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Smooth Manifolds

et 0 be an open subset ¢f W™, a fungtion £ & i+ R
is said to be smooth (or Cm) i paitial derivatives of all orders of
. . m, .o .
¥ ezist and are continuous. A map ¢ : Q-+ R is said to be
swooth if, for i = 1,...,m, the function piolb: 1+ R is smooth,

m .th . . .
where Py ¢ R + IR denotes the i~ projection (i.e.. if

$ = (fl.....fm) the functions Ei are smooth).

let .Ql and 522 be two -'apen subsets of M. A map
®: nl -+ 92 iz said to be a diffeomorphism if ¢ is bijective and

both & and 0—1 are smooth.

et M be a Hausdorff topological space, which we shall
assume to be paracompact. Suppose that we are given an open cover

{erlael of M and for each o a homeomogphism

¢

o UCt + ¢Q(Ua)

of Ua onto an open subset ¢o¢wa) of R" such that whenever

Ua n UBﬁ #, the map

¢a°¢;l‘= LALN AL AR SN U, N

i3 a diffeomorphism. We then say that M hag a structure of a smooth

{or differentiable or C™) manifold, or simply that M is a smooth

manifold (of dimension n).

The pair (Um,q;u) is called a chart or a map and the family

{{Ua, cbu)} is called an atlas. We shall assume that the atlas we
have is a maximal (or complete) atlas in the sense that we cannot

add more maps to the atlas still preserving the compatibility conditions

on the overlaps. BAny atlas is contained 1n a unique camplete atlas.

If (Uu, ¢u) is a map, the functions ¥, = pio¢a are called

coordinate functions on UOl .

Exampleg
1. The Buclidean n-space r" .
n+l
. : n n+l 2
2. The n-dimensional sphere 5" ; [(xl"“'xni-l) ER | E X, = 1}.
i=)
- n 2 2 2
fet £ = (t),ecnit de R and  |t|° - Bl ¥ oere bE
-1 n .n 2t t]%-1
Lat ¢1:]R * & be the map t w 3 ’ 3 and
. [t]“+1 ]+

'_ 12
¢21 : m" s s” the map t » 2; ' lit—% I . Then
fe]“+1 L+|t] |

-l -
oy (®™ = 8" -{0,...,0,1}} ana ot ®"™) = s" - f0,0,...,-1)} .

(¢1, ¢2J are sterographic projections). We have ¢lo ¢;l : Bn-(O) +]Rn-(0)

ig the map t - L

| |2 and hence a diffeomorphism. Thus $§° ig a smooth
t

n-manifold.

3. Product of two manifolds: If Mis a m dimensional manifold ang

N & n-dimensional manifold then M x N is in a natural way an (m+n)-manifold.
1t “Ua' g0} {resp. {(VB, ws)}} is an atlas for M (resp. N}, then

the maps



by ‘JJB P U, % VB + ¢awa) x \DB(UB) c ™" Tangent Vectors

i £1 £ Mx KN Let me M A tangent vector L in M agsigns to each
give an atlas for X N.

smooth real valued function f£ defined in a neighbourhood of @

4. From 2) and 3} we see that the n dimensional torus 5
1 N a real number L{f) satisfying the following conditions:
™= 5 x . % 57 (n-fold product) is a smooth n-manifold,
def 1) If f =g in a neighbourhood of m, we have L{f) = L{q)
5. An open subset of a smooth manifold is a smooth manifold. ) 2) L is linear over R : L{Af + ug) = AL(f) + uL{g), for
Ay e R (Note : £ is defined in a neighbourhood U. of m,
Smooth maps . 1

. and g in UZ ¢+ AE + ug is defined in U1 nuz)
Iet M be a smooth manifold. A function £ : M+ |’ iz said

- 3 L(f. = L{f).g(m} + £ Li .
to be smooth if for each ¢ the function f ocbal H cpa(Ua) + IR is ) (£-9) (£).g(m) (m) Lig)

smooth. {(Thus L is a linear map from the ring of germs of smooth

Iet M and N be twe smooth manifolds and @ : M+ N a map. functions at m, satisfying the Ieibniz rule).

We say that ¢ is a smooth map if & is continuous and the following
) It is easily seen that tangent vectors in M form a vector
condition is satisfied : let {(U , $ )1 be an atlas for M and
; a o 1 space, denoted by Tm(M) or simply Tm .
{(Vﬁ' ¢B)} an atlas for N; then for each (a,B) with W = Ua ne (VB) £9,

. et me R". The map £ k—+ L(m) r for £ smooth in a
the map axi 3
: . ]
-1 neighbourhocd of m, defines a tangent vector in m, denoted by (=) .
p - ax, ‘m
wB o o @a b ¢awa.) + xpB(vﬁ) i ,
’ If m = (ml,...,mn}, a smooth function f with f(m} = 0 can be written,
is smooth.

n
in a rieighbourhood of m, in the form £ = ): (xi - mi)gi s where g,
i=1
3

are smooth. Using this fact one sees that {( Tx m} ri=1l,...,n form a
i

If 9: M+N and Y : N+ P are smooth maps then the map

pod : M+ P ig smooth.

- base for 'rm(m") + which is thus a vector space {over R) of dimension n.
Amap ¢ : M-+ N is said to be a diffeomorphism if ¢ is- , : .

1 : It follows (for example using the considerations in the next section)
bijective and both @ , &  are smooth.

that if M is an n-manifold, Tm(M] ¢+ MEe M is an n-dimensional

vector space.




The Tangent map

Let ® : M+ N be a smoocth map and m ¢ M. We now define

a linear map

'rmm : Tm(M) + T (N}

& (m)

called the tangent linear map {or differential) of ¢ in m. Iet

v E Tm(H) . me) (v} 1is defined by
{r, (9 tv}if} = viEod)

where f is a smooth function defined in a neighbourhcod of &{m},

noting that (f © ¢) is a smooth function in a neighbourhood of m.

Iet & : M>N and 1 : N+ P be smooth maps. Let

m e M. We then have the chain-rule :

T, (bod) = W ot ()

To (m
{The two sides are linear maps of Tm(M) into T(‘pom m) (P}) .
Using the chain rule we see that if & : M+ N is a diffeomorphism,

the map Tm(tb) H Tm(M) + T (N} is an isomorphism of vector spaces.

o (m}

Since the tangent space to r" at a point is n-dimensional,
we see, using a map at m, that the tangent space at a point m of
an in—dimensional manifold is of dimension n. (Note that

¢u : ch + ¢cxwu) is a diffeomcrphism) .

We shall put a structure of a smooth manifold {in fact that

of a 'vector bundle'} on the set of tangent vectors of a smooth manifold.

2. VECTOR BUNDIES

{Smooth) Vector bundles

It M be a smooth n-manifold. A smooth (real)

vector bundle of rank m over M is a smooth (n+m) manifold E

together with a smooth m;ap T : E+ M such that the following

two conditions are satisfied:

(i) FPor each x € M,

w-l(x) has the structure of an

m~dimensional vector space cver IR.

(ii) For each x ¢ M, there exists an {open) neighbourhood

of m and a diffeomorphism

T : -rr-l(U) + U= ]Rm

such that the diagram

n_l(U) —I gy x r"
AN P
y /
u

commutes and such that the induced map

=1
T t 7w (x} > xxmm=IR

X

m

ig a bijective linear map for each m g U.

(p, : U x ]Rm + U 1is the natural projection onto U).

U

If Mis a smooth manifold, M x ]Rm, has a structure of

a vector bundle over

M.

