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2. 1D Modes and Waves in Homogeneous and Inhomogeneous Media

A clear understanding of simple. linear 1D problems such as the damped harmonic oscillator
Or waves on a string should be the foundation of your intuition into seismology. We will begin to
discuss the physical and seismological significance of these simple systems here and will also review
a little more sophisticated mathematics that should come in useful later on in the class. Simple
harmonic oscillators (SHO's) will be laid to rest quickly. Their importance derives from the fact
that SHO ODE’s fall out from certain wave propagation PDE'’s by separation of variables. However,
the string is a much more useful 1D analogue of the Earth and it will have a longer life in these
lecture notes. Its relation to seismology is the same as the relation between the 1D Schrodinger
equation and quantum mechanics, it is a toy system on which to rest intuition and to continue
to develop new mathematics in order to guide analyses of the more complicated multidimensional
equations of motion. More on this in the weeks to come!
2.1 Unforced, Damped Simple Harmonic Oscillator (SHO)

The basis of the 3HO is Hooke's Law. a linearized force-disptacement relation, which holds only
approximately in the limit of small displacements. Such an oscillator oscillates with a characteristic
natural frequency which is dependent on the spring constant, wy = ‘/k/—m When damping is
included the natural frequency is modified. If damping is sufficiently small (b < w,f) the system
will oscillate, but its amplitnde will decay with time. In this case, the natural frequency is reduced
to v/w? — 5. This is a very powerful result that is extremely important and finds an analogue
when considering the frequencies and wave velocities of real materials: damped systems oscillate
with characteristic frequencies that are reduced relative to the undamped states. Scientists and
engineers usually represent the strength of damping with the quality factor Q = wo/2b. Because @
1s inversely related to damping strength, researchers frequently use ¢ = Q! and call it “little q’.
‘attenuation’. ‘dissipation’, ‘friction strength” and many other names.

Oscillating systems are often discussed in the frequency domain. The frequency domain repre-
sentation of an unforced, damped oscillation (y(t) = Ae—* sin (wot + ¢)) is called a Lorentzian whose
amplitude in the neighborhood of the natural frequency in the frequency domain is approximately

the following:

(W)l = A/ (W — wn)? + B2, (1)

This is derived by taking the Fourier Transform of y(t):

Flyl = ylw) = /m y(the “dt, (2)

[u]



U =u0 = o [ yw)eda, 3)

In the absence of damping, the Lorentzian is Just a delta function, (w — wyp), but with damping
the width of the Lorentzian is dependent wpon attennation. Seismic signals that tend to be spread
out in the time domain (e.g.. a sinusoid) are compressed in the frequency domain. This is one of
the reasons that Fourier Transforms are so useful. For real oscillating systems measured in the
time domain, Fourier Transforms are discrete and are estimated over a finite time interval, This
is the basis of time series analysis and forms a completely separate and rich field of study that’s,
unfortunately, largely beyond the scope of these lecture notes. Suffice it to say here that the ways in
which one samples the function whose spectrum one wishes to estimate have significant ramifications
on the spectral (frequency domain) parameters that are estimated. In particular, time series length
and temporal window affect the Fourier Transform of y(t).

A system defined as a set of (potentially coupled) oscillators will in general exhibit multiple
periodicities. This leads to multiple, perhaps overlapping, peaks in the frequency domain, and
beating in the time domain. Coupled oscillators will be discussed below.

2.2 Forced, Damped SHO

When a force is applied to an oscillating system, the system will ultimately oscillate with the forcing
frequency. On application of the force, a transient is generated (the solution of the homogeneous
equation) that decays with time leaving the steady-state solution. If the system is damped there
1s a phase lag, between the application of the force and the response of the medium, which is
dependent on the strength of damping. The amplitude of the steady-state motion is a function of
the difference in frequency between the natural and forcing frequencies as well as damping strength.
In the absence of damping, the amplitude of the oscillation is inversely proportion to this difference
and pure resonance (the indefinite increase of amplitudes with time) occurs when a system is forced
at or near its natural frequency. The addition of damping prohibits pure resonance, and since
all real systems are at least weakly attenuative, pure resonance never occurs in nature. Weakly
damped systems can display resonant-like phenomena, but as amplitudes increase nmany systems no
longer behave linearly. This also inhibits resonance. The canonical geophysical example of a forced,
damped system is the earth’s tides.

There are many nonlinear phenomena in nature (in fact everything is really nonlinear). A
simple example is the response of a medium to Increasingly larger strains. Initially, a material will

deform under small strains nearly elastically in rough agreement with Hooke's Law. Upon continned
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deformation, the linear stress-strain relation will break down and the material will either begin to
deform plastically or will undergo brittle fracture (jt'l] break). Another example is when waves.
say in water or a plasma, increase in amplitude. Eventually the waves will break and higher order
(nonlinear) terms in the equation of motion are needed to begin to deal with this remarkly common
by theoretically intractable problem. Unlike in the Earth. acoustic waves near the surface of the
Sun have very large amplitudes. To model solar acoustic mode amplitudes also requires retaining
nonlinear terms in the equation of motion and the theoretical study of what'’s called higher-mode
coupling. All of this is beyond the scope of these lecture notes which will investigate the solution
to purely linear probiems, and this becomes complicated enongh as the medium in which the waves
propagate becomes increasingly complex. But, as you can see. nonlinear dynamics should also be a
required subject of a well rounded graduate education.

Multiple forces can be applied simultaneously, and for a linear system the response will simply

be a sum of the individual responses,

2.3 1D Homogeneous String and Modes of Oscillation

A string is useful to study for a variety of reasons, principally because a string is one dimensional
but complications can be compounded to a degree that it can be thought of as a 1D analogite of the
earth. For this reason, we will be using the string as a model throughout the semester to develop
mathematical tools and intuition about the ways waves propagate in the earth.

The simple homogeneous string with fixed ends is interesting since it demonstrates the effect of
the application of boundary conditions. For a string with fixed ends, the requirement that X (L) = 0
means that sinkZ = 0 which requires that kL = nx — k. = nx/L. Thus, the application of the
boundary conditions requires that the number of admissible solutions be greatly decreased from a
continunm to a discrete set. the modes of oscillation of the string. In particular, wavenumber s
quanttzed and since k = w/e, this also requires that frequency is discrete. w,, = nen /L. The length
of the string and its wave velocity determine the discrete frequencies of each mode of oscillation of
the string (each n). The relation between k and w is called a ‘dispersion relation’. Since they are
linearly related the string is nondispersive. every wavelength travels with the same group velocity,
U = dw/dk = ¢. Most media are more complex than this and dispersion relations are commonly
much more complicated. It is not generally the case that phase and group velocities are equal.
Derivation

The common derivation of the 1D string equation is for transverse oscillations. You can find this

derivation in any freshman physics text or ODE text. Less common is the derivation for longitudinal
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waves In a string which will be presented here due to its relation to the derivation of the seismic
equation of motion. The derivation is based on two physical principals: (1)} Hooke’s Law and (2)
Newton’s 2nd Law.

Let y(r) be displacement from equilibrium. We define the ‘strain’ in the string as the extension
per unit length which varies from point to point in the string. The portion of the string initially
between 7 and r + Ar is stretched by an amount y(z + Ar) — y(z) so that the strain is Oy/ox
and y is longitudinal displacement. If stress 7 is defined as the excess over its equilibrium value of

tension, then the analogue of Hooke's Law is a linear stress-strain relation:

T = kg%, (4)

where £ is Young’s modulus. The net force acting on the element Az is the excess of the stress at
T+ Ax over that at 7. Therefore, the force per unit length F is:

F=2 (kay). (5)

T r \ Br

Of course, Young's Modulus may be variable if the string is not homogeneons. By Newton's 2nd

Law, mass per unit length (p) times acceleration equals force per unit length:

Py _a { oy
'0-6?_5;(’:5)' (6)

Since this derivation of the string equation depends on the use of Hooke's Law (eqn. (4)), the
wave equatioi can be seen to be an approximation exactly like the SHO equation is. The retention
of nonlinear terms in equation {4) produces associated nonlinear terms in equation (6), which then
becomes much harder to solve.

