inverting seismograms to obtain the details of the moment
release time history and distribution on carthquake fauits.
The solution of this problem is important for the following
reasons. Since the moment release on faults is generally ex-
pected to be nonuniform, one can identify regions of high and
low moment release, or slip deficit. The slip or moment dis-
tribution obtained from such inversions can be used to infer
the stress drop distribution due to the earthquake [ e.g., Miy-
atake, 1992] that in turn can be used to estimate stress accu-
mulation on faults. The slip deficit as well as the stress accu-
mulation history on the fault can then lead to inferences about
the times of future earthquakes on the fault. An example

Copyright 1996 by the American Geophysical Union.

Paper number 95IB03533.
0148-0227/96/95JB-03533%05.00

where a portion of a fault with slip deficit in one earthquake
ruptured relatively soon afterwards in another earthquake is
the 1986 Andreanof Islands earthquake [Das, 1990]. The
rupture zone of the Andreanof Isiands earthquake was con-
tained entirely within that of the 1957 Aleutian earthquake
(M, = 8.6), yet the 1986 earthquake of My, = 8.0 occurred
only 29 years later on a plate boundary that is believed to
have a much larger characteristic repeat time. Noting that the
region of major moment release in the 1986 earthquake coin-
cided with the region of the 1957 event that had essentially no
aftershocks, Das [1990] identified the 1986 earthquake to be
due to the slip deficit left after the 1957 event. Another situ-
ation in which the inverse problem solution is useful is when
one can relate the variations in moment release on the faultto
the morphology, say jogs or bends, or cross-cutting physical
features on faults, and so on. Such understanding can lead in
the long term to successful prediction of the expected ground
motion at particular sites of special interest, say, the locations
of critical structures such as power plants, dams, bridges,
etc., in regions where large earthquakes are expected. Fi-
nally, once the motion on the fault is reconsiructed, the entire
displacement field can be found by solving the appropriate
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forward problem. This makes it possibie to estimate the mo-
tion at some site where there is damage but where there was
no seismometer [e.g., Suhadole et al., 19907, thus enabling
the cause of the damage, for example, focusing of waves on
the site, to be investigated.

The inverse problem for the carthquake source was first
formulated by Kostrov [1970], and discussed by Kostrov
[1975] and by Kostrov and Das [1988]. Of the numerous
studies that estimate the rupture and moment release history
during earthquakes, we mention here the papers that develop
a new method, or extend an existing method of inversion
for both the spatial and temporal moment release pattern on
the fault. These include Olson and Apsel [1982), Kikucki
and Kanamori [1982], Hartzell and Heaton [1983], Kikuchi
and Fukao [1985), Beroza and Spudich [1988), Mendoza and
Hartzell [1988a, 1988b, 1989, Ofson and Anderson [1988],
Das and Kostrov, 1990, 1994], Hartzell er al. [1991], and
Hartzell and Lin [1995].

The limitations of such inversions have, however, not yet
been studied sufficiently. For example, how close is the so-
lution of thjs problem, which is well known to be unstable,
to the actual moment distribution? How does poor knowl-
edge of crustal structure in the source region affect the esti-
mate of the rupture front location and speed? Since such in-
versions are not unique, what methods can one use to choose
the “correct” solution from among the multiplicity of solu-
tions? The last question cannot, in fact, be answered when
working with real data, since the actual moment release at the
depths where earthquakes occur is unknowable. In their stud-
tes of the great 1986 Andreanof Islands earthquake and the
great 1989 Macquarie Ridge earthquake, Das and Kostrov
(1990, 1994] attempted, using teleseismic data, to choose so-
lutions from among the many possible ones. They demon-
strated that more than one slip distribution can fit the data
equally well. For the Macquarie Ridge earthquake, alterna-
tive slip distributions that could be interpreted as due (o a
propagating crack or to isolated asperities rupturing fit the
data. The different rupture models would clearly lead to dif-
ferent stress accumulation patterns and histories on the fault
[Ruff, 1983].

In geophysical inverse problems, the solution is often sta-
bilized by using nonphysical prior bounds, such as find-
tng the minimum norm solution or the smoothest solu-
tion. Hartzell and Heaton [1983] and Das and Kostrov
[1990,1994] investigated physically based constraints that
can be used to stabilize the solutions. We shall show that
physical constraints, such as not allowing back slip on the
fault, produce the proper results, whereas the minimum norm
solution and the solution with the smailest first differences
do not, for the cases studied in this paper. Hartzell and
Heaton [1983], Mendoza and Hartzell [1988a, 1988b, 19897,
Hartzell et al. [1991], and Hartzell and Liu [1993] have used
various stabilizing bounds in their inverse problem solutions
and Harrzell and Liu [1995] summarize many features of
such prior bounds,

In this paper we shall address only some specific aspects of
the questions raised above by using artificial data where we
do know what the correct solution is. We shall use the ver-
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tical components of synthetic accelerograms constructed us-
ing the “far-field” approximation in the vicinity of the earth-
quake epicenter for source receiver distances in the 15 1o 35
km range, generated by a very idealized model of earthquake
rupture, We shall take the fault rupture model to be a Haskell-
type dislocation [Haskell, 1964, 1966, 1969] propagating at
a constant rupture velocity. This model has the great advan-
tage of being very simple and has been widely used in seis-
mic source studies, both for the forward problem and for the
inverse problem. Madariaga [1978] proved that it is an ap-
propriate model for simulating radiation with wavelengths
longer than the fault width, as in this paper. Some of the stud-
tes of the inverse problem referred to above use essentially
this model. We therefore use this simple model to obtain in-
sight into the inverse problem. In this study we confine our-
selves to using accurate data and seismograms close to the
carthquake source. We do not discuss the teleseismic prob-
lem, although some of the results could be adapted to that
case by scaling of the fault size and wave periods used here.
Neither do we discuss the effects of noise in the data. Rather,
we aim to gain insight into the basic problem of solving such
unstable inverse problems by studying a very simple and ide-
alized situation. Most importantly, working with synthetic
data provides the possibility of identifying artifacts of the so-
lution and their causes.

We first set out briefly the method used to generate the syn-
thetic ground motion data. We next describe the inverse solu-
tion method, generate many sets of synthetic data for differ-
ent faulting models, invert them, and present the resulis. Fi-
nally, we examine the limitations of the inverse problem for
earthquake faulting, identifying, for example, which source
properties we might be able to infer reliably, which ones de-
pend strongly on knowledge of proper crustat structure, and
S0 on.