This bundle is called the trivial bundle



of rank m over M

If E and E are vector bundles over M. An

1 2
isomorphism from El onto - E, is a diffecmorphism ¢ : E, + Ez

guch that the diagram

%
—_—i
By Ea
DN
M

commutes and such that for each x £ M, the induced map

- 11-1(3:) + 7. {x) i3 an iscmorphism of vector spaces. By definition

x 2
‘every vector bundle is locally (on M) igomorphic to the trivial bundle.
Iet U be an open subset of M A section of E over u
" is amap ¢ : U+ E such that for x e U we have (fog ) (x) = x .
A section is said to be smooth if g i:; smooth, A frame of E over
U is a set of smoothrsections {0'1,..., cm} over U such that for
each x € U, {cl(x),...,‘ cm(x)} form a base for n_l(x). If there is
a frame over U, the restriction of E te U is trivial. If o is a
section over U, and if we write oix) = :flfi(x)oi(x) , the section o
iz smooth if and only the real .valued functi;ns fi are smooth in U.
Tr}e trivial bundle has an cbviocus canonical frame given by
X {(x,el),...,(x,‘em)} where (el....,em) is the cancnical base of r" :
e = (1,0/00erD)yecer & = (6,0,...,1) . If o is a section of the
trivial bundle, of(x) = (x, £(x}) f(x) € R™. Thus a section of the

trivial bundle is the same as a function on M with values in Rm.

Hereafter we shall mean by a section a smooth section.

Note that sections of E owver U form a vector space.

The tangent bundle

Let M be a smooth manifold. Put T(M = 11 T (M
- XEeEM
(disjgint unionjand let 1§ : T(M) + M the natural projection (if
v e 'rx(m , wi{v) = %x}. Then 1w : T{M) + M has a natural structure of

a vector bundle of rank n (n = dim M} .

Pirst suppose that § 1ia an open subset of r®. 1t

Leg Ta(m, a g Q, we can write

i=]

n 3 .
L = 2 ki [‘a";:] ’ Xi e IR .
We thus have a map

T: M > Qx BT

T(a,L) = (a, Alf---t An )

with F'g'”' =1 . The map T is a bijectibn and we can transport the
structure of the trivial vector bundle on { x ]Rn to get a structure

of a vector bundle on T{Q}.

Let now (Ua' ¢0.) be a chart. The tangent map asscclated to

4 induces a bijection T(M)| 11-1(00) > T(¢a(U)} and, as above,

we have a bijection of T(¢Q(U)) with ¢u(U)x =" .

U det
[s

Compoging these maps we have a bijection

-1
gyt WO - ¢&(U)xm“.

We define a topology on n—l(t}a) by requiring wa to be a homeocmorphlam




(U)—B'U x{IR =qum"

1
22

and then a topolegy of T (M) by declaring that a subset of T(M)

is open if and only if its intersection with =ach n_l(ua} is \ /
IE

open in n‘l(ua) . Take for charts on T(M} the (n"‘(ua) by )

v, N UB # #, the map IJJB Py ll.l;l : ¢c:(Uc: N UB} x BT + ¢B(Uaﬂ UB) x®" using that (IRn)* is naturally isomorphic to R". Using the

is given by ‘fcx we define a structure of a vector bundle on E  with the property
that for each « ':Ec: is an isomorphism of vector bundles. E  is

-1
(a, }llt---l An) he ((PB o ¢a (a), ulr---r lln)
called the dual bundle of E.

n af
i
whete = " {aj, with f£_,..., £ bel COm; )
i 1);1 A ax, 1777+ £, being the components The dual bundle of the tangent bundle T(M} is called the
-1 -1 .
of ¢Bo¢q {i.e., sps o ¢o; = (fl,...,fn)‘). This shows the cotangent bundle.

compatibility condition of the charts on overlaps. It is clear th
pa ¥ ps clear that Suppose that {gl,..., am} is a frame for E over an open set

T(M, with this smooth structure is a vector bundle of rank n over M. * *
' t U. For x €U, let { GI(X),---. Um(x)} be the dual base of Ex

We call T(M) the tangent bundle of M. * ;
{dual to the base Gltx),-... Gm(x) of E_}. Let o, be the section

. . . * * * * A ®
A section of T(M iz called a vector field. of E given by X+ oi(x) . Then {c:1 P crm} is a frame for E
The dual vector bundle ' over U.
Iet E be a vector bundle on M. For x € M we shall If E and F are vector bundles over M, then
denote by Ex the fibre n_'l(x) of E over x. Iet E =1 E , E@®@F = 11 \ Ex QPK has a natural structure of a vector bundle called
* XeM *E
where ‘Ex the dual of the vector space Ex . We have a natural the direct sum of E and F. We shall also define the tensor product
- * ‘ 3
projection % : E + M. Let U be an open covering of M with E@F of two vector bundles and the exterior products A E of a vector
bundle E.

(U)“—B'U x

\ / 3. TENSOR AND EYTERICR PRODUCTS

Tensor product

*
“let : (BT * . n
Ty P (R E_ be the transpose of Ty P E,* R and Iet E and F be finite dimensional vector spaces (over R).
»*
X

lE
Tx-

n* . R . *-1
+(R7)  the inverse isomorphism. The Ty give : The set of bilinear maps of E x F inte R form a vector space denoted

* * * * * » *
by B ®F; E &F is the tensor product of E and F . (E = dual of E).



11l
* *
If ¢e E and e F , the map {e,f) b~ gle)(f}, e c B, £ ¢ F

is a bilinear form on E x F, denoted by ¢®y . If {&,....8}
- * *

{resp {fl,,..,'fz}) a base for E (resp. for ¥ ) then the

~ ) * *

{ei®'fj}, lgigm 1lgigh, form a base for E QF .

We can define the tensor product of E and F, E®F as
* *
the vector space of bilinear forms - E x F ., If egE and f ¢ F,

e®f is defined as an element of E @F.

Let now E and F be vector bundles over M. Let

E®F = | | Ex®Fx with the natural projection E&F onto M.
Xe M

Then there exists a (unigue) structure of a vector bundle on E@F with

the following property :if {csl,..., om} (resp. {Sl""'sl}) is a frame

for E (resp. for F) over an open set U then the set theoretic sections

ci®sj of E@F defined by ci®sj {x) = ui(x) @sj(x) form a
(smooth} frame for E®VF over U (Lgigm 1g3 £ 2). The bundle

E®F is called the tensor product of E and F.

In a similar way the tensor product of a finite number vector
r .
bundles is defined. If E is a vector bundle we shall denote by (HE

the tensor product E® ---&@E, r times.

The tensor bundles and tensors

Let T(M be the tangent bundle of M. The bundle
A s .
M} @{@T (M} is called the tensor bundle of contravariant order
r and covariant order s, A section of this bundle is called a tensor

of contravariant order r and covariant order s. A section of

12

r 5, .
@Er (M { resp. @ (M }is called a contravariant tensor of order r

(resp. covariant tensor of order s).

Exterior product

let E be a finite dimensional vector space over R,

Q 1, * .
Weput AE =IR and AE =E and call these spaces respectively
the space of alternating o-forms and 1 forms over E. 1Iet p 2 2

be an integer . An alternating p-form over E is a multilinear map

f : EX ... x E — R
‘-———-v-._./

p times
satisfying one of the following equivalent conditions :

i) If xl,....xp e E with X=Xy for some index i with

l g

£ i <p we have

f(xl.....xp) =0

ii) If xl,...,xp g E with x, = xj for a pair of distinct indices

(i,j) we have
f(xlr---rxp) =0

iii} For each permutation ¢ of the set {1,...,p} we have,

seaesX_€E E,

for X o

g1

P

= £ faa
a(p)) ela) £y, .xp)
where e{g) is the signature of the permutation o .

The set of alternating p—forms over E form a vector space

P * . *
denoted by A E and called the p-th exterior product {or power) of E

n £

i 2




13 14

P g9 : P 4
If £¢ A E. ard g € A-E* consider the function We have {tT(p)(f)} A {tT(q) (@)} = tT(p+q) (tAg) for feAE,
(p+a) _ - v 4 &
h: E + IR defined by and geAEz.