Assume that the string is homogeneous so that in equation (6) Young’s modulus is a constant

and can be removed from the parentheses yielding:

Py
o = gt g

where here r = \/’% The velocity of the wavefront is controlled by the material properties, in this
case k and p. A stiff string, with high Young's modulus, produces faster traveling waves. Increasing
density alone would tend to reduce the velocity, but in most solids & generally increases faster than
p does, causing a compensation that usually results in a net increase in velocity. So, for example,
if you increase temperatire and hold everything else fixed in the earth, density will decrease but

the elastic moduli will decrease faster and the resultant wave speed is reduced with increase in
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temperature. This isn't true in all materials. For example, in water increasing temperature speeds
up waves,

As an example of a traveling wave solution. consider the following:
y(7.1) = Ce'lw! k2 4 Ovp-ilwt-kn) (8)

where * denotes complex conjugation, which is necessary to ensure a real function. This is called a
plane wave solution. and is useful since an arbitrary function with only a finite number of disconti-
nuities can be expressed as a sum of such plane waves. This is just a 2D Fourier Series.

Substituting equation (8) into (7) shows that the solution is acceptable provided that w and &
satisfy w = +ck - the dispersion relation again. For sinusoidal traveling waves such as in equation
(8), displacement patterns repeat. Points at which the displacement amplitudes are equal have equal
phases; i.e. wt — kz = w(t + At) — k(z + Az). This is true if wAt — kA7 = 0 — ¢ = dr/dt = w/k.
This is the velocity of a phase. so is called the phase velocity. Wave groups are more complicated
and we’ll get back to them later, but they are constructed out of a set of component waves such
as plane waves and satisfy the condition of constructive interference; that is each component must
have the same value of the phase angle wt — kz + ¢ although the individual values of w. k and ¢
may be different. Thus. the quantity wt — kz + ¢ must be independent, of frequency if evaluated at
a characteristic frequency, wy, of the group: d(wf —kz+ @}/dw|,, = 0. Carrying out the differential
we find that the constructive interference condition will be met for a wave traveling with the group
velocity U = dw/dk|,,. Thus. the group velocity is just the slope of the dispersion relation. For
a nondispersive system. the dispersion relation is linear and the group velocity is constant with
frequency. For the 1D homogeneous string, the slope of the dispersion relation is Just ¢, and
therefore U/ = c. It is not true for all nondispersive systems that group and phase velocities are
equal.
Normal Mode Solution

Taking a separation of variables and, therefore, a normal mode approach to solving equation (7)

yields:

y(z. t) = Zsin(%f) (A" COS(n:zr:t) +B, sin(nﬂd)) .

Assuming, for sake of simplicity. that the initia displacement y(x,0) and velocity u(z,0) of the

(9)

string are odd functions with wavelength 2L, they can be expressed as a Fourier sine series on that
interval:

oo
¥(7.0) = 5 a,sin ”—’LT—T (10)

n=1



v(r,0) = ansin g (11)
n=1 -

where
2 rL . nTT
i, = E./n y(mt())sm—L—dm, (12)
L
b, = %/ﬂ 1:(1,0)sin2?d.r. (13)

Then, equation (9) can be rewritten as follows:

. . ot L 4
y(x, 1) = Zsm(ELE) (a,, cos(%'f-) + bnmsin(HLﬂ)) . (14)
= X casin(Z) sin(72 - g,), (15)
n=0

where ¢, is a phase factor, ¢, = arctan(Lb, /nwcay,).
Traveling Wave Solution

An alternative is to take a wave approach to solving (7). This approach turns out to be Jess
powerful mathematically in the long run {(we will go back to the modal approach in dealing with
more complicated string and seismology problems) but is useful for purposes of intnition. It can be
immediately verified that y, (r,) = f,(z — ct) and yo(z,1) = fo(x + cf) are solutions to (7) where f,
and f, are arbitrary functions that satisfy the initial conditions associated with a particular source
that excites the stress imbalance, giving rise to propagating disturbances. These functions represent
traveling waves in the + and —z directions, respectively. The whole pattern of disturbance moves

with velocity ¢. The general solution is the sum:

y(x. 1) = fi(z — ct) + fo(z + 1), (16)

constants of superposition are not necessary since f) and f, are arbitrary functions.

Equation (16) is called D’'Alembert’s solution. The arguments (r =+ t) are called the phase of
the wave solution. For a given value of phase, the translating functional shape is called a wavefront.
A seismogram would correspond to a recording of y(r,t) at a fixed position r,. This would take
the form y(zy,t) = f, (zo,t) + fa(zq,1), a function of time at ra that records the passage of two
wave groups past position zy. If the string is fixed on either end, then these disturbances would be
recorded again and again as they reflect off the end points and reverse their path of travel. More
on this later.

If we apply the initial conditions that y(2,0) = yo(r) and By(z.0)/dt = uo(T) to equation (16).

then f) and f, can by expressed in terms of Ya(7) and vg(z) and the resulting equations solved for
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f1 and f, to yield:
[yn(m) —-r ]/Ivn(m')dr'} , (17)

fole) = 2 [une) = ! / ()d} . (18)

BO | = b —

The lower limit 7, is arbitrary. but in any case does not appear in the complete solution:

I+t
?Jn(.?:’)dm'J : (19)

V(1) = 5 lute — o)+ yulr b ety 4 e
This equation will be more explicitly derived by Fourier and Laplace technigues in Section 2.7
below.

Since the traveling wave and the normal mode solutions are equivalent, we see that the super-
position of reflecting waves produces the modes of oscillation. Conversely, the modes of oscillation
Superpose to produce waves. In a string. we see (and hear) the modes of oscillation and the waves
themselves are obscure. However, in the Earth we see individual packets of energy arriving on
a seismogram. Althongh we will frequently use modal techniques to solve difficuit problems, we
frequently see and identify waves in data and, therefore, think of modes superposing to produce the
waves. A facile geophysicist must be able to think in both modes and waves as he or she must be
able to think both in the time and frequency domains.

Energy

Speaking of energy, expressions for the kinetic and potential energy density are required for

Lagrangian and Hamiltonian dynamics, and we will consider them briefly here. The energy density

of a string is its energy per unit length. Let X denote kinetic energy density, then:

I 5 1 {dy !
— =—p|=2] . 20
K 2,01; 2p ( i,) ( )
and the total kinetic energy, K, is:
1 rL (5y 2
- LY 21

The derivation of the appropriate expression for potential energy is a little more complicated.
Consider an increment of the string, dz., stretched to a new length ds. The change in length is
Just ds — dr. This derivation is a little easier if we consider transverse rather than longitudinal
oscillations. The final equations are the same if tension. T, is replaced with Young's modulus, k.

So imagine a transverse perturbation. dy. Then, ds? = dr2 + dy* and factoring out a dz:

ds - dr = dr [\/1 + (dy/dz)? — l} . (22)
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Under the small oscillation approximation, dy/dr << 1, so we can Taylor expand the square root

in equation (22) which yields:

1 {dy :
s—dr=~{—| dr.
ds —dr 5 (d'r) T (23)
Stretching takes place against tension, and the work against tension is just tension times stretch:
1 dy ?
W=-T|—=1 dr,
2 (d:r) ' (24)
and the potential energy density, V, is:
1 dy :
50 that the total potential energy becomes:
1 L dy 2
Vs [[T(%E) a
2/ (dfr) (26)
Total energy density # = K + V, so that
1 (oy\? 1 dy\?
= - —_ Tt =2 2
H zp(at) T3 (d:r) @7)
and the total energy can be written
L
H = ["Hdr (28)
0

R

It should be noted that this equation only holds either when the endpoints of the string are fixed
or when the spatial gradient of displacement at the endpoints goes to zero. The former is the the
situation we are considering here so equation (29) is fine, but it should not be considered a general
formula which is applicable in any situation. (For further discussion see Morse and Feshbach ch. -
2.1.)

The kinetic, potential, and total energies in terms of the modes of oscillation from equation ( 15)

is simply:
1 nre\? g (Tt
K= gt () oo ( %) (30)
1 nwey? nwel
() e (52
1° Z(L ) ST %) (31)
1 nme\?
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Thus, the kinetic and potential energies are ont of phase by 90 degrees and sum to give a constant
of motion. In each mode, the energy oscillates between kinetic and potential forms as the string
itself oscillates. The periods of the oscillations of the string are 2L /ne, while those of energy are
half that great, corresponding to successive realizations of a given phase of the motion.

Equations (30) - (32) demonstrate a striking result. that the individual terms in the Fourier
series solution, equation (15). are independent in that each carries a fixed amount of energy and
this energy cannot be exchanged with the energies of any other mode, much as the traveling waves
in the string do not exchange energy when they pass one another but simply superpose. We say
these modes are, therefore, uncoupled.

Complexities added to the string can produce modal coupling as we will see as the course pro-
gresses. Later on we will also consider reflection of string waves off fixed masses, the solution to the
inhomogeneous string problem, and perturbative and approximate methods for finding frequencies
and shapes of oscillations.