Description of the Mathematical Problem

The formulation of the problem in terms of the slip rate or
slip on the fault is well known and is stated only briefly here.
Using the representation theorem {e.g., equation (3.2) of Aki
and Richards [ 1980]; equation (3.2.18) of Kostrov and Das
[1988)) and neglecting body forces, the displacement record
at a station located at point x| on the Earth’s surface can be
expressed in terms of the slip distribution over a fault surface,
¥, as an integral equation of the first kind [Das and Kostrov,
1990]

ug(xy,t) = /dt//[{ik(XLYI,thf)“i()’lnt)dss (1
Jo b

where 1, k = 1,2 3, i (Xy, 1) are the components of the
displacement vector, a; {y:,t)are the components of the slip,
and Kik(x).y,.14, t) are the components of the impulse re-
sponse of the medium at (x;, ¢, }, due to a dislocation point
source at (y;,t). By moving the time derivative that exists
in the kernel A (o the slip term in (1), we obtain an equiva-
lent representation in terms of the slip-rate distribution over
the fault, with the corresponding kernel G. In short,
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u K+a = Gx»a, where L = G (2)

where u is the displacement vector, a and a are the slip and
slip rate vectors, respectively, asterisk denotes convolution
over the fault area and source duration, and dot denotes time
derivative. We shall assume that the fault is planar and that
the slip direction is constant over the fault. We can use either
form of (2) to find slip or slip rate, if we know the kernels A’
and (G and the displacement seismograms. Slip rate is easily
converted into moment rate given the modulus of rigidity.

Discretizing the problem, by dividing the fault into square
cells and the source time function into steps, reduces (2) to
the system of equations

Ax = b, {3)
where A is the matrix obtained by integrating (& or &' over
fault cells and time steps, each column of A being the appro-
priate discretized set of the kernel for all stations correspond-
ing to different cells and time instants, ordered in the same
way as the observations b, and x are the unknown slips or
slip rates. In this paper, we use the formuiation in terms of
the slip rates and the kernel &.

The Green functions are determined using the multimodal
summation method for a layered, anelastic medium [Panza,
1985; Panza and Suhadole, 1987, Florsch et al., 1991]. In
this paper we shall only use the vertical component of mo-
tion and Rayleigh wave modal summation to determine the
Green function kernel. We have chosen to work initially with
the vertical component only to make the matrix A smaller, for
a given number of stations. The effect of including the hori-
zontal component on the inversion will be investigated in the
future.

The medium consists of homogeneous layers separated by
first-order discontinuities. The modal summation method al-
lows exact and complete solution of the full wave equation
for a laterally homogeneous medium in a preassigned (w.c)
interval, where w is the angular frequency, and c is the phase
velocity [ e.g. Aki and Richards, 1980]. The seismic source
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is included in the computations using the formulation due to
Harkrider [1964] and Ben-Menahem and Harkrider [1964].
The extended fault is modeled as a grid of point sources, and
the synthetic seismogram at each station due to the moment
release on the fault is computed by summing the contribu-
tions from each point source with appropriate delays and
weights [Panza and Suhadolc, 1987].

In this paper the Green functions are computed for a max-
imum frequency of 1 Hz. The frequency domain is sampled
with 200 points in the range DC to 1 Hz, which gives a fre-
quency step of 0.005 Hz, yielding good frequency resolution
between 0.1 Hz and 1 Hz. The upper frequency of 1 Hz im-
plies minimum wavelengths on the order of 1 km for the ve-
Jocity models considered in this paper. The achievable spa-
tial resolution on the fault at a given instant of time is on the
order of 0.5 km. The size of the time step used in constructing
the Green functions is taken as about 0.1 s (more precisely
as 200/2048=0.09765 s, where 200 is the number of points
in the frequency domain and 2048 is the number of points in
the discrete Fourier transform).

Construction of the Synthetic Data

The synthetic accelerograms to be used in the inversion are
constructed by performing the convolution in (2) for the par-
ticular faulting models considered. In this study the forward
problem is a discretized form of the Haskeil dislocation prop-
agating unilaterally over a rectangular fault at a constant rup-
ture velocity, v, = 0.Tvs, where vs is the shear wave speed
in the medium. Figure | shows the fault geometry together
with a schematic diagram of the propagating rupture. The
fault is taken to be of pure dip-slip type with a 30° dip and
with the top of the fault located at a depth of 1 km below the
Earth’s surface.

The discrete approximation (3), of equation (1), must be
fine enough to be a good approximation to the integral in (1),
must be representative for the wave lengths involved in the
data, and yet be feasible to solve. The spatial cell size Az

Fault geometry
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Figure 1. Fault and station geometry.
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on the fault is taken as 50 m and the time step size At in the
source time function as approximately 0.1 s, both for the for-
ward and inverse problems. The rupture front is discretized
using the same spatial and temporal gridding, with the mo-
ment being released at the center of each cell and in the mid-
dle of each time step as the rupture front crosses any portion
on the cell within the time step interval. The moment is re-
leased only once in each cell, at the time the cell ruptures,
The level of moment released at each cell is taken as con-
stant and equal to 1 x 10'! N m. The problem using finer
discretization in the forward than in the inverse problem is
the subject of another paper [Das er al., 1995].

The size of the fault varies in the different cases considered
here. Table | summarizes the length and width of the rup-
ture area for each case. Figure 2 shows velocity profiles with
depth for the Earth structures M1 and M2 that we shall use in
this study. M1 has a low velocity layer that is absent in M2,
The @ vaiues in the two models range from a value of 20 in
the surficial layers to 100 in the deep sediments and 400 be-
neath them. The six stations, distributed equally in azimuth
around the fault (Figure 1), are chosen so as not to involve
nodal directions. The hypocenter is marked by a star and the
source receiver distances lie in the 15to 35 km range. All the
synthetic accelerograms are sampled at the same time inter-
val as the time step size used to construct the Green function,
about 0.1 s, and the entire accelerogram is used in the inver-
sion.

Solution of the Inverse Problem

Since the integral equation (1) is unslable, we need to sta-
bilize it by the use of additional constraints. Ofson and Apsel

10 B

20

Depth (km)

30

40

0. 3
Velocity (km/s)
Figure 2. The P and S wave velocity profiles with depth in

the crust for medium M1 (solid line) and medium M2 {(dashed
line).
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[1982]), Hartzell and Heaton [1983], Das and Kostrov [ 1990,
1994], and Hartzell and Liu [1995], among others, have iden-
tified constraints that can be used for this purpose. The phys-
ically based constraints we shall use in this paper are as fol-
lows:

1. Slip rate x > O for all points on the fault for all titne
(“positivity” constraint P).

2. The final moment must equal some preassigned value
(“moment” constraint 3 ).

3. The rupture is constrained to move at, or more slowly
than, some preassigned speed (“strong causality” constraint
R1). It is important to point out that there is no rupture cri-
terion involved in the discrete inverse problem, and by “rup-
ture speed”’ we mean the rupture speed of some (unspecified)
rupture triggering signal.

4. The moment rate is zero in any cell and time step that
would produce a signal before the first arrival at any station
from the hypocentral cell (“weak causality” constraint £2).
In the case when there is insufficient station coverage, if this
constraint is used without the constraint R1 also being en-
forced, the inversion may permit super P “rupture speeds”.