] ¢ SRPIRS ) = cloy £ix peesr X ) gi{x peees® 1 )
17" et ch o) olp)” " TolpH) 2 (@) 4. DIFFERENTIAL FORMS AND DE RHAM COHOMDIOGY

whe-re o runs through the set of permutations o of (1,...,p+q)

Differential Forms

satisfying gil). ¢ ... <alp) and oiptl} < ... < o(pg). Then

P & P,
"Iet now E be a vector bundle over M. Put A E = .LL A Ex
P XEM

h. is an alternating (p+q) form called the exterior product of £
) *
nd let : E + M th t 1 projection. Th
and g and fig:-denoted Ly f A g. al e ﬂp A e natural projection en

P »
({AE, np) has a structure of vector bundle over M with the

We have *
following property: if { Oprenes cm} is a frame for E over an
Proposition open set U, the set theoretic sections {ai Ao A crji_ Yii< ii LEEES ip< m}
. pi * P . 1 p -
1) Exterior multiplication is asseociative i.e., if f.1 e AN E of AE over U defined by

11,23, we have £ A (5) AE) = (5 A5 Ay O A By 0 = o (0 A ees hop (%)
P » q 4 1 P 1 p
2) if feAE  and ge AE , we have p

»
form a frame for A E over U.

thg = L gaf. P
The bundle A T {(M)is called the bundle of p-forms. (A section

— * — —~ o
o *
3 1£ {el"“'em} ie a base of E ., thepset {eiln A eip } of AT (M is a smooth real wvalued function on M). A section of
* . B
" -
with 1 g il < < ip gm forms a base of AE . AT (M) is called a differential form of degree p or a p-form. If
R .
In particular if m = dimE, AE 1s one dimensional and w, is a p-form and w, a g-form then ats w,(a) N w,(a) defines a
P
A _E* =0 for p > M. (p+g) form denoted by w3 A Wy -
if T B+ Ez be a linear map between finite dimensional The differential of a function
vector spaces. We then have the transpose linear map let f be a smooth function with values in IR, defined over an
1 B e ' *
AL A E2 + A El defined by : open subset U of M. Let a £ U. Define an element wila) € Ta by
c ‘ KE* ’ wlal(v) = vif), for v g T, . Then al> w(a} i=s a differential form of
or E 2 !

degree 1 over U. We denote this differential form by df and call it
t.(p)
T R = f(T%,+....,TX )}, %, € E. .
(6 %y p' 177 p i the differential of £.
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Expression for a differential form in a chart

P g
Iet (U, ¢} be a chart. The map mHT¢[m)(¢ l]{[axl ]¢(m,}

is a vector field over U for i = l,..-.,n. BY .abuse of notation we

3 3
denote this vector field (over U) by Ti— . Then {sx— Fosrr BT}
i i '

is a frame for the tangent bundle over U. if x, =P 20 are the
coordinate functions over U, the l-forms {dxl""’dxn} is the dual

frame of {—3' 2

P 3—-'} . The differential forms (of degree P)
3xi X

dx, A A dx, lgi, <+ <ci_«¢n
1
for, b hem ) .

P o» .
form a frame for A T over U. Thus if w is a p-form over U, then

" w can be written uniquely in the form

W= ) £, . odx, A ..o A dxg
. . (1, reecerl } i i
o 1 1
i< < 1p P P
where f 1 i are smooth functions over U.
1 iy

The inverse image of a differential form

Iet @& : M+ N be a smooth map between two smooth manifolds.
' : N)bethe tangent map of ¢ at m.
let megM and T () T M > Ty oy {N) e tang P

Write T for T (#). ILet
m m

P
. (P}, *
Tn ¢ A Tem)

P oy
(N) » A Tm(M}
be the transpose of Tm .
let now w be a p-form on N.

Then
mie 2Py eim)

16
defines a (smooth) differential form of degree p over M, denoted
L]
by & (w) and called the inverse of w by 9 .

If f is a real-valued smooth function on N we have

*
d{fod ) = ¢ (df) .
Moreover 1f w is a p-form and 1n a g-form over N we have
E * w
diwhAn = d v AD () .
Exterior differential.

N
If U is an open subset of M we denote by §(U) the

vector space {over IR) of p-forms on U.

Prgggitio_n 4.1. .

p pl
There existe a unique collection of maps d : & (U) + § (U),

p running through non-negative integers and U through open subsets.

of M, satisfying the following conditions.
p ptl
1) d: Ew + & () is a linear map

2} If V is an open subset of U the diagram

p a ptl
gw ——> E W

|

P ptl
&Ew i 5 Ew

P p
ig commutative, where & (U} » E£(V) is the restriction map. ({This

condition expresses the local character of d).



17

P ’ q
3) 1If we&(Ul and n e &(U), we have
dwAm = dwhAn+ ~uFwp an .
41 For a real valued function f over U, df coincides with

the differential of the function, as already defined.

p
5)  a® =0 (i.e., for w e E(0), we have a2 < 0j.

If U is contained .n the domain of a chart and

w o= z £, ;. dx, A A dx,
N : Pogenesi i i
1l<...<1p 1 P 1 fJ

is a p-form on U, one proves that the above conditions imply that

w = ] af; .y A dxp A Adx, .
1< 1P 1 P i p

This shows the uniqueness of 4 and also how one should define d to
prove the existence. For open sets U contained in the domain of a
fixed chart (i, ¢) and a differential w on U, we define dw by the
above formula and verify that conditions 1 to 5 are satisfied. If U is
an arbitrary open set, we cover U by domains Ui of maps with UiC U
and define d(w}U_) by the above formula; by uniqueness dw is well

1

defined globally on U.

The operator 4 is called the operator of exterior differentiation

and dw is called the exterior differential of w.

If ¢ : M+ N is a smooth map and - w a p~form on N, we have

* *
dd (w = & (aw) .

18

To prove this it is enough to show that if w is a form of the
type £ dgl A... Adgp where £, g; ore function in an open set
* * -1
Vof N, then 49 (w)} = & dw in @ (V). Now
ere = £ d [ a and
a{f dg; A A dgp) af A ag; A A 9%
* * *
CIJ*(dw) = ¢ {(df A... A dqp) = § dfA A D dgp . On the other
* *
hand Q*(w) = (fod )} & (dgl} AL A2 {dgp}. Now it is easy to

*
check that if g is a function on V we have ¢ (dg) = diged ).

Hence Q*(w) = (£29) d(g,o ) A Ad(gpﬂm so that

as” ) A(E00 ) A dlged ) A ... Adlg 00)

u* * *d

¢ dfE A D dglh A<I>(gp)
*

= § dw .

de Rham Cohomology

et M be a smooth manifold. Consider the complex of

vector spaces

Q a & P a Pl
0—>Em > Em—>.-28gm = £ —» ...

P p+l P
Let 2P = kernel of a4 : EM + & (M ana Bf = Image of

-l P 2 P p )
d: & (M + E(M. since d° =0 we have BP < 2P | we define

g o = PP

DR
o 1
(% (M =ker da: Em > Emy .
DR

th
The vector space HER(M) is called the p de Rham Cohomology space
{or group) of M. Note that for p > dim M, Hga (M) = 0.
The space zP 1s called the space of p-cocycles and #P

the space of p-coboundaries. A form w with dw = 0 is said to be
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¢losed. A p-form w of the form w =dn,n a (p-l}-form, is

called a coboundary.

Induced map on the Cohomology

% P P
Iet ¢ : M+ N be a smoothmap and & = £(N) » E(M
* * * P
the induced map, Since d¢ = 0 d we see that ¢ wmaps 27 (N)
*
into zp(M) and BP(N) into BPZEB . Hence ] induces a map,
*
still denoted by ¢ ,

* P P
¢ HDR(N) —_ HDR(M)

Homotopic maps.

Definitions Let M and N be smooth manifolds and 4, 9, smooth
maps from M to N. We say that 9y and ¢, are homotopic if there

exists a smooth map ¢: ] x M-+ N such that
o(L,x) = g (x) and @0, ) = 9, (x)
for every x e M,

Thecrem 4.2. Let 9 and 9, be two smooth homotopic maps from M

to N . Then g, and 2 induce the same map from H (N) to

P
D (R}
P ; i - P
HDR(M) ti.e. ¢y = 9, ¢ H o (N) -)-HDR(M) .
Sketch of proof.

P p-1 . .
We construct maps h : E(N) + & (¥) satisfying

]
dhw + hdw = :pI(w) - cp;(w) for every smooth form wih = 0 on E, (N)).