Conservation of Fnergy

Although the total energy. H. is stationary for the entire string, energy can flow along the string.
Thus. an energy flux, J. should be defined. The energy flux. 7, and the energy density are related
by the conservation of energy which states that the time rate of change of energy density at a point
is related to the net amount of energy flowing into or out of a region. For example, if more energy
flows across the point = + dr than flows across z, then the energy contained in the length dr of the

string must diminish:

Tla +dr) - J(r) = ~da T (33)
which upon rewriting becomes
aJ OH
— +—=0. 34
or * at 0 (34)
Therefore, a closed form expression for energy flux can be found as follows:
J = - [ %dx (35)
_ Lo (N (dy)
= ﬁ2p./3t [( ) 4+ (d:n dr (36)
_ |y T Py
- "/[af o2t 5 orazon| ¢ (37)
_ Oy Oy Oy
- / [01‘ Ox? a'r Dot d (38)
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2 (ay oy
= 1/ 5|3 (39)

dy Ay
TE?ZB?

Using this expression for energy flux and the expression for total energy density given by equation

(40)

(27). from the conservation of energy an alternative derivation of the wave equation for the string

resiilts:
T on
0 = 5‘;'*'5 (41)
_ Py dy Oy Py  Oydy Ay Py
= _Taxaﬁ;“Téié?f*”Eéf._ﬂ*Tﬁatam (42)
_ % Py Py
= m( Tt * 5 ) 43)

Since 8y/dt is an arbitrary function, equation (43) implies (7) where 2 = T/p. Recall the previous
derivation of the string equation came from the application of Hooke’s Law and Newton's Second

Law.

2.4 Relevance to Seismology

Armed with an understanding of SHO'’s and strings one can understand a lot of seismology. The
earth can be thought of as a huge set of coupled oscillators, where the Spring constants and damping
factors vary from place to place. It is easier in the long run to assume that there is an infinite
number, actually a continnum, of oscillators, and use results from continuum mechanics to guide
seismic investigations. The analogue of the spring constant is the elastic moduli. A complication
arises since different waves or modes sample the earth differently, and the elastic modulj have to be
integrated over the region of the earth that a given mode of oscillation or a wave samples to determine
the frequency or wave speed. The same holds for Q in which one has to Integrate attenuation over
the appropriate region. The elastic frequencies of the earth then have to be modified for the effect of
‘physical dispersion’, the perturbation to the elastic moduli and therefore the frequencies caused by
finite Q. This correction was not fully appreciated until the 1960’s and still caused some confusion
as late as the 1970’s when it was first discovered that long period earth models were systematically
slower than high frequency earth models (e.g., Kanamori and Anderson, 1977). This was called at
the time the baseline shift’ and was caused almost entirely by the dependence of the frequencies of
oscillation and wave velocities of the earth on its intrinsic attennation.

The displacement shapes from muitiple oscillators Superpose to produce waves. The details of

the dispersion relations determine the natirre of these waves.
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As with a string. boundary conditions and shape affect the frequencies of oscillation. The earth’s
size (analogue of ) and spherical shape are important as are the location and nature of internal
discontinunities. In analogy with the string. it might be thought that each new boundary within
the earth and the associated boundary conditions on the displacement and tractions across the
boundary should reduce the number of acceptable solutions. But, it’s more complicated than this.
If you add a boundary in the earth new waves come into existence (reflections from the boundary,
head waves along the boundary) that were completely missing before the boundary was added.

Terrestrial oscillations are forced, but the duration of the forcing is short compared to the lifetime
of seismic waves. However, to simulate seismic displacements for large earthquakes accurately the
earthquake time-history must be convolved in the time domain with the natural response of the

earth (estimated as if the source was instantaneous). This result can be seen in the next section.

2.5 Laplace Transforms and Convolution

[ assume you are all familiar with Laplace and Fourier Transforms and their use in solving differential

equations. Define the Laplace transform of a time function f(t) as follows:

Lif) = F(s) = [ fit)e "t (44)

Consider the differential equation
Aj + By + Cy = f(t). (45}

given initial conditions y(0) and %(0). As you should know,

Llgl = sLly] —y(0). (46)
Lij) = s*Lly] - sy(0) — %(0). (47)

Assuming for simplicity that %(0) = (0) = 0 (we will break this assumption in the next subsection

of these notes), then Laplace Transforming both sides of the ODE in equnation (45) gives:
(As* + Bs + C)Lly) = F(s). (48)

where F(s) = L[f] is just the Laplace Transform of the right hand side of the ODE. Solving (48)
for L{y] gives the product of two functions:

, _ 1 (g
Ll =Y = 4migrel @ (49)
= 7(5)F(s). (50)
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where 7(s) is called a transfer function - in the s-domain it transfers the forcing function into the
response of the system. It represents all the physics in the ODE. The solution of equation (45) is
the inverse Laplace Transform of Y{s) = 7(s)F(s).

The inverse Laplace Transform of the function Y (s) is defined as follows:

y(f) = —— / Y (2)ertdz (51)

271 Je—ioo
where z is complex and ¢ > 0. The integral is performed along any vertical line 7 = ¢ in the z-plane,
such that ¢ > Re(s). This definition is at first sight a little more dannting than the inverse Fourier
Transform, but if Y(s) can be written as the ratio of polynomials, P(z)/Q(z), such that Q(z) is
of at least one degree higher than P(s) (the number of poles outnumbers the number of zeroes
by at least one) then the evaluation of (51) is particularly simple. Restricting ourselves to such a

function, we can solve the integral in (51) explicitly:
y(t) = 3 residues at all poles of Y (z)e*. (52)

We must include a" poles in (52) since ¢ is largely arbitrary.

It can be easily seen here, however, that each of the two poies of the 7(s) will produce a ‘wave’
in the time domain - this is just the solution of the homogeneous equation. Added to these will
be the ‘waves’ resulting from the poles of the forcing function, simply the particular solution. If
in addition, an instrument response of some kind had been multiplied into Y (s), the poles of the
instrument would also produce additional time functions. You can see then that the solution of an
ODE has been reduced to performing a contour integral, which itself can simply be reduced to a
simple sum in which each term of the sum (both homogeneous and particular solutions) is related to
a pole of the function Y{s). This is a beantiful and remarkable result and is foundation for a great
deal of theoretical seismology.

Yet another way of writing the inverse Laplace Transform of (49) is as follows:

r(s)F(s) = /nmp“‘"-r(t”)dt"' /ﬂme"‘F(t’)dt’, (53)
- fnw /ﬂme““"*‘"’r(t”)f(t')dt"dt, (54)
= f:n /;:e’“r(t-—t')f(t')dtdt’, (55)
= /:; /:_ne"“'r(t-t')j(t’)df.’dt, | (56)
= /ﬂme"" Uﬂ‘r(t_t')f(f,')dt']dt, (57)
= L[/ﬂtr(twt')f(t')dt’}, (58)
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where in equation (55) we have changed variables {f = t' +¢") and in equation (56) we have changed
the order of integration. Equation (58) is just the Laplace Transform of a convolution where a

convolution is defined as follows:

F) e gt = [ (2= )gld)dr. (59)

Therefore,

y(t) = L7'r(s)F(s)] = L7 (L[r(t) = F()]) = 7(2) + (%), (60)

In conclusion, then, the solution to equation (45) is simply the time-domain convolution y(t) =
7(t) * f(t); the solution of the homogeneous equation, 7{t). convolved with the forcing function.
f(t). More discussion is contained in Section 2.6.

This is, again, a very powerful result. If the forcing function is a delta function. then it is seen
immediately that the resultant solution is just the solution to the homogeneous equation. Indeed.
if the forcing function is any time limited function, the solution is simply a locally time-filtered
version of the solution to the homogeneous equation. The local time-filter is a detailed function of
the source time history of the forcing function - in seismology, that’s the energy release of seismic

waves for an earthqnake or an explosion.

2.6 Application of Laplace Transforms to a Forced, Damped SHO with an Arbitrary
Forcing Function

Consider the damped, forced SHO equation:

§+ 2by + woy = (1), (61)

subject to general initial conditions
y(0) = 0. (62)
y(0) = up. (63)

One of the reasons that Laplace Transforms are so useful theoretically is that we can leave the
forcing function f(t) completely general, and we will derive solutions to equation (61) for a general
forcing function and then look at a specific f(¢) as an example. Consistent with the notation in the
previous section, the Laplace Transform will be denoted L[f(t)] = F(s). so that the transform of

(61) can be written:
Y(s) = 7(s) {vg + (5 + 2b)my + F(5)]. (64)
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This is a generalization of equation (49) in that we have generalized the initial conditions and
now have several terms in the Laplace Transform. but have specified here that A = 1. B = 2b,
and C' = wi. The first two terms in braces on the right hand side of equation (64) represent the
response to initial conditions, and therefore has a transient character. The last term represents
the response to the external force. The final solution will be the sum of the two contributions:
y(1) = wa(t) + yy(2).