5. In the forward problem, moment is released only once

as the cell breaks. In the inverse problem, a cell may be al-
lowed to release moment more than once. The phrase ‘more
than once’ (MTQ) will be used to denote this case.
We select constraints for the different cases studied (Table 1)
in order to to gain insight into the effects on the solution of the
constraints. Constraints of this type have been called “hard
prior bounds™ by Jackson [1979] and Backus {1988].

In addition, it is possible to improve the stability of the
problem by the use of “*soft prior bounds”, such as finding the
solution with the minimum norm or the smoothest solution
in some sense, say, the solution with the smallest first differ-
ences. This is done by adding a term to the penalty functional
[lb — Ax||,, where p = 1,2, ..., as desired. For example,
to obtain the minimum norm solution, one then minimizes
/b — Ax||, -+ 5||x]||p. where 1 is some weighting factor. To
find the solution with the smallest first difference (in space
and/or time), one minimizes ||b — Ax|l, 4+ 7 times the cho-
sen norm of the appropriate first differences of x, and so on.
Such stabilizations have been used in the papers on inverse
problem solution referred to earlier.

To solve the constrained linear system (3), we shall use
two standard methods, discussed by Press er al. [1986],
Tarantola [1987], and Parker {1994]. First, we solve (3)
using the method of singular value decomposition (SVD), in
which we minimize |{b — Ax]||,. If the results are not satis-
factory, for example, if the moment obtained in not the right
one, then we again use SVD but constrain the moment to a
preassigned value (constraint M. If the results are still not
satisfactory, for example, if there are large negative moment
rates on the fault, we remove small singular values and ex-
amine the solution. Finally, in some instances we shall find
the solution with the smallest first differences in space and
time and compare 1l with the correct solution. In the sec-
ond approach, we solve (3) using various combinations of the
physical constraints discussed above and the method of linear
programming, in which the 1-norm of the penalty functional
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is minimized. In some instances when using this second ap-
proach, we shall find solutions with the smallest second dif-
ferences, following the formulation developed and applied to
the earthquake faulting problem by Das and Kostrov {1990,
1994]. For some cases we usc only the second approach to
solve the inverse problem. The inversion method used to-
gether with the constraints and the results obtained for each
case are summarized in Table 1.

Results

More than 40 inversions were performed. Selected cases
are discussed in detail below.

Case 1

The synthesized vertical accelerograms in this case corre-
spond to a unilateral rupture that spreads out over a 2.55 km-
long and 50 m-wide fault in 21 time steps with a rupture ve-
locity of v, = 0.7vs in M1. The number of cells (nz) along
fault strike is 51 and the number (nh) along the fault dipis 1.
The number of time steps will be denoted by nt. The short-
est wavelength {about 1.2 km for this case) is much larger
than the fault width. Figure 3 shows the rupture model, the
moment rate history and distribution and the final moment
over the fault for this forward problem. (The corresponding
source time function is shown later in Figure 5a.) The six
synthesized accelerograms are displayed in Figure 4. Sim-
ply in order to check our programs, we solve this problem
with the same rupture model and the the same Earth struc-
ture as in the forward problem. The system of equations has
51 unknowns and about 1500 equations (sum of all the sam-
ples in all the accelerograms) and is an exact one. A simple
unconstrained SVD solution is found to agree with the for-
ward probiem to machine accuracy.

Case la: Rupture front constrained to actual front.
We next constrain the rupture velocity v, to be the same as
in the forward problem (0.7vs}), but without restricting the
number of times each cell behind the rupture front releases
moment (MTO). The number of unknowns is now 554. The
unconstrained SVD solution is close to the moment rate dis-
tribution of Figure 3 but with some negative values behind
the rupture front, the magnitude of these moment rates be-
ing about 1% of the constant moment rate level of the for-
ward problem. The solution fits the accelerograms to several
significant figures. The solution source time function is com-
pared to the true one in Figure 5a. For the first few time steps,
when the area of slip on the faultis not large, the agreement is
good, but at later times the source time function obtained os-
cillates about the correct solution. Though the total moment
is correctly reproduced without being constrained, the final
moment distribution on the fault, plotted in Figure 5b, also
oscillates around the actual solution. Thus the negative mo-
ment rates, though small, when summed in space to produce
the source time function or in time to obtain the final moment,
have a nonnegligible contribution. Excluding small singular
values did not improve the situation significantly. The cen-
troids of the moment distribution in time and along strike are
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Figure 3. The forward model for case 1. The rupture model
is displayed at the bottom of the figure, the moment rate time
history along the fault length above it and the final moment
along the fault is illustrated at the top. The fault length is
taken along the abscissa and time is plotted along the ordi-
nate. The numbers at the right indicate the time step. The
level of moment release at each cell is 1 x 10! N m. The
cells that are slipping at each time step are indicated by tick
marks below the trace. The scales used for plots similar to
this will be kept the same throughout the paper to facilitate
comparison, though the shift between time steps might vary
in later figures in the interest of clarity. The solutions of the
inverse problems for case 1, case 2a, and case 3 should be
compared to this figure,

shown in Table 1. Both centroids are found to be close to the
corTect ones.

We next find the solution with the smallest first differences
in space and time, but are still unable to remove the large
number of small negative moment rates from the solution.
We then solve the probiem using linear programming and
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Case 1
124 102
117
92
124
89
73

Figure 4. The synthetic accelerograms for the fault and sta-
tion geometry of Figure 1, for the forward model of case 1.
The thick line is the fault strike and the numbers next to each
accelerogram give the maximum ground acceleration, multi-
plied by 100, in centimeters per second squared.

enforcing the moment rate to be positive (Case 1a(2)). All
aspects of the forward model are now reproduced exactly.
Even though cells have the freedom to release moment dur-
ing more than one time step, it is found that each cell releases
moment only once. Thus for the simple rupture model used
here, we can reproduce the moment rate distributionand his-
tory on the fault if we know the rupture front, the focal mech-
anism and fault geometry, and Earth structure, by constrain-
ing the moment rate to be positive but without constraining
the total moment. Since the predicted accelerograms cannot
be distinguished from the original accelerograms (Figure 4),
they are not plotted.

Case 1b: Weak causality applied to rupture front. We
next apply the weak causality constraint (R2), with cells be-
hind the causal front being allowed to release moment as of-
ten as necessary {MTO). We solve the inverse problem us-
ing both SVD and linear programming. The number of un-
knowns is now 987. The conclusions are the same as in case
la. Thus as long as the positivity constraint is enforced, we
can reproduce the rupture process using the weak causality
constraint, knowing the fault mechanism, the fault geometry,
and the Earth structure.