This will prove the thécrem for if w is a closed formon N we will
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* * * *
have dh{w) = @, {w) - cpz(w) so that cpl(w) and tpz(w) define
the same element in HDR(M) .
*
To construct h, we consider the p~form ¢ (w) on R x M

*
for a p~form w on N. If U is a chart on M we write $ (w)

on IR x U in the form

*
o W) = ) £ Chxax, A ... A dx,
I . 1 <3

+ ; gy it.x) dt A dle A A ax,
p-l

1

where I = (11,.-..,:.p'), i€ vuv € lp and J = (Jl,...,]p_l

{t 1is the coordinate function on IR}.Define

1
htw) = ¥ { { gJ(t,x)dt} ax, A A ax,
sl o I S pm1

on U. One can check that h(w) is well defined glohally on M ({This
method of obtaining a (p-1l)}) form on M from a p-formon R x M is

called 'integration along the fibres'}. One verifies that

* dhw + hdw = cp;_(w) - (p;(w)

5. LIE GROUPS

Lie groups.

Definition. A Iie group G is a smooth manifold G which is also

endowed with a structure of a group such that the map G x G + G defined

by {x,y) » Xy_l is smooth.

Examples: 1)y The additive group r" .

beo 3p€ eeex b

s S
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€. FLOWS AND IIE DERIVATIVES

2) Iet m > 1 an integer and let GL(m,]R) denote the grou§

of mxm real invertible matrices. GL{m,IR) is an open subset of Flows and local flows.

the (mz—dimensional) vector space of all m x m real matrices and
A smooth action of the additive group R on a smooth

hence has a structure of a smooth manifold. One verifies that with

manifold M is called a flow (or a one-parameter group of
these structures GL(m,IR) is a Lie group. Similarly, GL(m,L) is a

diffeomorphisme) on M. If P, 2 M+ M is defined by ¢t(x) =plt,x),
Lie group.

for t € R, we have cpt+s(x) = ¢to¢5(x), for t, seR and x e M

Action of a Lie group on a smooth manifold.

A logcal flow on M is asmoothmap ¢ : I x U+ M, where I

Iet G be a Lie group and M a smooth manifold a {smooth) is an open interval in R containing the origin and U an open subset
action of G on M on the left is a map ¢ : G x M+ M satisfying of M, satisfying the following conditions.

the conditions: 1) For any t g I, the map ¢t : U+ M defined by x r¥ glt,x),

1) ¢ 1s smooth ¥ £ U, is a diffeomorphism of U onto an open subset of M.

2) If e 1is the identity element of e, then ple,x) = x for

2) G = IdU . where IdU is the identity map of U.

o
every x € M

3 1f 9, 9, €G then 3) If .s,t, s+t ¢ I and x, ¢t(x) ¢ U, then we have ¢s+t(x) = ¢5(¢t(x)).

(Note that since (x} e U, (¢, (x is defined).
¢(gl. ¢(q2, X))} = ¢(9192' %) for x & M, € 4’1: ¢s ¢t N !

A i 1led 1 £ 1
We shall write gx for ¢(g,x) so that 2) reads ex = x and local flow is also calle ocal one parameter group of {local}

diffecmorphisms,
3) reads (glgz)m = gl(gzm) N B

Lie bracket of vegtor fields.

For g c G, let ¢g : M> M be the map x> gx, x ¢ M. Then
9, is a diffeomorphism and condition 3) may also be written as Let X and Y be two vector fields defined in an open set U
& = ¢ _o¢ . of M. If X is a vector field (over U) and a ¢ U, we denotea the
919, g 9 .
192 1 2
- . i , value of X at a, which is an element of T by X{a) or X
Similarly we have the notion of a right action of G on M. ' a(M}' et {a) a
We now define a new vector field, [X,¥], on U by setting, for

ae U,

EX.Y]a(f) =X, ¥E) - ¥ (xf)
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where f is a smooth function defined in a neighbourhcod of a
and Yf (resp. Xf) iz the smooth function in a neighbourhcod of
a defined by (YFf)(x) = Yxf {resp., (Xf)(x) = Xxf)' The vector field

[X,Y] is called the (Lie) bracket of X and Y.

The vector fields over M form a lie algebra over R,

uﬁder the bracket operation : i.e.,
1) &, ¥)~ ([x,¥] is bilinear over R
e.g.[ AMXy FAK, Yl = A [x), ¥] Ao, ], Ak e R
2) [ XX]=0 (and [x,¥] = —[Q,x])
3) Jacobi identity :

[x_r[er]] + [Y:[er]] + [Zl[le]] =0,

for any three vector fields X,Y,Z .

The vector field asgociated to a flow.

Iet ¢ :t IR x M+ M be a flowon M,

let acM and define y : R + M by X (E) = pit,a) . Let

= 4 4 4a

X(a? = To(xg“dt)o) where (dt ° is the value of the vector field at
) X . d _ 8X(E)

fon IR) at 0 ¢ IR . (Sometimes we write Tstxg(__dt)s = { at )s for

s £ IR) . Then arr X{a) 1is a vector field on M, denoted by X, This

vector field is the vector field associated to the flow, or the infinitesimal

transformation of the flow.

Lemma 6.1: Let 8 g IR. We have

4
(3¢ Xa(thly = X(x (s)) .
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let X be a vector fieldon X and ¥ : I+ Ma smootfx
map, where I is an open interval in IR. We say that ¥ is an
integral curve of X, if for each s ¢ IR, we have
(S ven, = x(pa) .
dt 8
By the above lemma, each of the ‘orbit maps’ )(a are integral curves

for the vector field associated with the flow.

Local flows assaciated to a vector field.

Theorem 6.2. Iet X be a vector field over M and U a relatively

compact open subset of M. Then there exists a local flow ¢ : I x U+ M

such that for 2 € U, the map tkr ¢$(t,a) from I to M is an

integral curve for the vector field X.

The result is proved using the following theorem on ordinary

differential equations depending on parameters:

Iet & be an open subset of MW" and F: Q+ RO a smooth

map. Let a g § . Then there exist an interval I containing -0 and

an open set V in ]Rn, a gV, and a (unique) smooth map

$: IxV+90 such that

1) ¢(0,x)

= x, XeV
2) QQé%'—’ﬂ-=F(¢u:,x)) ;tel, xeV.

Corc;llarx 6.2,1 : Let M be a compact manifold and X a vector field

on M, Then there exists a flow {unique) on M whose assocliated vector

field is X.

=
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Proof. Since M is compact we have by the theorem, a local flow
¢t IxM+ M. Lot s e IR and let n be an integer such that
3 =

s/n € I. Put ¢s = (¢

fis,x} = ¢s(x) .

s/n °¢s/n v (n times), i.e.

by -+

Remark 6.3. Tet A : M> N be a diffecmorphism and ¥ 2 vector
field on M. We define a vector field A#jx) on N by :

A s T A W), for yoe N 1f 9, is the local
A T(y)

-1
flow generated by X then A o 9,0 A 1s the local flow generated
by A (X} . 1In particular, when M = N, we have A X} =X if and

only if A o P.° at . @, i.e., A and %, commute.

Lie derivatives of vector fields with respect to a vector field.

Let X and Y be vector fields on M. We shall define a
vector field, BX(Y). called the Lie derivative of Y with respect to

X,

et a e M. et Py be the local flow generated by X,
defined in a neighbourhood ofa (We shall assume that I is symmetric

around 0}. Define Za(t) € Ta(M) by :

...l .
zé(t) = T¢t(af¢t ) (Y(¢t(a)J) (Here t ¢ I', where
DEI'eZ I is an interval
such that ¢t(a) €U, for t e I")
We define :
8, (M (a) = Sz (g)
X dt “a £=0

where the term on the right is the derivative at 0 of the function
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t P)Za(t) which has values in the {(finite dimensional) vector space

Ta(M) . Using the chain rule we have
Lemma 6. 4. For 8 &€1' we have
dz_(¢)
_a_ = B .
Ta(¢s) ( at ) X(YJ N)s(a”

t=5

Corollary 6.4,1. If BX(Y) = 0, we have (¢t)*Y =Y .

Theorem 6.5. We have
BX(Y} = [x, v].

Indication of proof. et £ bea c° function on M, with values

in IR. It is easy to see that there existsa function g(t,p), smooth
in (t,p) such that f o ¢—t(P) - fla) = t.g(t,p) and g{0,p) = -(X£) (p).