The only poles of the transient terms come from 7(s) which are, assuming an oscillatory solution
(wi > b%):

S4 = b+ 1\/&)3 —- . (65)

Denoting these roots 3, and sy (where s, = s}), upon inverse Laplace Transforming the transient
g 1. up

terms in the solution are seen to be:

ye(1) {s2—5))"! [(nn + (32 + 2b)x)e™ — (g + (3) + 2b):nn)e"“] . (66)

21 £t Ayt At
Ll 4 S9¢7 — 8¢
= (’Un + 26.’1’70) + Ip . (67)
89 — 8 82 — 8

sinwi

= [(ﬂn + b.?:n) + I COSUJt] R (68)

where we have substituted the the values of 8 and s in the last equation and have defined w =
wi — .
The forcing term of the solution, yy{t), results from the final term in equation (64) and comes
from the poles of both F(s) and 7(s). Let the poles of F(s) comprise N — 2 complex conjugate
pairs, s, and 3}, (n = 3,4,5,.. ., N), and the residues be &, and ;. Then

yf(t) = ¥n (f) + Y1, (t)'- (69)
LI .qt Y n-‘n‘ b:: onl
- ((32 a1 (Fls)e™ = Fia)e ] ,;_1 [92 + 2b‘in + w3 * S22+ 268t + wi :’ + (70)
At -nt i b" SAnd b; A
IR e E o o e s )

where the latter equation resuits from the fact that ¢ ?+ 203+ wE = (5—-9,)(s— 33) = (s —9))(s—s7).
While the first term in brackets on the right-hand-side of (71), yy, (1), is transient, if f(#) has a
periodic component (i.e., if the s, are purely imaginary), then the term under the sum, yy,(t), gives
a non-transient contribution. If we let the residues of F(s) be b, = B,e*", and define 3, = iw,,
then

N 6 —idn
) = 3 [ b iy Bue )w] (72)

= wa — 81) (wn — 1) (—tw, — 8 {(—tw, — st
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N
1 . 1 )
— t{wn t+8y) ‘—t(unt+6n) i 73
Enﬁ" [w2+b2~wﬁ+i2bwne +w2+b2—w§—-712bw"€ ] (73)
; 20y _
= Y [(wg — wi)cos(wpt + 6,) + 2w, sin(w,t + Jn)] , (74)

n 3( g*“)rzl)z + 462

W

where some algebra has been done to get to equations (73) and (74). Therefore, the final solution
is y(t) = y(t) + yp (1) + yp,(t) where the terms in this equation are given by equations and (68),
(71), and (74).

As an example, consider the case in which f(f) = F cos(wi?). Then F(s) = Fs/(s* +w{) which
has poles at s; = iw, and s; = 5} = —iw; and residues b, = F/2 = b]. From (74), the solution for

y1,(t) is, therefore:

vt = o [ - B eoslat) + hasinnn)] (7
= i cos(wit — 7). (76)

V(g — w2 + 4h?

where v, = arctan(2bw, /(wi — wi)).

2.7 Application of Fourier and Laplace Transforms to the Simple String

Consider again the vibrating homogeneous string equation. We seek a solution y(z.t) that satisfies
equation (7) subject to the initial conditions (62). Let Y (z.s) be the temporal Laplace transform
of y(z, 1)}, transforming equation (7) yields:

»Y
5z e? (—syn —uy + .‘;QY) . (77)

Now, we also want to transform the spatial variable z. Typically this is done with a Fourier
Transform if the string is infinitely long and with Fonrier Series if the string is finite. Let’s do both
in turn.

Infinite String

Assuming that the string is infinitely long, define the spatial Fourier Transform of Y(x,s) as

E(k.s)=FY(x.5)] = j:i Y (z,s)e * dz. (78)
(19)

where the spatial Fourier Transform variable is k¥ (rather than the temporal variable w). Thus.

equation (77) becomes:
K€ = 72 [sio + iy — 5%€] | (80)
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where o (k) and (k) are the spatial Fourier Transforms of yo(z) and uy(z), respectively. Therefore.

_ S+
(ks = oo

Equation (81) is the solution to (7) subject to the initial conditions (62). but.it’s in the transform

(81)

domain; it’s in (k,s) rather than (r.t) space. So we have to inverse transform back, first into the
temporal domain with an inverse Laplace Transform and then into the spatial domain with an
inverse Fourier Transform. The poles of (81) are *ick, and if £(k, ) denotes the inverse Laplace
Transform of £(k, s) then

‘E(k t) = fl (k ") + E?(k= f’): (82)
= fgcosket + iy i fnt (83)

i
= focosket + iy /ﬂ cos(ket')dt', (84)

where we have rewritten the sinc function in equation (83) as an integral over a cosine for use

directly below. The inverse Fourier Transform of the first term in (84} is straightforward:

F k) = ylz.1) (85)
- % / " Go(k) (et 4 pmthet)gibs gp (86)
— %(-[ yo(k)Ptk(:+rt)dk+f k)Pik(:r rt)dk) (87)
= {0l + ) + oz — et)). (88)

The inverse Laplace Transform of the second term in equation (84) is only slightly more complicated
if you recognize that in the second term the go of the first term has simply been replaced by iy
and an integral over time has been added. With this observation we can write the inverse Laplace

Transform of the second term as:

F U &lk 1) = yz(ﬂ’f (89)
= 5 / / ekl pmiket'y ik g (90)
= 5(’[0 vn(.r+r?t')df,'+/n nn(;r.'—ct')dt') (91)
= 5 ([t - [ ) o (92)
_ % /;:tvn(av')dz': (93)

where we have changed variables in equation (92) by setting ' = x + ct' in the first term and

¥ =z - ct' in the second term.

17



Combining equations (88) and (93) yields the solution to equation (7) subject to the initial
conditions (62):

r+rd

sty =3 i+ e v =)+ [ i) (94)

-t
Finite String
If the string is finite and of length L. we must take the Fourier Series of equation (77) rather

than the Fourier Transform. Assuming that the ends of the string are fixed:

Y(r,5) = Zﬁﬂ(s)siniz—m, (95)
n=1
where
R 2 b , . nrr'
fnls) = Z/n Y{z' 5)sin 7 dx’, (96)
2 L nrz'

iy = — i ! 7
iy L./n Yosin = dr’. (97)
" 2 L amr'
b, = —L—/(; v sin ~- dr’. (98)

We use a hat on the Fourier coefficients in analogy with the hatting of functions in the continuous
Fourier domain in our discussion of the infinite string. Substituting these series into equation (77)
yields

2 .
(ELE) n = c? ["'a—n + by — ""2(-"“] ’ )

and upon simplifying it is found that

sty + by

= —— 100
Ty (nme/L)? (100)
Taking the inverse Laplace Transform of ¢, (s). which we denote as cn{t). gives:
r:n(t):rtnc.:)smr + L by sin o , (101)
L nme L
so that
y(r.t) = z (1) sin P? (102)
n-1
= 7 ct T
= > (n.n cos nmet + —L—b,, sin o ) sin 2L (103)
L nme L

(See equation (14).)
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2.8 Eigenfunction Expansions and Sturm-Liouville Problems

Ergenfunction Erpansions

In seismology in general, as in the stmple oscillating systems discussed above. we are concerned
with finding the solutions of homogeneous differential equations with the ultimate object of treating
inhomogeneous equations. In one dimension, the homogeneous equations are of the form Ly)=0

and the inhomogeneous equations are

L{y) = /=), (104)

where f(r) is a prescribed or general function and the boundary conditions to be satisfied by
the solution at the end points 0 and I are given. The expression £ represents here a general
linear differential operator and not the Laplace Transform! For example, for the damped SHO
L= mﬂ% -+ 26% + w?. In general, unless f{z) is particularly simple, one cannot simply integrate
the inhomogeneous equation to solve for y(x). The idea has been in our discussions above and
is, in fact, generally true, that one seeks to exploit the linearity of the operator £ by building up
the required solution as a superposition of, generally, an infinite number of terms. This method
is particularly efficient if we can find suitable functions which, when acted upon by £. somehow
eliminate the derivatives. The investigation of this choice and its consequences is the subject of this
subsection.
Suppose that we can find a set of functions {va(2)} (n=10,1,2,..) such that