Case 1c: Rupture front constrained to propagate more
slowly than in the forward problem. We next consider
the same problem as incase 1a, but constrain the rupture front
to a velocity of 0.5vs. We use only the linear programming
approach in this case. The moment is not constrained and
cells are allowed to release moment as often as necessary, but
the moment rate is constrained to be positive. The number of
unknowns is now 398, Owing to the low rupture speed con-
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Case la
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Case la
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b Length Step 51

Figure 5. (a) Moment release per ime step, muitiplied by 1

x 10!! N m, on the fault for the forward problem (solid line}
and the solution (crosses) for case 1a. In the forward problem
either two or three cells break at each time step. The number
of cells allowed to break at each time step is the same in the
forward and in the inverse problem in this case, but the fig-
ure demonstrates that the amount of moment released at cach
time step in the inversion does not agree with that in the for-
ward problem. (b) Final moment distribution, multiplied by
x 10'1 N m, on the fault for the forward problem (dots) and
the solution (crosses) for case la.

straint used in the inversion, only part of the fault can rupture
in the total rupturing time, which is determined by the dura-
tions of the synthetic accelerograms. Figure 6 shows the for-
ward and inverse rupture models and the moment rate history
obtained. Figure 7a shows the fit to the data; the fitis not per-
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Figure 6. Same as Figure 3 but for the inversion in case lc.
Compare with Figure 3.

fect, the !, -misfit as defined by Das and Kostrov {1990] being
47%. However, the fit shown tn Figure 7a would be consid-
ered very good for real data. Neither the moment rate dis-
tribution and history, the final moment, nor the source time
function (Figure 7b) is reproduced well. The centroid in time
is not far from the correct one but, as expected, the centroid
along strike is not correctly obtained (see Table 1). Note also
a cell rupturing well behind the rupture front. The moment
was 20% larger than in the forward problem.

Case 1d: Rupture front constrained to propagate
more slowly than that in forward problem, moment con-
strained. The solution obtained for this case using linear
programrming is not significantly better than for case lc.
Thus constraining the rupture front to propagate at too low
a speed produced a poor fit to the data, which provides a clue
that our inversion model is incorrect. We next attempt to

DAS AND SUHADOLC: EARTHQUAKE RUPTURE INVERSE PROBLEM

Case 1c
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Figure 7a. Same as Figure 4 but for case Ic.

Case lc
10. T T T T

' —

- . . _

- ' _

X x % _

YO } ]

L . ]

T

0. Looe— % 9e 1ot Lovene— 94—
1 Time Steps 25

Figure 7b. Comparison of the data (solid lines) with syn-
thetics (dashed lines) for case tc. Notations and symbols are
the same as in Figure 4.

smear out the moment distribution behind the rupture front
by minimizing the maximum moment rate, as described by
Das and Kostrov [1994], with 10% additional misfit to the
data being permitted. It is found that the moment does spread
out more ¢venly behind the rupture front but is still far from
the correct solution. The results of a smoothed solution in
which the sum of the modulii of the second differences of
the moment rates were minimized, as formulated by Das and
Kostrov [1994], with 10% additional misfit to the data being
permitted, is very similar.
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Case 2a

FORWARD RUPTURE MODEL

R AR AR AR NAARA R AR R AR AR RRRRRRRLRRlD)

Length Steps v = .TUs

INVERSE RUPTURE MODEL
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Length Steps ~ Ur = Tus
Figure 8. The forward and inverse rupture models used in
case 2a. The top of the fault is at the same depth, 1 km,
below the Earth’s surface and the rupture nucleation points
are marked by the asterisks. The shaded area in the inverse
model is the part of the fault that slipped in the forward prob-
lem.

Case 2

We next consider a set of cases to obtain insight into the ef-
fect of inverting seismograms using a narrower or wider fault
region than in the forward problem. We use the linear pro-
gramming approach to solve the inverse problem in all cases
in this section.

Case 2a: Inversion for wider fault than in forward
problem. The forward and inverse rupture models for this
case are illustrated in Figure 8. The forward problem is the
same as in case 1, the data being shown in Figure 4, but the
inverse model is taken as a 2.55 km x 250 m fault, with the
top of the fault being at the same depth as in the forward case
(1 km) and embedded in the same structure, M1. The rupture
in the inversion model nucleates at the same point and propa-
gates at the same speed (0.7vg) as in the forward model, with
each cell releasing moment only once as the rupture passes.
The number of unknowns in this problem is 255. The only
other constraint used is the positivity of moment rate. In the
solution, the fit to the data is exact to three decimal places and
the total moment is correctly reproduced. Figure %a shows
the moment rate history at the hypocentral depth level (stip-
pled region in Figure 8), where the moment was released in
the forward problem. Comparison with the correct solution
(Figure 3) reveals that the level of moment release at the rup-
turing cells is not correctly obtained. Often alarge moment is
released at a certain cell without any moment being released
at adjacent cells. No moment was released at the deeper lev-
els even though this was allowed in the inversion. The final
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Figure 9a. Same as Figure 3 but for the inverse problem
case 2a, plotted at the hypocentral cell level. Compare with
Figure 3. No moment was released at the deeper parts of the
fault, though this freedom was allowed in the inversion.
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Figure 9b. Same as Figure 5a but for case 2a.
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moment distribution, plotted at the top of Figure 9a, shows
that the constant moment release over the fault is not repro-
duced. The source time function (Figure 9b) is also not re-
produced correctly, but Table 1 shows that the centroids ob-
tained are close to the correct ones. Next, the inverse prab-
lem is solved without any restriction on how often cells be-
hind the rupture front are allowed to release moment {case
2a(2)). The number of unknowns is now 3731. The fit to
the data is excellent and the total moment is correctly repro-
duced. The moment rate history at the hypocentral level and
the final moment distribution on the fault are similar to that in
case 2a. Thus when the positivity of moment rate is enforced,
the width of the rupturing area and the moment centroids are
correctly found, provided the rupture velocity and the Earth
structure are known, even though the fault width in the in-
version is larger than that used in creating the synthetic ac-
celerograms, The moment release history, the final moment
distribution, and the source time function are not, however,
reproduced correctly.