Then 2 B f =y (£ oo )

¢t(a)

= Y¢t(a)f + ot Y¢t(a) glt, ¢t{a))

Hence,
- Y
Z (0 - ¥ £ Y¢t(a)f af
lim T = lim T + Y¢ (a) git, ¢t(a))
t+0 t->0 t

xa Yf + Yag(O,a)

I

Xa Yf - Ya Xf

[x,y]af .

Corollary 6.5.1. let X and Y be vector fields on M such that
[X,¥] = 0. 1If ¢t and ¢E are the local flows generated by X and

Y then ¢, and ws commute.
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This follows from the above theorem, Remark 6.3 and the

Corollary 6.4.1.

Lie derivative of tensor fields.

Let X be a vector field on M and o a tensor field on
M. We can define, in the same way we defined the Lie derivative of
a vector field, the lie derivative ex(a), of the temsor o with
respect to X; Bx(u) is a tersor of the same covariant and contravariant
type as that of a . To define Bx(ou we have only to note that

~1 . . .
T¢t(a)(¢t bos T¢t(a,(M) + T (M) induces isomorphisms

P q . P q ‘
®T¢,t(a) ® ®T5Pt(a) + ®Ta(l'1) ®® T, (M) . We also have an obvious

generalisation of Lemma 6.4, Note that if a is a p-form, ex(a) is

defined as a p-form and that ex(u) = 0 if and only if ¢:(a) =a.
We list some properties of Lie derivatives:
l). Bx is a local operator on tensor fields.
2) If f is a real valued function, Bx(f) =Xf
3) If Y is a vector field, Bx(Y) = {X,¥].
4) If a and o' are tensor fields, we have
Byla@ o = B @a'+ a@8, (ah

5) If @ is a covariant tensor field of rank p, i.e., a section

Of'C)T ., we have, if xl""’xp are vector fields,

LT SR ) = X a(xl,....xp) - {ia(xi,...,{x,xi],...,xp )

(Here note that a(xl,...,xp) is a real valued function and X can be

applied on it).
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In particular if o is a l-form and Y a vector field
ex<a,v>=<exo¢,y>+<a,exy>

or by (3},

(*) B <o, ¥Y>=<08,a, ¥Y>+ <a [x,¥] >

where < , > denotes the scalar product.

To prove 4) and (*) we use the Leibniz formula in the following
form. Let A,B,C be finite dimensional vector spaces and
¢ : Ax B+ C abilinear map. Iet f and g be functions from an
interval in IR with values in A and B respectively. Define

hit) = g@(£(t), g{t}). Then we have

dh ) - b
Eg(to) " f(to) dat (to) * dat (to)G(to)

where we have written ¢(a,b) = a*b .
Then 4) follows from (*) by induction.

6) If oo and R are differential forms we have
Bt AB) = B AB+a Ao B .

Interior product and H, Cartan's formula.

Iet E be a finite dimension vector space and v £ E. Then v
P . p1 ,
defines a linear map iv : AE =+ A E by :

i w(Vl:---,vp_l) = Yy v

P

*
where YyeAE, vl""'vp-l

p—l)

¢ E. This map is called the ‘interior

I 238

—paa
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product defined by v.

If X is a vector field on M , we have a linear map
P p-l
s B+ g (M
with the property

ix u(xl,...,xp_l) = a(xl,xl,...,xp_l_)

P
where Qe E (M) ,and xl""'xp-l are vector fields.

We then have:

1) ix ig linear over functions: i.e., £ is a real valued (smooth)

function and ¢ a p-form then

ix(f-u) = f-ix(a) .

P q
2 i, @AB) = o AB+-DPaAi B, if ae Fand Bef -
3) i: =0 .

4) {H. Cartan's formula) : ex = 1xd + dlx

i.e., If @« is a p-form we have Gxa = ixdoz + d:i.xa where 4 is

the operator of exterior differentiatiom.
. : 2
In particular, since 4 = 0, we have

de = eX 4.

X
To prove 4) we write I'X = ixd + dix . We have
Ik(OtAB) = IkOtAB'F (x!\IkB and also
ex[a AR = exclA B8+ al GKB , where ¢ 1is a p-form. Hence it is

sufficient to verify the formula when o = f a function and o = df,
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with f a function. Now Bxf = Xf and
I*f = .dixf + :I.xdf = 1xdf = <X, df > = Xf .
If o= df

9xu(Y) = Xa(Y) - alX,¥] (see (*) in p.28)
=XYf - [XY - ¥x]f

=YXFE

On the other hand,

n

(dix + ixd) (df) (¥) d(ixdf) (¥} = a{ < x, af >} ()

YXE .

Remark: If X 1is a vector field and «u a p-form such that
Bx fa) = 0, then o is called an ‘invariant integral ' for the local
flow generated by X. In particular when ¢ is a function f with

Bxf =Xf =0, then f is called a 'first integral® of X.

Formula for the exterior §ifferential.

Proposition 6.6. Iet o be a p-form and xl""'xp—l vector fields.

We then have

pi-l i+l ~
aof{X.,...,%X ) = (-1) L.ofX. ,....%., ... X
1 p+l = i i : p+1,
j_+j A A
+ (-1) X UD. G i S S S '] .
i Z ] i 3 L j ’ p+l }

~
where over an element means that element is omitted.

In particular for a l-form o ,

da(X,¥) = XalY) - Ya{x) - a[Xx,Y] .
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Proof. We use the formula Bx - dix + ixd in the proof.

First if o is a l-form we have

da{X,¥) ixdu(Y) (by definition)

= {80 - d(i o)} (¥}

Xal¥) - aiX,¥] - Ya(®) (By (*) on p.28 and dixor. = Ya{X})

In the general case,

aa(xl'."" Xp+1) ixldm(xz’...'xp'l-l)

exa(xz,...,x )—dixu(xz,...,x ).

1 p+l 1 p+l
uUsing 5), p-27 for the first term and induction for the second term,

we obtain the proposition.
Remarks
1) If X 1is a vector field and f a smooth real valued function,
Bf % # fo in general on tensors, i.e., if a is a tensor field
fo(a) # fo(a) (Here £.X is the vector field ab+ £(a) X{(a}}.
2} If X and ¥ are vector fields we have
- = and
GXOBY OYo Bx B[X,Y]

i o
Beo iy - 1,08, Hx,v]

7. IMMERSIONS AND SUBMERSIONS

Immersions and Submanifolds.

Let f : N+ M be a smooth map. We say that £ is an immersion

at a point b g N if the tangent map Tb(f) H Tb(N) -+ Tf(b) {M) is
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injective. We say that £ is an immersion if £ is injective at

every point of N. We have

Theorem 7.1. Let n = dim M and p = dim N. Let £ be an immersion
at b e N. Then there exists neighbourhoods Vv of b, U of f(b)
with f(V) ¢ U and a coordinate system (xl,. .. ,xn) in U with

x,6f=00on V for p<'ign and such that {xiof},l.sigp

give a coordinate system for N in V.

Moreover if Tb(f) : Tb(N) + T is an isomorphism there

_ £(b) ™
exists neighbourhoods V of b and U of £(b) such that £{V)c U

and f|V + U is a diffeomorphism {inverse function thecrem),

let M be a manifold and N a subset of M, with the following
property: for every b e N there exists a neighbourhood U of b in
M and a coordinate system (x;,...,x ) in U (for M) and an integer
P £ n [(depending only on N} such that N N U is given by X = 0

for p<ign. Then N has a natural structure of a p-dimensicnal

manifold such that the functions {inN a U}ls i form a coordinate

SP
system for N in NN U. (N is provided with the tbpology induced from
M), We then say that N iz a submanifold of M. If moreover N ' is a

closed subset of M we say that N is a closed submanifold.

Remarks: 1) If f: No M is an immersion such that £ is a

homeomorphism of N onto £{(N), then F(N) is a sut}manifold and

£ : N+ £(N) is a diffeomorphism. 1In this case we say that £ is an
imbedding.