Property One: L(Yn) = = Ay, (105)
so that derivatives would be eliminated. Then, as a possible solution to ( 104) try the superposition
y(r) = 5;, anyn(7), (106)

which when substituted into equation (104) yields:
fr)=Lly)=¢ (g: anyn) = ;anﬁ(yn) =~ }n:an/\nyn. (107)

This has resulted in a purely algebraic equation, but at the price of introducing the set of unknowns

{an}. This can be put right if, in addition, the set {y,(x)} is in some sense mutually orthogonal:

L
Property Two: / Ym(2)ya(z)dz = 0, m # n, (108)
n
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where * denotes complex conjugate. The orthogonality expressed by this egnation is called Hermi-
tian orthogonality due to the complex conjugate. Multiplying both sides of equation (107) by y;,
and integrating vields:
Lo+
__L B ym(z)f(z)dz ) (109)
Am Jy Ym(2)ym(z)dz

Equnations (106) and (109) form a complete solution as long as the set of functions {y.(z)} exist

lm —

that satisfy the Properties One and Two given by equations {105) and (108). Functions which satisfy
egunation (105) are called eigenfunctions of the operator £ and, hence. equation (106} is known as
an eigenfunction expansion. The quantities ), are the corresponding eigenvalues. The general idea
of expansion in terms of a set of orthogonal eigenfunctions is the basis of Fourier Series solutions to
differential equations, with which you are all familiar. You should be able to see why Fourier Series
work so well, sines and cosines are solutions to the SHO equation and are, therefore, eigenfunctions
of the SHO differential operator. They are also orthogonal. Thus, the Fourier coefficients can be
computed. However, the ideas presented here are much more broadly based than that as we will
now see.

The question remains, however, whether for a given operator £ a suitable set of functions can
be found. We cannot deal with this problem in general but it is worth pointing ont that at least for
linear operators of a particular form, such suitable sets of functions can be found and that fairly
broad types of boundary conditions can be accommodated.

Sturm-Liouville Theory
Confine attention to second-order linear differential equations that are so common in wave

propagation problems in which £ has the form:
L(y) = plx)y” +riz)y —qlz)y. with r(z) = p' (7). (110)
where p, g, and r are real functions of x. The class of differential equations of the form:
L(y) = —Ap(z)y, (111)

were first studied intensively in the 1830s by Sturm and Liouville. Writing equations (110) and
(111) together yields

(oY) —qy + Aoy =0 (112)

This is known as the Sturm-Lionville (S-L) equation and linear differential operators of the forms

given by equation (111) clearly satisfy Property One (eqn {(105)), although equation (111) has been
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slightly generalized to include a weighting function p(r). The only conditions on the weighting
function are that it is real valued and does not change sign. This latter requirement means that we
can assume that it is everywhere positive without loss of generality. Its introduction also requires

a generalized definition of orthogonality and the expansion coeficients:

[ ol taz)dz =0, m g, (113)

o 1 R () (114)

M fo 0(2)Y2n(2)ym(2)dz

The operation in equation (113) defines the inner product in a function space which is actually an

infinite vector space. An infinite vector space with an inner product is called a a Hilbert space in
which the eigenfunctions reside. We will say very little more about this.

The satisfaction of Condition One is one of the reasons why S-L equations have been studied
so intensively. Another reason is that, although the form looks very restrictive, many of the most

important equations in mathematical physics are S-L equations. For example,

(1-z%y —2zy' +1l+1)y = 0 Legendre’s equation, (115)
((1-22)y') + [I(f +1}) ~ : T;J y = 0 Associated Legendre equation, (116)
y' - 22y + 20y = 0 Hermite’s equation, (117)

"+ (1 -2y +ay = 0 Laguerre's equation, (118)

(1-22) -z +n%y = 0 Chebyshev egnation, (119)

V' + 20y +wly = 0 Simple Harmonic Oscillator equation. (120)

Bessel’s equation (z°y” + 2y’ + (z* — n?)y = 0) is also an S-L equation with an appropriate change
€q v

of variables (£ = x/a). It should be noted that any second-order linear differential equation

Py +r(z)y' + q(z)y + Mp(z)y = 0, (121)
can be converted to the required type by multiplying through by the factor

F(z) = exp U’ ff‘z)p—(*z;"—(-"-)dzJ , (122)

provided that the indefinite integral is defined. It then takes on the S-L form

(F(z)p(z)y) — (~F(z)q(x)y) + AF (z)p(z)y = 0, (123)
but clearly with a different, but still non-negative, weighting function (F(x)p(z)).
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Second order linear differential operators, £, for which £(y) can be written in the form

Lly) = (ry) - qy. (124)
where p and ¢ are real functions of = are known as self-adjoint operators. This is a bit of a
simplification but will suffice here. Therefore, the study of the eigenfunctions and eigenvalues of
self-adjoint operators is synonymous with the study of S-L equations. Another useful definition is

the following: £ is said to be Hermitian if

L L *
[ vrrnievte = { [ v minas) (125)

where yp, and y, are arbitrary functions satisfying the boundary conditions. The quantity on the
left side of this equation is called the m.n matrix element of £, or £, or < Ym|Lyn >. The final
notation, of course, is the bra-ket notation of Dirac, but is common in normal mode seismology. In
this notation, Hermiticity is stated as < y,|Cyy, >=< Lym|yn >.

S-L equations satisfy Condition One since we seek solutions to the eigenvalue problem given by
equation (111). It remains to show that such equations also satisfy Condition Two, that is that the
eigenfunctions of self-adjoint operators are orthogonal in the generalized sense of equation (113).

To do this it is necessary to show that

L
(X = 2) [ gouprndz =0 (126)

0
from which the reality of the eigenvalues and the orthogonality of the eigenfunctions follow almost
immediately. The derivation of equation {126) requires the specification of boundary conditions at
both ends of the range of the free variable (i.e., at both 0 and L). The boundary condition required

is the following:
[y,';,py;];:n = [y;py;]x:b-» for all m.n . (127)

where y,(z) and y,(z) are any two solutions of the S-L equations. Again. this appears to be pretty
restrictive, but is actually a pretty mild assumption that is met by many commonly ocuring cases,
e.g.. ¥(0) = y(L) = 0,y(0) = (L) = 0,p(0) = p(L} = 0, and many more.

A last consideration is the normalization of the eigenfunctions. Equation (113) only places
a constraint on the eigenfunctions when m # n. When m = n, because of the linearity of £,
the normalization is arbitrary. We will assume for definiteness that they are normalized so that

S yipdz = 1. In this case, equations (113) and (114) can be rewritten as
L
<Unleva > = [ 020052y (22 = b, (128)

L
am = =X\, <ymlpf > = “f\;;‘fn p(2)yn(2) f(2)dz. (129)
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Eigenfunctions corresponding to equal eigenvalues are said to be degenerate.
Summarizing then, equations of the form (104) admit the following solution
L

Wa) = =S A @) [ oW () = = DmlwIAn' < valof >, (130)
if the differential operator is linear and self-adjoint (i.e., results in a differential equation that
is a Sturm-Liouville equation); that is, if equations {111), (128), and (127} hold. In addition,
the eigenvalues A, are real and the eigenfunctions y, are orthonormal. In addtion, they form a
complete set. By a complete set we mean that any function satisfying the boundary conditions
can be represented as a {potentially infinite) sum of the eigenfunctions. We will not attempt to
prove this here. Resulting from this is the so-called completeness relation or closure property of the
eigenfunctions:

p(2) D yn(*)yalz) = 8(z - 2). (131)

2.9 Green'’s (or Green) Functions

Starting with equation (130), assume that we can interchange the order of summation and integra-

tion:
L
v = [ o) TN umenian @l o) (132)
= /nLG(:r:,z)f(z)dz. (133)