Case 2b: Inversion for narrower fault area than in for-
ward problem. The forward and inverse faulting models
used in this case are illustrated in Figure 10. We construct
synthetic accelerograms for the case of a 2.55 ki x 250 m
fault, with the rupture propagating at a constant speed of
0.Tvg. Each cell is allowed to release moment only once as
the rupture front passes. This is very similar (o the classical
“Haskell model” but with a curved rupture front. We perform
the inversion using a 2.55 km x 50 m fault, with the top of
the fault being at the same depth (1 km) as in the forward
case and embedded in the same structure, M1. The rupture
nucleation point and the rupture speed are the same in the in-
verse and forward models. The moment is not constrained
and each cell is allowed to release moment only once as the
rupture front passes. The number of unknowns in this case
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difference being essentially undetectable by eye. The rup-
ture process in time is plotted in Figure 11a. The total mo-
ment is found to be 95% of the correct value but the uni-
form moment release at the rupture front is not reproduced
correctly; very large moment is released at certain fault cells
but none at adjacent ones. The source time function, shown
in Figure 11b, is not correctly reproduced. The spatial and
temporal centroids of the morment distribution are found to
be very close to the actual solution (Table 1). We then solve
this same problem using the weak causality constraint (case
2b(2)) in order to allow more freedom in the inversion, but
permit ceils to release moment only once. The number of un-
knowns increases to 1038. The !, misfit is 12% and the mo-
ment is larger by about 10%. Figure 12 shows that although
the rupture front position is not preassigned, the moment re-
lease is confined primarily to the vicinity of the true rupture
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Figure 10. Same as Figure 8 but for case 2b.
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Figure 1l1a. Same as Figure 3 but for the inverse problem
case 2b.
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Figure 11b. Same as Figure 5a but for case 2b.

front, with some moment release both ahead and well behind
it. The centroid of the moment release in both time and along
fault strike is found correctly, but the source time function is
not reproduced.

Case 3

We next consider a set of cases to find the effect of using
incorrect Earth velocity models. Clearly, there is potential
for such errors in Earth velocity to be aliased into artifacts
in the solution. Here we demonstrate what some of these ar-
tifacts can be.

Case 3a: Effect of incorrect Earth structure. We con-
struct synthetics for the 2.55 km x 50 m fault in medium M1,
with the top of the fault Jocated at a depth of 1 km below the
Earth’s surface (the forward problem of case 1). The rupture
speed v, is taken as 0.7vs of medium M1, We solve the In-
verse problem using the same fault geometry but in medium
M?2. The rupture speed in the inversion is 70% of the shear
wave speed of medium M2. Performing an SVD inversion,
we obtain a very poor fit to the data with many negative mo-
ment rates. Adding constraints clearly will not improve the
fit to the data. We then solve the problem using the linear pro-
gramming approach and the positivity of moment rate con-
straint, but we are still unable to fit the data. Since the two
media are different in the source region (Figure 2), we next
determine the hypocentral depth in M2 for which the travel
times of the first arrivals to the six stations are closest to those
for the original source depth in M1, and place the fault at this
depth (2.05 km) for the inversion. The forward and inverse
faulting models are illustrated in Figure 13. We do not pre-
assign the rupture speed but use only the weak causality con-
straint and allow grids to release moment more than once.
Owing to the weak causality constraint, regions of the fault
farthest from the nucleation region are found to rupture only
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Figore 12. Same as Figure 3 but for the inverse problem case
2b(2). The tick marks shown at each time step are those for
the forward problem. The region in space and time excluded
by the weak causality constraint is indicated by stippling.

s

five time steps after nucleation, implying an apparent super P
wave rupture speed. The duration of the entire source process
is determined by the length of the synthetic accelerograms
which is found to be 38 time steps for this inversion, the time
step size being the same as in the forward problem, that is,
approximately 0.1 s. The difference in the rupture durations
of the forward and inverse cases is due to the different dura-
tions of the Green functions in the two media. The number
of unknown moment rates is now 1818; the total moment is
not constrained. Figure 14 shows the fit of the solution to the
accelerograms. The fit is far from good, the {; norm of the
misfit being 84%. Figure 15 displays the moment rate his-
tory and the final moment obtained. The first notable result
is that the rupture front position is not correctly obtained and
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Case 3a
FORWARD RUPTURE MODEL INVERSE RUPTURE MODEL
Earth’s surface Earth’s surface
I | km
} 205 km

Length Steps Ur = O'7US ‘t I
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Figure 13. The forward and inverse rupture models used in case 3a. The top of the fault is at depth |
km below the Earth’s surface in the forward case and at depth 2.05 km in the inverse case. The rupture
velocity in the forward problem is 70% of the shear wave speed of medium M1, The constraint R2 is used
for the inversion in this case so that the rupture speed is not preassigned. The rupture nucleation points are

marked by the asterisks.

the moment release appears to be somewhat randomly dis-
tributed on many parts of the fault, though an incoherent front
can be identified, as indicated by the dotted line on Figure
15. The average speed of this front is about 60% of the shear
wave speed of medium M2 at the level where the fault is lo-
cated. The final uniform moment distribution of the forward
problem and the source time function are not correctly repro-
duced. The moment obtained is 55% larger than the actual
moment. The position of the centroid along strike is close to
the correct one. The centroid in time, however, is far from
correct which is not surprising since the duration of the pro-
cess in the inversion is much longer than the correct one. But
the most remarkable result here is the moment that is released

Figure 14. Same as Figure 4 but for case 3a,

at later times on the fault. Figure 15 shows an additional
coherent moment release in space and time appearing from
nt = 20 on, defining a second moment release front. We call
this a “ghost front” and it illustrates how the incorrect struc-
ture manifests itself as an artifact of the solution, and would
lead in the real case to being interpreted physically as a sec-
ondary rupture front. The moment release ahead of the rup-
ture front could potentially be interpreted in the real case as
evidence for super shear rupture speed and the random na-
ture of the moment release at some other places as evidence
of “asperities” rupturing. The poor fit of the synthetics to the
data is the clue that our input model is incorrect.

Case 3b: Effect of incorrect Earth structure with a
larger fault size. Finally, we use a larger fault, 2.55 km x
250 m in the inverse model, with the top of the fault located at
adepthof 2.05 km, to see if this additional freedom improves
the fit to the data. We find that the fit does not improve sig-
nificantly. Constraining the moment only worsens the fit, as
expected. Hence with the incorrect structure we are simply
unable to fit the data.

Discussion and Conclusions

Using synthetic data, we solve the inverse problem for a
very simple faulting model in order to gain insight into so-
lutions of such unstable problems. We demonstrate that the
constraint of positivity of moment rate on the fault is essen-
tial to reproducing all facets of the solution, namely the mo-
ment release history and distribution, the source time func-
tion, and the final moment distribution. With this constraint,
we find that even if we do not preassign the rupture front po-
sition it is identifiable in the inversion, for all practical pur-
poses, when the medium properties are known and for the
simple rupture model considered here. The centroids of the
moment release in space and time are generally found to be
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Figure 15. Same as Figure 12 but for the inverse problem
case 3a. The tick marks shown at each time step are those for
the forward problem in medium M1. The dashed line iden-
tifies the incoherent rupture front, propagating at an average
speed of about 60% of the shear wave speed of the medium
M?2 at the depth where the fault is located.
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close to the correct ones, even in cases where the fit to the
data is poor, except that when the rupture front is constrained
to propagate more slowly than in the forward problem (cases
lc and 1d), the spatial centroid is not correctly obtained.
However, the constant level of moment release and the uni-
form final moment distribution of the forward problem gen-
eratly are not correctly reproduced. Ininversions of real data,
such artifacts might be interpreted as evidence for heteroge-
neous faulting. We are unable to fit the data adequately if the
rupture velocity is constrained to be lower than that in the true
velocity or if the fault is constrained to be narrower than its
true width. Use of incorrect crustal structure also has this ef-
fect. In the latter case, the position of the main rupture frontis
not obtained correctly. Instead, an additional coherent “ghost
front” is obtained behind the rupture front, illustrating how
poor knowledge of crustal structure can be manifest as an ar-
tifact in the solution. '