2} If £f: N+ M is an injective immérsion, £(N) need not be a

submanifold of M.
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32
8, FROBENIUS THEOREM CON INTEGRABLE SUB-{UNDIES, FOLIATIONS
Sub and quotient bundles of a vector bundle.
let ® be a vector bundle of rank m over M. Suppose that
"The line approaches itseif without touching‘ R F 1is a subset of E which satisfies the following conditions:
Submersionsg. i) for a e M the set Fa = Ea (VF is a vector subspace of
. . . : -1
dimension p {fixed} of the fibre E_ =7 {a) of E over a.
let £ : M+ N be a smooth map. We say that £ is a 2
submersion at a point a & M if Ta(f) . Ta(M’ > Tf( )(N) is ii) every point a £ M has a neighbourhood U and a frame (01,...,Om)
a
surjective. The map f 1is said to be a submersion if it is a of E over U such that for every b e U, g {b),..., Up(b)} form
submersion at every point of M, a base for F_ .
Theorem (Implicit function theorem} 7.2. Then ®/F : F+ B has a natural structure of a vector bundle

of rank p over M, for which {Gl""’ ¢ | are local frames. We
Iet £ : M+N be a submersion at a £ M {Iet n = dim M -
. A call F a sub-bundle of E.
and g = dim N). There exists charts (U, &), (V,}} for respectively

i ’ ESR o=
M and N, witha cU, £la) €V, £V, 9(&) =0¢ R®, $of(a = 0¢ RY let F be a subbundle of E. let &/F b}__\_M E/F, . let
£

with commutativity in the diagram n: E-+E/F and ﬂE/F 1 EJF + M the natural maps. Then

TIE/F : E/F + M has a structure of a vector bundle for which
v —Lf 5y _ .
n o cpﬂ""' noom) is a frame over U. The bundle E/F is the
$ ] guotient of E by F.

QL) ~———>ptv)

Integtable sub-bundles of the tangent bundle : Integral Submanifolds.

where F is (the restriction of)} the map rRTY > rY let F be a subbundle of rank p of the tangent bundle T(¥)
TR N+ 4 (xl,...,xq) . of M. A submanifold N of M is said to be an integral mapnifold for

F if the canonical map Tbi-: Tb(N) -+ Tb(M) maps the tangent space

Tb(N) of N at b isomorphically onto the fibre Fb of F at b, for

It follows that a submersion is an open map.
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each- be N (Here i : N+ M is the inclusion map)

Definition: Let F be a subbundle of T{M). We say that F 1is
integrable (or completely integrable) if the following conditicn
is satisfied : if U is an open set of M and X,¥Y sections of

F over U, then [X,Y] is a section of F.

(X and Y are considered as sections of T{M i.e., as vector
fields and [X,Y¥] is the bracke* >f vector fields which is a section

of T(M) and we require that [x,Y]b € for b g U).

F
b
Remark: let F be a subbundle of T(M). We then have a section £
2
*

of (AF @(T(M/F)) i.e., we have for b e M, an alternating bilinear
map Fb x Fb + (E/z’)b . This is defined as follows: Let Vit Vo EFy
and let X,Y be vector fields (in a nelghbourhood of b) with

X(a) = v s X(b) = v, . Define ﬂ(vl, vy = nb[x,y} where

b r
Ny * Tb -+ Tb(M)/Fb is the natural map. One checks that { depends
only on Vi ¥y and not on the extensions X and Y. Thias section

1 may be called the curvature of the subbundle ¥. Thus ¥ is integrable

if and only if its curvature is identically zero.
Frobenius Theorem.

Theorem 8.1,: The following conditions on a subbundle F of T(M}

are equivalent.

1) Through every point a ¢ M, there is an integral submanifold

for F.

2} F is integrable.

3 Each point a ¢ M has a neighbourhood U, a diffeomorphism

@ : U+>VxW, where V and W are open subsets of RP and
m"P respectively, such that for each w g W, the set
cp_lo p.;;l(w) (pW : V x W+ W the projection) is an integral

submanifold of F,

U‘-—‘L““——W VxW

P

1)

(In other words, around each point 'a there exists a system of
coordinates (xl,....xn) for M such that the submanifolds
xp+l = cP+1,..., X, =c where c
integral submanifolds of F.)

o+l ,...,cn

Proof. 3) ==t 1} is trivial .
To prove 1) = 2] we use

lemma 8.2.

a vector field on K (resp. M) we say that X and X are f-related

1

if for each b ¢ ¥ we have Tb(f) (xl(b)) = X{f{b)). Suppose that

xl and Y

that X 1 1

[X,, ¥.] is f-related to [X,Y].
1 1

To deduce 1) == 2) from the lemma we take f to be the

inclusion i : N+ M, X, = x|N . Y1=Y|N .

The essential part of the proof is to show that 2) =x

This is done in two steps. First one proves

are c¢onstants, are

Iet £: N+ M be a smooth map. If xl (resp. X},

ig f-related to X and Y. is f-related to Y. Then

3)

36

1 vector fields on N and X,Y vector fields on M such

b &

T

b £
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Lenma 8.3. Suppose that F is integrable. Each point a e M as [xi' Xj ]= 0 {see p.26 Corollary 6.5.1).

has a neighbourhcod of U and a frame {xl""’xp} of F over U The implication 2} == 3} is clear from the Proposition.

such that [X,, X,J =0 for lgigps Lgige. -
. ) Foliation.
The proof of this lemma is essentially algebraic. One then

Iet F be an integrable subbundle (of rank p) of T(M).
proves ‘ .
We define a new topoclogy on M by declaring that a subset of M

i eighbourhood . ie i . : : ,
Proposition 8.4. let X;,..., X = Dbe a vector fields in a neig is open if it is a union of integral submanifolds for F. With this

i i t in
U of a such that { Xl(b)""'xp(b)} are linearly independen topology M becomes, in a natural way, a p-dimensional manifold,

T, (M) for each b g U and such that [Xi, xj] =0 in U, for which we denote by M, . A connected component of M, is called a

. i ) i ceas X . .
lgzigp lgisep Then there exists a coordinate system (xl' ! n) maximal integral manifold {or a leaf) of F . The leaves define a

i i = i g in V.
in a meighbourhood V. of & such that xi a/axi risler partition of M, called the foliation of M defined by F. 1If . N
Sketch of proof of the proposition. is a leaf, note that the inclusion map i : N + M is an injective
‘ . - immersion; in geperal N need not be a submanifold of M,
Choose a coordinate system (yl,...,yn) around a with yi(a) 0 i g

and such that X,(a},.... Xp(a). (3/3Y4q ) grr e (3/3y), span T (M . 5, LIE GROUPS (Continued)

tet . be the local flow associated with X, 1gigp. For  §> 0,

S

The Lie algebra of a Lie group.

let Q= {(tl;---ftp' yp+l'---'yn) ‘ .til <6 - EYj| < 63' For §
sufficiently small, the map h : g+ M Iet G be a Lie group. A vector field X on G is said to

1 P 0 - ; be left invariant if for each x ¢ G and g € G we have
LICTIRTL Yoart* or¥pl T @p© rever O (Oreeerls Fpyqrevee¥y
1 P %(gx) = T (L)(X(x)) where L_: G+ G ls the left translation by g

is well-defined. It is easy to check that

i.e., Lb(y) = gy. A left invariant vectcr field is uniquely determined
ThHlasat ) = X, (a) and To(h)((afayj)o) = (B/BYj)a ' by its value at the identity element e and given v ¢ T (g) there
. h hoi diff rphism in a neighbourhood V of 0. Next one exists a unigue left invariant vector tieid X with X(e) = v. Moreover,
50 that is a diffeomo S .

if X and Y are left invariant vector {ields, so are XX + A¥, {A,ueR)
shows that, for % g V.

and [X,Y]. Thus the set of left invariant vector fields on G form a
T (h)ifa/ze) ) = X.hlo, Leisp . . .
® 1 x L n-dimensional (n = dim G) Lie algebra over IR, called the lie algebra of

i j , .
To prove this one uses the fact that ¢ and g commute for lgigp, 1gige G and denoted by q} .
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Let G, and G, be Lle groups and ¢ : G + G,

homomorphism. Iet. 0&-1 {resp. 0}2) be the Lie algebra of G

a smooth

1
{reap. Gz}. Then ¢ induces a Lie algebra homomorphism

P : %% -r°32 » as follows. Iet X ¢ and e (i = 1,2) be the

i
identity element of (;i . Iet X! e% with x‘(ez) = Te:(Llp) (x(el))

g
it is easy to check that X and X' are g-related. It follows from

and define ¢,(X) =X'. Since for g ¢ G we have golL = Ltp(g) ?