In this form, the solution to S-L problems has clearer properties, it is integral of two factors, of
which (1) the first is determined entirely by the boundary conditions and the eigenfunctions y,, and
hence by L itself, and (2) the second, f(z), depends purely on the right-hand side of equation (104).
Thus, there is the possibility of finding, once and for all, for any given function £, a function G(z, z)
which will enable us to solve equation (104) for any right-hand side; that is any forcing function.
The solution will be in the form of an integral which, at worst, can be evaluated numerically. This
function, G(z, z), is called the Green’s function for the operator £. This approach is somewhat
similar to the use of Laplace Transforms in that we have rediced the problem to quadrature as the
British say, but once G(r, z) is found the remaining work to prodiice a solution is remarkably simple.
In addition, Green’s functions lend themselves to generalization to multiple dimensions and direct
application to partial differential equations. For these reasons, Green’s function methods are of

greater practical significance than Laplace Transform methods which are mostly used theoretically.
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One expression for Green’s functions has already been given and can be seen by comparing

equations (132) and (133),

Glr.2) = =3 AL p(2)ym(7)ym (2)- (134)
Alternately, we note that eguation (133) is, .by construction, a solution to equation {104). Hence
L) = [ LG (e = (). (135)
Now, recall that a delta function is defined as a function that satisfies the following properties:
S(r—m) = 0 if 7 # o, (136)
6(z — 1) = o0 if z = xp. (137)
/nLé(m—In)d.r -1  if0<z <L, (138)
[ﬂLé(:,—. —zo)flx)dr = flzo) if0 < o< L. (139)

A delta function can be represented as limits of a number of different functions; e.g.. as an infinites-
simally thick Gaussian. a sinc function with infinite frequency, the inverse Fourier Transform of an
exponential, and a number of others. The only essential requirements are knowledge of the area
under such a curve and that undefined operations such as differentiation are not carried out on the
delta-function while some nonexplicit representatior is being employed.

Using the property of the delta-function given by equation (139), equation (135) can be rewritten

L
L(y) - f(@) = [ {LIG(,2)] - 8(z = )} f(2)dz = 0. (140)
For this to hold for any function f. it must be the case that
LlG(x,z)] =4d(z — 7). (141)

Note that in this equation, z is only a parameter and all the differential operations implicit in L
act on the variable r.

Putting equation (141) in words, the Green’s function G is the solution of the differential equatton
obtained by replacing the right-hand side of equation (104} by a delta function. Thus, the solution
to equation (104) given by equation (132) is the superposition of the effects of isolated ‘impulses’
of size f(z)dz occurring at positions © = z. Since each impulse has effects at locations other than

where it acts, the total result at any position z must by obtained by integrating over all z:

flz)= '/nwf(z)é(z — r)dz. (142}

That is. f(7) is a limiting case of a whole set of impulses.
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2.10 Applications of Superposition and Green’s Functions

Superposition
Consider, as an example, the spatial part of the string problem where we have included a forcing

term

y' + k' = f(z) (143)
to be solved on the interval [0, L] with initial conditions

y(0) =y(L) = 0. (144)

Temporarily, let the string length L = 7 to simply the calculations, we won'’t have to carry around
a 7/L term. We'll translate back to a string of length L by simply replacing every = with an [,
and every n with an nw/L. The weight function p is unity. In this case, £ = d?/dx? + k?. We seek
eigenfunctions satisfying the S-L equation

y'+Ey+ Ay =0, (145)
Ly = -y (146)

These are obvionsly y, = A,sinnz + B, cosnz corresponding to eigenvalues A, given by n? =
An + k2. The boundary conditions require that n be a positive integer and that B, = 0. Thus, the

eigenfunctions are y, = A,sinnz and the normalization condition, equation (128), requires that
An = /2/n. Using equation (129),

x 79 1/2
an = —(n®-— kz)“f (;) f(2)sinnzdz, (147)
0
and finally that the solution in terms of the given function f(r)is
y(z) = Zanyn = Za,,A,1 sinnr = ,E :2111 n; f f(z)sinnzd:. (148)
n n T n=1

Upon transforming back to a string of length L we get:

b L)
y(z) = Z (%1;:%—:/—-] f(z)sin(nrz/L)d:z. (149)

Note that this solution is also the Fourier Series form because of the particular form of the linear
operator involved. However the above method is a general model for all equations involving S-L-like

operators.
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Green’s Functions

From (149). the Green’s function for the undamped SHO is immediately apparent:

Gz, 2) = —% Zl % sin(nmz/L). (150)
We call this the discrete form of the Green’s Function and illustrates a symmetry relation for Green’s
functions also apparent in equation (134), that G(r.z) = (G(z.x))".

This form is not very convenient for computation since it involves an infinite sum. A more useful
form of this Green’s function can be obtained by using the fact that the Green’s function is the
solution of the differential equation (143) in which the forcing function has been replaced by the
delta function, é{z — 1):

ﬁ%g%-ﬂ—i-kzc(m: z) = 6(z — x) (151)
The Green’s function will depend on the initial conditions. The solution of equation (151) subject
to the initial conditir us that ¥(0) = 4/'(0) = 0 is simply:

G(zr.z) = lsm k(z — 2). {(1562)

Ead

if 0 < z < = and 0 otherwise. Using this approach produces Green’s functions that act as integral
kernels and are called the continuous form of the Green’s Function. Using this expression for the
Green’s function the solution to equation (143) subject to the different initial conditions listed

directly above can be written:

y(r) = / ~sink(z — 2)f(2)dz (153)

Finding the Green’s function for the boundary conditions given in equation {144) is somewhat
more complicated, but it is instructive. so let’s do so but keep the string length equal to L (rather
than #) here. G(z.z) still satisfies equation (151). For x equal to anything but z we have

G(r,2) = Asinkr (0 <z < 2z), {154)
= Bsink(z — L) (z <z <L) (155)
To determine the constants A and B we need to apply conditions on G and its first derivative at

r = 2. To find the appropriate conditions. we integrate equation (151) fromr =2z —etor =2 +¢
and then let € -—» 0. Since j'de/afa:2 = dG/dr. we find that

|2t + / da'_/;”((S(m—z)d:r: 1, (156)

—£
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so that letting ¢ ~» 0 the second term on the right-hand-side goes to zero and the change in slope

at 7 = z 18 1. Integrating again gives

Gl =0, (157)

r e

which implies that G is continuous at = = 2. This yields the pair of simultaneous equations

Asinkz = Bsink(z - L) (158)
kAcoskz+1 = kBcosk(z— L), (159)
which upon solution give
sink{z — L) sinkz
A=—""__" B=m ———— 160
ksinkL ksinkL (160)
and the Green’s function is
G(r,z) = (ksinkL) 'sinkzsink(z— L) 0<z<: (161)
= (ksinkL) 'sinkzsink(z — L) z<z <L (162)

from which it is immediately apparent that

_ sinkxr = ) sink(rx — L)
y(:r:) = Fsn kL A f(z) sink(z — Lydz + —“'I'C"SHIT

[z ¥ f(2) sin(kz)dz. (163)

Following the same method it is possible to show that a solution to the differential equation

y' + plz)y' + q(z)y = f(7) (164)
with (0} = y(L) = 0 is given by
ytﬂ==yﬂz)L’2%%%§§ldf-»ymxylbE%%%§$3df, (165)

where y;(z) and ya(r) are solutions of the homogeneous equation with y1(0) = »(0) = 0, and W
is the Wronskian of y,(z) and yy(z): W(z) = yi(z)y(z) — wa(x)y)(z). Recall that if W # 0, ¥
and y, are linearly independent. Also as in the above, we can find that a particular solution yp of

equation (164) is

()f(=)

Mﬂ=mmj%%g?m+mmfmwm dr. (166)

This particular solution is exactly the same as that obtained by variation of parameters, but may

seem somewhat less arbitrary.
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2.11 The Inhomogeneous String

But what does all of this have to do with seismology? The earth is neither homogeneous nor one-
dimensional, both key assumptions up to this point. In this section. we’ll break with the first of
these assumptions and consider waves of an inhomogeneons string, where density and/or Young’s
modulus vary with position along the string. The transition to higher dimensions will be made in
a later subsection. The inhomogeneous string problem cannot be solved for a general perturbation
in density or Young’s modulus (p(z) or «(x)), but there are a number of approximate solutions
commonly used in seismology that hold for variously constrained forms of these functions. We
will consider three of these: the JWKB method, the Eikonal equation, and first order perturbation
theory. The first two of these methods define geometrical ray theory, a high frequency approximation
that holds in regions of smooth spatial variation of wave velocity.

The development of ray methods begins by referring back to equation (6)

plaey T ai(n()%) (167)
m(m)azy(m,t) + Ox(x) Oy(x. 1) (168)

ot or or

where « is Young’s Modulus or tension for longitudinal or transverse vibrations, respectively. Gen-

erally the next step invokes the following assumption.

Ray Assumption One: The spatial gradient of Young’s modulus (x'/x) is sufficiently smali so that
the rightmost term in equation (168} can be ignored.