The problem remains that in many cases the fit to the data
is very good even when the faulting process is poorly repro-
duced, so that in the real case it would be difficult to know
when one has obtained the correct solution. Then one must
follow the suggestion of Das and Kostrov [1990, 1994] and
consider many possible solutions, seeking physical charac-
teristics that persist in many solutions. For example, if so-
lutions resuiting from differing constraints all show that the
main moment release was at a particular region of the fault or
give nearly the same average rupture velocity, then we may
have some confidence in these features of the solution. Using
data from the 1989 Macquarie Ridge earthquake, Das and
Kostrov [ 1994] showed how to perform further optimiza-
tions to see if a particular commen feature persists. If it does,
then can one have some confidence that it is truly represen-
tative of the actual faulting process. This study, using arti-
ficial, noise-free data, also shows that small variations in the
quantities obtained, such as rupture veiocity, moment release
over the fault, and so on, may not be reliable. The complica-
tions in using real, noisy data, deconvolution of instrument
respenses, and so on, will only make the situation even more
difficult.

The results presented here suggest that it i1s essential to
carry out a study such as this before inverting real data in or-
der to have some idea of the limitations of the inversion for
the particular case under investigation.
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Abstract

The problem is to find if we are able to determine correctly the average properties of the
actual earthquake faulting process, which occurs in reality in the Earth at microscopic scales,
from a solution of a feasible inverse problem. In order to investigate this, we use synthetic
accelerograms constructed in the vicinity of a 20km x Skm dipping thrust fault for a discrete
analog of the Haskell-type of fault model as the data and perform the inversion using much
coarser spatial and temporal grids than used in constructing the data and widely used inver-
sion methods. We show that we are essentially unable to obtain the proper (known) results
when we use a least-squares (Singular Value Decomposition) method due to the fact that many
negative values of moment rate, which did not exist in the forward problem, are produced
though the data are well fit. Inversions using the SVD method together with smoothing con-
straints or exclusion of small singular values yield an improved solution but the actual values
to be used must be obtained by trial-and-error and do not contribute to our insight as to how

to solve the problem with real data. Finally, we show that if we enforce the condition that
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there are no negative moment rates, using in this case the method of linear programming, we

are able to reproduce many aspects of the ariginal solution better.

Introduction

In order to investigate the possiblity of inverting seismograms to obtain correctly the details of
the rupturing process, Das and Sukadole (1995) set up an experiment using artificial data for
a simple {aulting model and widely used standard inversion methods. Synthetic accelerograms
were constructed in the vicinity of an earthquake for the discrete analog of the Haskell-type
rupture model with a prescribed rupture velocity in a layered medium and with a constant
level of moment being released once by each cell as the rupture front passed by. It was shown
that it is generally possible to correctly invert for many aspects of the rupture process provided
physically based constraints are used to stabilize the inverse problem. This was shown to be
50 except in special cases where the source crustal structure is poorly known or when the
rupture area in the inversion is constrained to be smaller then the actual fault area. In that
study, referred to as Paper I from here on, the spatial and temporal grid sizes used in the
inversion were the same in the inverse as in the forward problem. In reality, the actual scales
at which the rupture propagation takes place in the Earth is microscopic whereas the inverse
problem must be solved using finite grids. Therefore, it is important to study whether the
inverse solution obtained gives us a picture of the actual solution averaged over the larger
grid. In this paper, we therefore consider the problem where the synthetic accelerograms used
as “data” are constructed using very fine grids but the inversion is performed using much
coarser grids. For this, the wavelengths of the waves used in the inversion must be consistent
with the grid sizes used. In addition, the fault discretization itself is a stabilizing factor but

may not necessarily lead to the correct solution.

The problem

2



Since the details of the problem description, the construction of the synthetic accelero-
grams and the method of inversion, together with a complete reference list and discussion
of related studies of fault rupture process inversion, were given in Paper I, we only briefly
describe the main points of the problem set-up here. As in Paper I, we again consider a
discrete analog of the Haskell-type of dislocation which propagates from the hypocenter at
the prescribed velocity of about 70% of the shear wave speed of the layer and covers a given
rectangular area. The fault area is divided into square cells and the source time function into
steps. A constant level of moment is released at the time of rupture of a cell and with each
cell releasing moment during only one time step as the rupture passes it. The fault geometry
and station distribution are shown in Figure 1 and is the same as in Paper [ except that here
we use a much larger fault of size 20km x 5km, with the top of the fault being located at
the deeper level of 5km below the Earth’s surface. We generate the synthetic accelerograms
using fine cells of size 156.23m (=20km/128. where the fault is 20km long and it has 128
cells along its length; there are 32 cells along its width). The temporal step size is taken as
1s {200/2048=.097..s, to be exact) and the Green functions are computed for a maximum
frequency of 1 Hz. The crustal wave velocities used are shown in Figure 2. To obtain the
Green functions for the larger cells necessary for the inversions, we simply average over the
appropriate number of spatial cells. When the larger spatial cells are used, we also average the
Green functions over the appropriate number of temporal steps to have temporal and spatial

discretizations that are consistent with one another.

Choice of cell size for the inversion

We need to decide how large the cells in the inversion should be. Clearly, the smaller the
cells the better the approximation to the integral equation being solved but the larger the
number of unknowns. In order to make this decision, we consider spatial cells which are two,

four and eight times larger than that used in the forward problem and construct the synthetic
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accelerograms with the corresponding Green functions to see how different they are from those
coustructed with fine discretization of the fault. Figure 3 shows the synthetic accelerograms,
constructed using the finest cells and that obtained using 8 times larger spatial cells and 4
times larger temporal steps. The {;, {; and I, norms of the differences between these two
sets of synthetic data are 23%, 27% and 30%, respec-tively, though the difference are barely
visible visually. These numbers are much smaller for the other smaller cell and time step sizes
tested. For the fault under study, use of this cell size would mean 64 spatial cells and 26
time steps, that is, a maximum of 1664 unknowns. In particular cases studied, the number
of unknowns may be smaller as cells are excluded by causality or other considerations. It
would be difficult to have too many more unknowns, and hence smaller cells, because as the
approximation to the integral equation improves by going to smaller and smaller cells, the
condition number of the matrix increases making the problem more and more unstable. We
shall use this coarseness of cell for all the inversions in this study. The discussion of the use
of finitely sampled data to infer some continuous property, of the Earth say, was discussed
by Backus and Gilbert (1967, 1968) in a set of now-classic papers. As pointed out by Backus
and Gilbert (1967), since the amount of data is finite, the probiem of finding a continuous
function from it is indeterminate. In other words, the stability of the system of equations
decreases (that is, the condition number of the matrix A increases} as we use finer and finer
discretization of the fault for the inversion.