Lemma 8.2 that 9, 1= a Lie algebra homomorphism.

In particular ¢ : G, * 6, is a homomorphism which is an

injective immersion, 03'1 can be identified with the Lie subalgebra

P (%) of 03'2 .

Lie subalgebras and Lie subgroups.

let G be a lie group and H ¢ G. Suppose that H has a
structure of Lie group sﬁch that the inclusion map i : HE-+G 1is a
homomorphism which is an injective immersion. wWe say that H is a
Lie subgroup of G. (A Lie subgroup H need not be a submanifold of
G; in fact if it is so, it should be closed in G). The Lie algebra

f1 of H .is identified by i, with a subalgebra of oF .

Propogition 9.1. let G be a Lie group and L a die subalgebra

of O} . Then there exists a Lie subgroup H of G whose Lie algebra
is h.

Idea of Proof. The subalgebra Q‘)_ defines an integrable subbundle F
of T{(G) as follows. The fibre Fx of F at x ¢ G, 1is the subspace

of T, (G), {X(x) ] X¢ R} . Sinece for X,Y ¢ 1, we have [X,¥] ¢ A,

40

F iz an integrable subbundle of T(G). Let H be the leaf
through e of the foliation on G defined by F. One checks that
H is a Lie subgroup of G whose Lie algebra is {4, , using that

if ¢ is a leaf then g ¢ is a leaf, for g g G.

Homomorphisms of Lie groups and Lie algebras.

let G, and G, be two lie groups with lie algebras O}fl R "Yz .

1 2
Then the Lie algebra of the Lie group Gl X G2 is naturally identified

with the direct product 0}1 x% . let ¢ : G, + G, be a homomorphism
of Lie groups and ¢, : Of; +0: the-induced homomorphism. The graph.
T = {(x, @l{x)}); x¢€ Gl}, of ¢ 1is a (closed} Lie subgroup of G x G,
whose Lie algebra is the graph T' ={{v, ¢,vi; V € ﬁ}ﬂ of ¢, . From

this we deduce that if ¢, and ¢, are two homomorphisms of & into

G, and @), = @ On Of, r then o, = g, if G, is connected.
We now consider the guestion whether every homomorphism between
93'1 and 05*2 is induced by hcmomorphism between Gl and Gz .

Proposition 9.2, Suppose that Gl is simply connected. If

Ve 0}1 +°J'2 is a Lie algebra homomorphism, then there exists a (unigue)

homomorphism ¢ : Gy + G, such that ¢, ={ .
We indicate a proof of this result.

Definition. ILet G, and G, be Lie groups and U a neighbourhood

1 2

of e in Gl' A smooth map £ : U »+ G, is called a local homomorphism

if for x, v ¢ U with xy ¢ U, we have f(xy) = £(x) f(y).

Using the monodromy theorem one proves:

e £




a1

be a gimply comnmected lie group and

Lemma ‘9.3, ILet G,

£f:U> G2 be a local homomorphism where U is a connected

neighbourhood of e in Gl . Then there exists a (unigue)

homomorphism {smooth) ¢:6, +6G such that cp}U = F.

2
To prove Proposition 9.2., note first that the Lie algebra

of G1 X 62 is paturally isomorphic. to Djl x 0}2 r the direct

product of the Iie algebr s —’}1 and 0}2 . let
I* = {(v, ptv)); v & Of JCU @ x ®,) be the graph of § . Then
I'' is a subalgebra of 0&-1 x 952 . Let I be a Lie subgroup of

G, x G corresponding to ['' . The tangent map at identity of the

1 2

restriction of the projection pr 16, X6, +G, to I is

Gl 1 2 i
{(v.Y{v))t—> v, sosthat this map is a local diffeomorphism of a

neighbourhood of identity in [' onto a (connected) neighbourhood U

of e in Gl . Then the composite.f of the maps (prG )-l: U=+T
1
and prG : T~ G2 is a local homomorphism . Since Gl is simply
2
connected, by Lemma 9.3, £ extends to a homemorphism ¢ : Gl > G2

which is the required homomorphism.

The expcnential map.

The Lie algebra of the Lie group GL(n,R) can be identified

with the Lie algebra Oﬂ_(n,lRJ of n xn real matrices- If A and

B are n x n matrices [A,B] is defined to be AB-BA)., If A s%’f{n.m),

2 a"

the series I + A + A" + +»- + o + =+ defines an element in

GL(n,IR )dencted by exp A, called the exponential of A. Thus Al exp A

is a map of the Lie algebra of GL(n,IR) into GL{n,R)}. We shall

generalise this to any Lle group G.

42

Considering IR as a Lie group, the vector field %

on IR is a left invariant vector field. Let G be a Lie

group and X an element of ‘3} . There exists a unigue Lie algebra
homomorphism of the Lie algebra of }R  into Dé. , sending %
into X, Since IR 1is simply connected, there exists a unique
homomor phism by

We define
exp X = q)x(l}. (L e IR}

We have

D explit) + £))X) = exp(t X} exp(t,X), t;, t, ¢ R
2)  expl-tX) = exp(tX) T, te R
3) exp : + G is a smooth map.

4) exp is a local diffeomorphism at 0 € O}

The adjoint representation of a Lie group.

If V 1is a finite dimensional vector space over IR, the
group Aut (V) of linear automorphisms is a lLie group (If dim V = m,
we can identify Aut V with GL(m,IR) if we choose a base for V).
A smooth homomerphism p : G » ABut(V) is called a representation of

the Lie group G on V.

We shall now define a natural representation of a Lie group
on its Lie algebra, called the adjoint representation of G. ILet
geG and Int g : G+ G be the map sr-)gsg_l, & ¢ G. Define

Ad g 3 Te(G) - Te(G) to be Te(Int gt. Identifying Te(G) with OJ '

IR + G whose tangent map is the above homomorphism.
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we get a representation gk Ad g on 0‘5— . If Rg :t G+ G is the
mip s+ s¢g, S e G, and X ¢ O}. it is not hard to prove that

(R, () = Ad(g ) ().

10. PRINCIPAL BUNDLES AND ASSOCIATED BUNDIES

Principal bundles.

Let U be a manifold inc G a Lie group. We make G act
on U x G on the right as follows: (({x,s),g)r (x,sg), for x € U,
8, 9 £ G. Note that the action of G is free i.e., if yc UX G
and yg =g, ge&G, then g = e. Mreover given yl, yz with
pru(yl) = prU(yz) then there exists a u;aique element g £ G with

yz = ylg i.e., G acts simply transitively on the fibres of the map

Ux G =+ 1.

We now consider the situation where a Lie group G acts on a

manifold P, where the situation is 'locally ' as above.

Definition. Let w: P+ M be amap of smooth manifolds. Suppose
that a Lie group G acts on the right en P and that évery point
X € M has a neighbourhood U and a diffeomorphism T : Ux G —+ ﬁ_l(U)

such that

i} the @iagram
Uxg —TI T

A

comiutes, and

i1}  1i{x, sg) = 1(x,8)g, for %X ¢ P, 8, g € G. Then we say that P
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is a principal bundle over M with structure group G, or simply

that P 1is a principal G-bundle over M.
Remarks. 1) G acts freely on P.
2) G acts simply transitively on each fibre of T : P + M.

The bundle of frames associated to a vector bundle.