We are then left with the equation

o) LD o TYED (169)

A more precise condition for dropping this term is that the change in the velocity gradient over o
single wavelength is small compared to the change in velocity itself. This will be discussed further

below.

Letting ¢*(x) = x(x)/p(z). the spatial and temporal equations still separate (y(z. ) = X (z)T(t))

and yield:
d*T(t)
D +wWiT(t) = 0, (170)
d* X (z) wi o H
Ir? +(;(I)A(m) = (. (171)
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The temporal equation is exactly the same as in the homogeneous string. This is the first observable
consequence of Ray Assumption One and implies that frequency, unlike displacement, is stationary
relative to small changes in seismic structure: under this approximation frequency is not changed by
perturbing Young’s modulus and/or density. Equation (171) is different than the spatial equation for
the homogeneous string in that wave velocity is now an unspecified function of z. As a consequence,
we cannot simply set X(x) = Aexp{+iSr}, where S is a constant. Ray methods diverge on how
equation (171} is treated, as we shall now see.

Ray Method One: JWKB

Under the assumption that 5‘%-)- is a slowly varying function of r, we assume that
X(z) = A(x)e™), (172)

Note that S plays the role of kz in the homogeneous string problem. We will discuss what ‘slowly

varying’ means shortly. Upon substituting equation {172) into equation (171) we receive

2
A"+ 2iS'A' +iS"A - S2A + [:;—"A =0 (173)

The real and imaginary parts must separately equal zero, thus:

Imag Part 28'A'+ §"A =0 (174)
2
Real Part A" + ‘%A - S?%4=0. (175)

Another consequence of Ray Assumption One is that the spatial gradients of both S and A
will be small in comparison with the functions themselves. In particular, if we make a second

assumption:

Ray Assumption Two |A"/A| << W} /e?, (176)
(177)

the real part equation can be rewritten as

9 _ Wy
Real Part S5%xr) = () _ {178)
5) = £
S r) = ic(m), (179)
which can be integrated to yield
T dr’
S(x) = +wp / oy = 2w T(a). (180)
T 47
T(z) = [ T (181)
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The quantity T(z) is called the travel time and is range-dependent, and the quantity 1/e(r) is
commonly called the ray slowmess. The imaginary-part equation can be solved without modificaton.

We simply note that.:

d 2t U "
—(425) = (254" + 5" A)a =0, (182)

where, by equation (174), we find

A2(z) = -l (183)

and C is an arbitrary constant.
Finally, then. the approximate solution to equation (171) is, after substituting from equations
(180) and (183) and retaining the real part

X{(z) = tconstant \/c(x)sin (wyT(2)) . (184}
Combining solutions to egnations (170) and (171) and writing in complex form yields
y(z.1) = X{x)T(t) = D(z)e*tn(t2T(z)) (185)

Please don’t confuse T'(t), the solution to the temporal equation, with T'(x), the travel time here.

Solutions of the type given by equation (185) lead to ray theory as discussed in the next sub-
section on the Eikonal Equation and which will be discussed in much greater detail later in these
notes. It is important to note that equation (185) still has a D’Alembert-type form, where the phase
function t + [*dz’/c(z’) gives the travel time of the wave through the medium from the source at
T =0.

If the other end of the string is fixed at # = L. the eigenvalues wy can be determined from
equation (184) by the boundary condition X (L) = 0 which will only hold if the argument of the sin

is an integral multiple of 7:

T(L)’

This is the string analogue of the Bohr-Sommerfeld quantization condition of pre-1925 guantum

(186)

wn =

mechanics.

Ray Assumption Two is not a common form of this assumption. We can derive the more common
expression of the underlying assumption of ray theory by, instead of breaking equation (173) into
real and imaginary parts. breaking it into parts dependent on and independent of A. If we do so,

we get the A-independent equation:
2

S-S+ (187)

2
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We can get the next higher order estimate of S (7} than that given by equation (180) by substituting
from equation (179) to yield
wi wpr!

() * 1r-2(:.r:)’

We see that the lower-order solutions for S(z) and A(x) given by equations (180) and (183) have
assumed that

S?(z) = (188)

I
)m—(‘— << An%ﬁ'}2ﬁ, (189)

where we have multiplied both sides of the equation through by the average wavelength Ay = 27e/wy.

This condition can be rewritten as
Ray Assumption Two' c'Ag << 27, (190)

which in words is translated as the change in wave speed over a single wavelength must be much
less than the wave speed itself. Thus, we have seen that ray theory holds for media with properties
that vary slowly (Ray Assumptions 1 and 2') and is also a high frequency approximation (Ray
Assumption 2).

The JWKB method is named after a British applied mathematician who did most of his work
in seismology, Sir Harold Jeffreys, and two German physicists and one French physicist who studied
quantum mechanical scattering: Wentzel, Kramers, and Brillonin. The Brits call it JWKB and
most US physicists leave Jeffreys out entirely and call the method WKB, although Jeffreys was the
first to completely solve this problem. In fact, the main ideas date back to Green and Liouville in
the 19th century and Rayleigh used them in his treatise on wave propagation in a stratified medium.
Most seismologists call it WKBJ, but let’s go with the Brits in loyalty to Jeflreys as a seismologist.
In fact, the JWKB method is considerably more complicated than onr discussion here since we have
assumed that the solution is oscillatory which is not necessarily the case if there exists turning rays
as in the earth. For nice discussions see Mathews and Walker and/or Aki and Richards, Ch. 9.
Ray Method Two: The Ejkonal Equation

The Eikonal equation can be derived from equation (175) with the variable change

5(x) = wé(z)/co, (191)

where ¢; is meant to be the average wave velocity in the string. With this substitution we can

rewrite equation (175) as

(192)



By Ray Assumption Two, the right hand side can be approximated by zero and we get the Eikonal

equation

(193)

Recall that S(z) = €wp/co was just kz for the homogeneons string equation. In multiple di-
mensions we will see that the wavenumber k forms a vector k that points normal to the wavefront.
or along a ray. The Etkonal equation is, therefore, a PDE that relates rays to the seismic velocity
distribution.

It appears that the Eikonal equation (eq. (193)) is complicated and that it is not easier to deal
with than the wave equation. However, we will see later on that very simple equations can be
obtained from it for rays which form the foundation for body wave seismology.

First-Order Perturbation Theory

First-order perturbation theory is a very common technique used in seismology to compute the
effect of a small perturbation in some material property on the frequencies and displacements of
the earth. Let’s consider first the general outlines of the nondegenerate theory and then specify the
problem for the inhomogeneous string,

Consider again the differential operator £. We wish to compute the eigenvalues A, and the

eigenfunctions y,, of £:
Lyn = Anln- (194)
Suppose that the operator £ is nearly equal to another operator £:
L~ L4 6L, (195)
whose eigenvalues, A", and eigenfunctions, y{*), we already know:
Ly = APy, (196)

The perturbation operator 6£ is small in sume sense. Assume that the zeroth-order eigenfunctions
compose a complete, orthonormal set and that the first order perturbation in the operator causes

first-order perturbations in the eigenvalues and the eigenfunctions:

Ano= A L) (197)
¥ = yl"+ 3 allly® (198)
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Substitute the trial forms for A, and Yn into the original eigenvalue problem of equation (194) and

separate zeroth and first order terms:

Zeroth Order L0y A, @) (199)
First Order SLyM 4+ 2“2:)1'\52) O = Ayt Al S alllyt) (200)

Multiplying both sides of equation (200) by y{"* and integrating over ail allowable values of z we

get the perturbation to the eigenvalue:

M = (y®acy™y, (201)
where the Dirac braket notation was defined around equation (125). Thus, the corrected eigenvalue
is

Ao =20+ (yP16Ly™) + O((6£)Y), (202)

where O((6L£)?) is read ‘terms of order delta L-squared’. To obtain the expansion coefficients for
the perturbed eigenfunctions multiply both sides of equation (200) by y(“)‘ (p # n). integrate over

7 as before, and solve for af,;).

<y(0) 6 Ly‘“’)

(1
alt) = XIp "™¥n / # 1), (203)
o )\SP} ~ )\,(;0) (p )

where we have assumed that A" # A® (nondegenerate perturbation theory). The corrected eigen-

function is then:

M {0)

o= o+ Z<(m

m#n n /\(0) (204)

m

From equation (203) we see that the perturbation 6L may be considered small if l <y,‘,“] |6£y,(,°))| <<
A — A0,
You can see in equation (203) that the diagonal of the matrix al}) is not determined (p = n).