In Paper I, we showed that minimum norm solutions and solutions which are smoothed in
some sense, say the solution with the smallest first or second differences in space and time,
did not reproduce all aspects of the solution, though the position of the rupture front was
approximately found. On the other hand, we showed that physically based constraints such as
disallowing back slip to occur on the fault reproduced the solution better. In Paper I we used

the same size cell and time step size in the inversion as in constructing the synthetic data.



In this paper, we investigate how well we can infer the moment rate history and distribution
due to a rupturing fault when the inverse problem is solved using much coarser spatial and
temporal discretization than used in generating the synthetic accelerograms. Figure 4 shows
the entire time history of moment release used in the forward problem for fine cells and time
steps but plotted averaged over the coarse cells and time steps to present the picture with
which the results of the inversion must be compared. Note that in the discrete representation
of the forward model the rupture front, whicl is obtained by discretizing the constant speed
rupture front, is in fact quite non-uniform. It may also be pointed out that because of the
roughness of the gridding on the fault, the strong singularities at the fault edges, which exist

in the classical Haskell model, are not present in the forward models used in this paper.

Results

More than 30 inversions were performed for this study. Table 1 summarises the cases
which will be discussed in detail in the paper and the results. Simply as a test, we first solve
the problem Ax = b using the synthetic data b generated with the same coarse cell and
time step as for the inverse problem. The rupture front is pre-assigned to the known front
for this test and each cell is allowed to release moment only once in the inversion, as in the
forward problem. The number of unknown z’s is 177. A least-squares solution performed
using the Singular Value Decomposition (SVD) method agreed with the input to several
decimal places, thus testing the setting up of the matrix system and the computer program
used. Before replacing the r.h.s b by the seismogram obtained using the fine cells, we perform
some tests to see how well the rupture front is identifiable when the problem is solved without
constraining the rupture front. This is similar to some of the cases discussed in Paper I for the
short fault but since the stability of the problem can change for the larger fault, it is useful
to perform this investigation here.

We relax the requirement that the rupture front is preassigned to the actual front and
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instead allow all cells behind the S-wave front from the hypocentral cell to slip during the
entire source process. Tle causal front is thus only a little larger than the rupture front of the
forward problem which propagated at about 70% of the S-wave velocity, but the number of cells
permitted to slip behind the front is large. The number of unknowns is now 1160. Applying
the SVD method, we find that the rupture front is clearly identifiable in the solution but the
moment rates obtained contain some negative moment values. Tle source time function and
the final moment on the fault are shown in Figures 5 and 6, respectively. Figure 5 shows
that the source time function agrees very well with the input and the final moment (area
under this curve), which was not set a priori, is correct. The negative values of the moment
rate, though small, have a significant effect on the final moment distribution over the fault,
which is seen in Figure 6 to have large deviations around the correct moment level released at
each cell in the forward problem. The spatial and temporal centroid obtained by the solution
agrees well with that for the forward problem. By excluding some of the smaller singular
values the solution can be improved significantly. For example, if we exclude singular values
which are less than .01% of the largest singular value, we obtain the final moment distribution
on the fault as shown in Figure 7. However, the number of singular values that have to be
excluded to improve the solution can only be found by trial-and-error and thus only when the
expected answer is known, making this a not very useful exercise as it gives little insight into
how to solve the problem with real data. Constraining the rupture front even less, that is by
the P-wave front or using the “weak-causality” condition (defined in Paper I and in Das and
Kostrov (1990)) only makes the solution even further from the input.

We now continue the study by using for the r.h.s b the seismogram for fine gridding (the
solid linres in Figure 3), the case which is the focus of this study. The results obtained above
suggests that we should not expect satisfactory results and indeed we shall show that using

the least-squares (SVD) method this is so. We preassign the rupture front to the known front,



and allow each cell to release moment only once in the inversion, as in the forward problem,
resulting in 177 unknown z’s in the problem. The solution had many negative values for the
moment rate, though the fit to the data is excellent (since the differences are not seen visually,
they are not plotted here). Again, as before, excluding some of the smaller singular values
does improve the solution. Excluding too many or too few singular values made the solution
worse.

We next constrained the moment, setting it to be equal to the known moment of the
forward problem and re-solved the problem. This is referred to as Case A in Table 1. The
time history of moment rate release over the fault is plotted in Figure 8 and shows that there
are again many negative values. The final moment oscillates around the known input value
and the source time function also o;cillates around the known input, but has no negative
values (not shown). As in the previous case sclectively excluding singular values did improve
the solution.

Next, we search for the solution which has the smoothest first differences in space and
time to see if such a smoothed solution better fits the input. For this, we minimise the square
of the residual (Ax-b) together with the squares of the first differences of x in two space
dimensions and in time. The second term is multiplied by a weighting factor, and the size
of the weight is varied. Weights of .1, .2, .5, 1., 2., 2.5, 4.,and 8. were used. We find that
as this weight was increased, that is, the solution was made smoother, the negative moment
rates became fewer and smaller. We refer to the case with weight = 4. as Case B in Table 1.
The source time function obtained is shown in Figure 9, compared with that for the forward
problem. The moment rate agrees with that for the input for the first few time steps but
then overshoots it and oscillates about it. The moment rate release history over the fauit

visually looks similar to that for the forward problem, shown in Figure 4 and is therefore not

plotted, but the actual values do not agree well with the proper solution. The final moment



distribution over the fault has some (as large as +50 percent in some places) deviations from
the proper constant value over the fault. So smoothing the first diifferences does make the
negative values of moment rate obtained fewer and smaller, but the solution does not become
closer to the actual solution.

The inverse problem can be formulated in terms of slip or slip rate (see Paper I) with
the use of the appropriate kernel in the integral equation, and in the above we used the
formulation in terms of the slip rates. We next checked if solving the problem in terms of the
slip improved the situation. From a mathematical point of view there should of course be no
difference but we test if there is any difference computationally. We repeated the entire set of
cases discussed above but no aspect of the solution improved.

Next, we preassign the rupture front in the inversion to the known rupture front and test
if we are able to find the rupture front in the case when coarse cells are used in the inversion
and the fine cell synthetic data is used. The rupture front is constrained to move at the known
rupture speed of about .7vs, but all cells behind the front are now allowed to slip as often as
necessary. The number of unknowns increases to 923. This case is referred to as Case C in
Table 1 and the entire moment rate release time history over the fault is plotted in Figure 10,
the moment rate function is shown in Figure 11 and the final moment in Figure 12. Figure 10
shows that when cells behind the rupture front are not restrained from slipping, they do slip
and release non-negligible amount of moment. This figure also shows that at the end of the
process the entire fault is still slipping in the inversion whereas in the forward problem the
entire fault has come to a rest. Figure 11 shows that the moment rate history is reproduced
very poorly and Figure 12 shows that the final moment, which is distributed uniformly over
the fault in the forward problem, is quite uneven in the inversion. As before, by smoothing the
first derivative the result improves in that the solution has less and smaller negative values for

moment rate, and excluding some singular values selectively, say, excluding relatively small



ones also has the same effect but in both cases the actual solution, though nearly positive,
does not closely resemble the input. Constraining the rupture to move at about the shear
wave velocity increases the number of unknowns to 1160 and again the solution is poor.