However, if the eigenfunctions y,, are orthonormal then using equation (198):
(Ymlt) = Omn + all + 0l + . (205)

and if m = n then (ym|y,) = 1 which implies that Re(al})) = 0 but Im(a{)) is completely uncon-

strained and can be chosen to be zero without any loss of generality, thus:
all) = 0. (206)
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This is the reason why in equation (204) the sum is over all m except when m = n. In this case the
denominator goes to zero, but so does the numerator and the term does not contribnte to the sum.

In summary, the recipe for the use of nondegenerate perturbation theory is:

Step 1. Solve the unperturbed problem (eq. (196)) for the eigenvalues A") and eigenfunctions

o
Step 2. Determine the perturbation operator 4L£.
Step 3. Do the integrals (yﬁf’)léﬁyﬂ’)) and (y},“’|6£y£,m>.
Step 4. Compute the corrected eigenvalue and eigenfunction by using equations (202) and (204).
Application of First-Order Perturbaton Theory.

Now, let’s apply this theory to the inhomogeneous string problem (eq. (171)):

X (z)

() dr?

+w’X(z) = 0 (207)
LX) = —wX = AX, (208)

with fixed boundaries (X(0) = X (L) = 0) by following these four steps. Note that we have kept
2 on the left-hand side of the equation, this means that the eigenvalues are squared-frequencies
rather than squared-wavenumbers.
Step 1. Solution of the Unperturbed Problem

We already have solved the unperturbed problem where c(z) = ry for the the eigenvalues, A(®),
and eigenfunctions, X{?)(z), of the homogeneous string. The notation X () is kind of klunky with
all those x’s running around, so let’s change notation and let y,(z) = X,(z). The zeroth-order

eigenfunctions and eigenvalues are:

2 . T
W) = e (22, (209)
w,(,")z - _/\Slﬂ)zr% %)21 (210)

where the eigenfunctions have been normalized (< y™|y(¥) >= d,1) and ¢y is defined directly below.

Step 2. Determine the Perturbation Operator 6L
From equations (207) and (208). if we write c(z) = ¢y + éc(z) and discard terms of O((6¢)?):

d?

p; (211)

L = ()



= (e + fsc(z))?af% (212)

d* d?
= rﬁ;; + 2('4;66(:17)3; + Q((6e)?) (213)
= Lo+6L+6L2 (214)
Thus,
d?

Step 3. Compute Matriz Elements
Applying 6L to the unperturbed eigenfunction yields:

0)2
540(2) = ~200 (") sefz)y® () = be(z)y™(z) (216)
so that
(0)2 (0)2
(,,'(P)Mcygu)) mn(r)d:r— [6r(:r)snn2(mr:r/L)dr (217)
(mz (0)2

<y£2)|5£y,(,°)> = /Jr(r)y(")(r)ym)(a‘)dr / 8c(x)sin{nxz/L) sin(mnz/L)dR18)

Step 4. Compute Perturbed Frequency and Eigenfunction
The perturbed eigenvalues and eigenfunctions can be determined by inserting equations (217)
and (218) into equations (202) and (204).

A= A0+ (W1, (219)
nr\?  4w{®? L .
Wi=wfP o=y = 2 (T) + _fm_/c; Se(x) sin®(nrz/L)dz, (220)

where we have substituted from equation (210) and

) (®)
6Ly
y(z) = yO+ 40 <, 0, g <,\“" /\(0}>y'(=(1” (221)
()2 / ’
_ @sin (mr:r) 4wy ‘/72 [fo de(z )sm(::r)n;/inin)gmvm /L)dz' } sin(mr/LY222)
AT

- \/’%’ Gin (mr—'r) Lm‘/" Z [fn de(z') sin mrrg /:’al;m(mw’/L) }sin(mrm‘/L). (223)

where in equation (222) we have changed the sign of the perturbation term by swapping the order
of the m and n terms in the denominator and have factored a ¢ out into the front from that

denominator and have then used equation (210) to get the final equation.
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It is common to proceed further in this derivation by expanding the wave speed distribution
in the zeroth-order eigenfunctions, in this case sines. This reduces the integral in eqnation (223)
to a form that can be calculated analytically. (The importance of this is discussed by Ritzwoller
and Lavely. 1991.) We will do this as an example below. [t is important to note that although the
zeroth order eigenfunctions form a complete set for any displacement of the string, they do not form
a complete set for any wave speed perturbation. For example, although all displacements are zero
at the end points, the wave speed perturbation does not have to be. Therefore, commonly wave
speed perturbations are expanded in the eigenfunctions (sines) and their first derivatives (cosines).
We will see the result of this below, but the terms of the expansion in cosines integrate to zero so
they can be neglected. Nevertheless, this is an important general point. it is not always the case
that the eigenfunctions form a complete set for a different quantity - wave speed here.

Equation (223) demonstrates the phenomenon of coupling. The new eigenfunctions are linear
combinations of the old eigenfunctions. Consequently, if yon would estimate the energy density
as we did in Section 2.3 above {which see), cross-terms no longer cancel perfectly and yon would
find that the energy of every perturbed mode of oscillation depends on the energy of most of the
unperturbed modes of oscillation. By mode, we mean a displacement pattern {or eigenfunction) that
has a single frequency. By unperturbed mode, we mean a mode of oscillation of the homogeneons
string - that is, a mode whose eigenfunction is a single sine. By perturbed mode, we mean a mode of
the inhomogeneous string, which is a sun of many sines, in fact it is a sum over all the unperturbed
modes. Modes are usually denoted by their index (or quantum number) n. We say that the mode n
is coupled to the mode m if the expansion coefficient in eqnation (223) is non-zero for those valnes
of n and m. This will depend on whether the integral in this equation is non-zero. We will discuss
below what are called selection rules which provide information abont whether the integral is zero
and, therefore, about which modes couple.

In summary, the perturbed squared-frequencies and eigenfunctions are given by equations (220)
and (223), respectively. The use of these equations requires the integral of a product of sines and
the velocity perturbation. Let’s now consider two examples of velocity perturbations: (1) a delta
function perturbation and (2) a general Fourier series representation of the perturbation.

Ezample 1. Delta Function Velocity Perturbation

Let 6c(x) = dcd(x — xo). In this case,

4écsin®(nmzy/ L)
2 _ 0 (0)2 4
" [ Lon Wy (224)
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4 25 1 ra/ L) si :
0 = An?ée Z [sm(nmrn/ 2) s1n(2m1rrn/L) sin(mnz/L). (225)
m?—n
Erample 2: Fourier Series Velocily Perturbation
Expand 4¢(z) in a Fourier Sine series:
1) = deysin{prx/L). (226)
P

This is not a general perturbation in wave speed. A general perturbation would include a cosine
term. But when substituted into equation (220), the cosine part integrates to zero which is easy
to see by consideration of eveness and oddness. Physically , this is consistent with the observation
that a sound speed perturbation at a displacement node has no impact on the oscillation pattern or
frequency. The wave does not know it’s there. So we simply ignore it here. Evaluation of equations

(220) and (223) will then require that we compute the following integral:

L  samz\ . (n'mx\ . (n"nz o
[‘sm(T)sm( T )sm( 7 )d:r_(nn ). (227)

The right hand side introduces some new notation. Let’s call this a 3—n symbol. With this notation

we can then rewrite equations (220) and (223):

4
S = [F S ée, (pnn)] o (228)
mnzx
v = Lr‘a ,g;n [ — Zér:,, pnm}] sin ( 7 ) . (229)
The evaluation of both of these equations reduces to computing the 3 - n symbol. Doing so we find
that
—4Lmnp . .
) = fm+n+ dd (230
(pnm) alm—-n—p)m+n—-pim—n+p)(m+n+p) itm +n+pis odd (230)
=0 ifm+n+piseven. (231)
and
~4Ln? .
(pnn) = TP — i) if p is odd (232)
=0 if p is even. (233)

Thus, the eigenfunction and frequency perturbations are only non-zero for certain values of p, m, and
n. These conditions are called Seleciion Rules. We will state two of them as well as an observation

resulting from the Selection Rules.

37



Selection Rule 1: Contributions to the perturbed eigenfunctions will only result if p + m + n is
odd.

Selection Rule 2: Only odd p contributes to perturb the eigenfrequencies.

Observation 1: Wave speed perturbations that would be represented as cosines rather than sines,

have no impact on either the eigenfunctions or eigenfrequencies.

Observation 2: Even-even or odd-odd coupling (m + n even) occurs only through odd degree
structure (p odd), even-odd coupling (m + n odd) occurs only through even structure (p

even).
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