Thus we are clearly unable to reproduce the sotution when we perform the inversion with
much coarser cells than those with which the synthetic data were generated. We next filter
the fine cell x and the coarse cell A, that is the fine data and the coarse Green functions,
with the same filter parameters and using the filtered x and A perform the inversion using
the SVD method to see how well we are able to reproduce the input. Even for the case when
the rupture front is preassigned to the actual front and each cell is allowed to slip only once,
all aspects of the solution are poorly reproduced. As before, the solution can be improved
by excluding small singular values, but again this does not teach us how to solve the real
problem. Solving the problem by allowing all cells behind the front to slip more than once
does not improve the solution. neither does constraining the rupture front by the P or the §
wave front.

Finally, we solve the problems discussed above with the additional constraint that the
moment rates are constrained to be positive by applying the method of linear programming
developed by Das and Kostrov (1990, 1994) for this problem. As before, the moment is con-
strained to the known value. We first solve the problem when the rupture front is preassigned
and each cell slips only once in time (177 unknowns). This case is labelled Case D in Table
1. All aspects of the solution (that is, time history of moment rate distribution, source time
function and final moment distribution on fault) are the same as the input for all practical
purposes and are not plotted since the minor differences are not seen visually.

Next, we perform the inversion preassigning the rupture front to move at the known speed
but allow all cells behind the front to slip as often as necessary. The number of unknown is

923. This case is labelled Case E in Table 1. The complete moment release history is shown



in Figure 13. The moment release pattern over the fault in time is reproduced correctly for all
practical purposes, with occasionally an additional cell behind the actual rupture front and
adjacent to it also having some small moment release. Figure 13 shows that are also a few
instances where a smail amount of moment is released well behind the actual rupture front,
which is not present in the correct solution. At the final time step, the entire fault is at rest
as in the forward problem, and a feature we were unable to reproduce in the analogous Case
C. We also reproduce the final moment and the source time function correctly.

Finally, we consider the case when the rupture front is allowed to be larger than the actual
front and limit it by the S-wave {ront in Case F and by the P-wave front in Case G. We find
that as long as the moment rates are constrained to be positive, we again are able to reproduce
the solution properly. The complete moment release history is shown for Case F in Figure 14,

with behaviour similar to that described for Case E (Figure 13).
Discussion and Conclusions

In order to test if it is possible to invert seismograms to obtain correctly the details of the
rupturing process, we perform more than 30 inversions using well known inversion techniques
and synthetic accelerograms for the discrete analog of the Haskell-type of rupture propagating
at a prescribed velocity and releasing a constant level of moment only.((-mce at the rupture
front. We show that unless the positiveness of slip rate or moment rate is enforced, the
expected solution is not reproduced. A least-squares solution produces many large negative
values of the moment rates. Trying to then reduce these negative values by smoothing the
first differences, say, or excluding some of the smaller singular values of the linear system does
reduce the negative values but does not necessarily bring it closer to the actual solution. In
any case, since the improvement in the solution depends on the weighting factor used in the
smoothing or the number of singular values excluded, this teaches us nothing about how to

solve the real problem. Enforcing the “no back-slip” constraint , that is, disallowing negative
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moment rates, however does produce the proper results.

In this paper, the positiveness of moment rates was enforced using the method of linear
programming. Clearly, other methods of enforcing this constraint may be equally acceptable,
though we have not tested other such techniques for this paper, as our goal here is simply to
demonstrate that this constraint is essential. Such an alternative method has been used for this
problem by Hartzell and Heaton (1983) and applied by Hartzell and Liu (1995), by Hartzell et
al. (1991) and by Wald and Heaton (1994), to mention only a few such applications. Hartzell
and Heaton (1983) showed that using small subfaults and then smoothing the solution, in
addition to imposing the positivity constraint, may be desirable.

Finally, we discuss the limitations of this study due to the use of a very simple forward
model of the faulting process. Clearly, all our negative conclusions, say the fact that we
are unable to reproduce the correct solution without the positivity constraint, will hold for
more complex cases. On the other hand, our positive conclusions, for example, that we can
reproduce the rupture front position correctly by using the positivity constraint, as in Cases
F and G, is only applicable to the case studied here. This paper demonstrates the difficulties
we encounter even in the simple case of a Haskell-type faulting model. Clearly more realistic
models like crack models with more variable rupture propagation speeds would present even
greater difficulties and the current approach of solving the inverse problem used here may not

even be usable.
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Figure Captions

Figure 1. Fault and station geometry used in this study, shown in plane view and fault
geometry is cross-section. The star denotes the hypocenter.

Figure 2. The P- and S-wave velocity profiles with depth in the crust for the medium used
in this study.

Figure 3. Synthetic accelerograms constructed using the spatial cells of size 156.25m and
temporal steps of .1s are shown by the solid line. Synthetic accelerograms using 8 times larger
spatial (1.25km) and 4 times larger temporal steps (.4s) are shown by the dashed line.

Figure 4. The entire time history of the moment release on the fault used in the forward
problem using fine cells but plotted here averaged over the coarse cells. Figures 8, 10, 13 and
14 for the solution must be compared with this figure.

Figure 5. Moment rate versus time for the forward problem (solid line) and for inversion
(crosses) for the coarse cell Green functions and accelerograms when the rupture is constarined
by the S-wave front and all cells behind it allowed to slip as often as necessary using the SVD
method.

Figure 6. Final moment distribution for the forward problem (thick solid line) compared

13



with the same inversion (thin solid line) as in Figure 5. The final moment is against the fault
length for the four cells along fault width, nh=1 indicating the shallowest cell level and nh=4
the deepest,

Figure 7. Same as Figure 6 but for the inversion in which stngular values which are less
than .01% of the largest singular value are excluded.

Figure 8. The entire time history of the moment release on the fault for Case A, plotted
at the same scale as Figure 4. Compare with Figure 4.

Figure 9. Same as Figure 5 but for Case B.

Figure 10. Same as Figure 8 but for Case C. Compare with Figure 4.

Figure 11. Same as Figure 5 but for Case C.

Figure 12. Same as Figure 6 but for Case C.

Figure 13. Same as Figure 8§ but for Case E. Compare with Figure 4.

Figure 14. Same as Figure 8 but for Case F. Compare with Figure 4.
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