As an example of a principal bundle, we shall associate to
a vector bundle E of rank m over M, a principal bundle over M
with GL{(m, R) as structure group, called the bundle of frames of E.
Let P be the set of linear isomorphisms of R™ into the fibres of
E(IE ¢ : r" » E, is an isomorphism and (eyrenusep) is the canonical
basis in JRm, then (cp(el),...,cp(em)) is a basis in Ex: conversely given
a basis (fl""'fm) of Ex there exists a unique isomorphism of r™
into Ex sending e, into fi' Thus P can be identified with the set
of basis {'frames') in the different fibres of E. This explains th_e
terminology). We make GL(m,IR) act on P as follows: if X g M,
P : r" > E an isomorphism and g £ GL{m,IR} , then
((x,9)s g} (x, Qog), g being considered as an isomorphism
r"+ r" . P has a natural structure of a manifold (in fact it is an
open subset of EP .- @B, m times) and becomes a prineipal GL(m,IR)

bundle under this action.

Note that if there is a smooth section of P{ i.e., a smooth

map g : M+ P, with Tog = IdM) the vector bundle E is trivial.

Morphisms of bundles. Gauge transformations.

Let P and P' be principal G-bundles over M and M!'

respectively. A morphism or a bundle homomorphism from P to P' is a
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smooth map h : P+ P' such that h(pg) = hip).g, for pe P

and q e G.

It is easily seen that h induces a smooth map

h : M+ M such that the diagram

p —B o 5

M ———— M
commutes.

If M= M' and if there is a morphism h : P+ P' such
that the induced map h : M+ M is the identity we say that P and
P' are isomorphic. (In this case it is easy to see that h : P + B

is bijective and h-l : P'»> P ig a morphism).

If P is a principal G-bundle over M, a morphism of P into
P , which induces identity on the base is called a gauge transformation
{such a morphism is an automorphism of P}. The gauge transformations
of P form a group, called the group of gauge transformations of the

principal bundle G.

4 bundle isomorphic to the trivial bundle M x G is called

trivial.

Proposition 10.1. Let P be a principal G bundle over M. Then the

following conditions are eguivalent.

1} P 1is krivial.

2) There exists a smooth section g: M»P ,
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Proof. 1) ==+ 2) is clear, since the trivial bundle admits for
instance the section xr+ (x,e), To prove 2) =t 1) let

h'(P) be the unigue element in G such that o{nw{p})h'{p) = p, for
PE PT Then h i P+ M x G defined by h(p} = (n(p), h'(p)) is

an isomorphiém of G-bundles.

Associated bundles.

Let P be a principal G-bundle over M.and F a manifold
with a left action of G. Gonsider the action of G on PxF given
by :
((prE),a1 > (pg, g T0).

One can show that P x F is a principal G-bundle over the guotient
space (P x Eyb. We denote {P x Eyb by P x_F. The map
G
(p,£)+> m(p) induces a map P x F + M, which is called the bundle
' G
associated to P by the action of ¢ on F. If pe P, p induces

a diffeomorphism of F with the fibre over 1m(p) of the map

Px F~ M
G

Any structure on F invariant under the action can be put on

the fibres of the associated bundle.

As an example let F be a finite dimensicnal vector space
and p s G+ Aut(F) be a (smooth) homomorphism so that G acts
on F by linear transformations. Then P x F is a vector bundle

G
over M, called the vector bundle associated to the representation p .
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Extenaion and restriction of the structure group.

Let P be a principal G, bundle and p : G, > G,

1

a homomorphism of Lie groups. We can then define a principal

Gz—bundle over M, as follows. G, operates on G, by

(g,+ 9, +? 0l9,)°9,, 9; € G; . The action of G, on P x S,

given by (p,s)s' = (p, s8'), pe P, 8, 8' € Gz goes over into an

action of G, on the associated bundle P X G, and makes of it
GI

a principal 62 bundle. This Gz is bundle is said to be cbtained

by extension of the structure group by p .

Suppose that H is a Lie subgroupof G and P a
G-bundle over M. If there exists an H-principal bundle Q over M
such that the G-bundle, obtained from Q by extension of the structure
group by the inclusion map H + G, is isomorphic to P(aé a G-bundle),

we say that the structure group of P can be reduced to H.

The pull-back (or inverse image} of a bundle.

Iet P be a principal G-bundle over M and f: N+ M

be a smooth map of manifolds., lLet P x M be the subset of Px N
N
consisting of points (p,y) with mip) = f(y) (p e P, ¥ € N). G acts

on P x M by (p,y)g = {pg,y}. With this action P x M Dbecomes a
N N
principal G-bundle on N, called the pull-back of P by £ (and

. *
gometimes denoted by £ (P))}. We have a.commutative diagram

*
t(p) ———> P
N —_—— M
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* *
{The maps £ (P) + P and f (P) + N are given by the restrictions

of the projections of P x N onto P and N respectively.)}

11. EQUIVARIANT FORMS ON A PRINCIPAL BUNDLE

The tangent bundle along the fibres of a principal bundle. Vertical

vectors.

Iet m: P+ M be a principal bundle with structure group G.
let p € P. We denoted by VP the kernel of the map

Tp(n) H TP(P)+ T (M} . An element of Vp is called a vertical

m{p)
vector at p. The tangent space at p of the fibre of = through p
can be identified with V.. The vertical vectors LI Vv form a

pPEP
subbundle of T(P), called the tangent bundle along the fibres of P,

denoted by T1t or V.

Propogition 11.1. The tangent bundle along the fibres of P is
trivial. More precisely there is a canonical isomorphism 1 of the
trivial vector bundle P x 03- with T1T with the follewing property:
for each g € G the diagram .

P x O} __,_llJ____, T1T

-1
Ryx2dlg ) ® ),

P
x 0} ] Tn
is commutative . Here (Rg)* is the 'differential map' induced by the
diffeomorphism Rg, grrdqg, 9 € P (If n: TTT + P is the projection and

v E T“f (Rg)* (V) )(Rg) (V,). 1f P £ P, E £ c}r

= T -
niv
-1 -1
1d x Ad @ Kp. §) = (p: Adlg T)E).)




49

50
t 3 a : F F,+ F a bilinear map. If
Indication of proef. If p g P, consider the orbit map vector spaces an ¢ 1 %%, 3 t P
. i . E ith val in F
UP : G+ P. HNote that cp(e) = p. The tangent map of 0U at @{cesp.f } is a p (resp. q ) form on Wi values in i
: . . ) . . i rm on E with values as
e maps OJ- = TE(G) isomerphically onto Vp . These isomorphisms, resp FZ) Wwe can define a(p+q) fo : ue F3’
i p i iplication i . (W
a3 p varies,give { . The commutativity of the diagram can on page 13, using g instead of multiplication in R (e
. i . inst i =g=1
be proved using denote this form by o Atp B} For instance if p =g '
. . : \ . = Y - Y
i) if X e and Rg t G+ G is the right translation we (o A(P BKX, ¥) ¢laX}, 8(1) elaly), X))
have (Rg)*(x) = Ad(g—l)(X‘ i-z2e p.43) for X, Y ¢ E.
ii) commutativity of the diagram Consider the special case F) =P, = Fy = Cf , where % is

a lie algebra and C? : o;,fxsg_ > Of is the map @(x,¥) = [X,¥], X,¥ €.
In this case we denote o A B by [a ,6] . Note that if g is ‘= l1-form
¢

g9 g with values in O}. r we have

[a ,a] (x, ¥) [aiXy, a(v)] - [ol¥), aix)]

Remark 1i.2, If Xe¢ C? + X defines in natural way a section of

2[a(x), aly)]

the trivial bundle P2 x O+ pr> {p,x) . Using the isomorphism ¢ ,
We have
we get a section of T'rl » and hence a vertical vector field, denoted

. pa+l
= (-1
by o(X) and called the fundamental vector field on P defined by 1) [0, 8] =1 LB/ ol

X. If X,Ye 0} + we have o[X,¥} = [a(X), og(¥)] . From the il) If § is a r—form with values in o)

commutativity of the diagram in the Proposition, we have: (_l)pr lo,[ B.¥1] + (_nqp [ B, [yeal]l + (-1)4 [, [ o,8]] =o.

(R}, 0(X) is the fundamental vector field corresponding to
9 -1 It is clear that we can define on a manifold M smooth
Ad{g ")} (X} € 0}- .

differential forms with values in a vector space (finite dimensional} F.

Alternating forms with values in a vector space.

If a is such a smooth p-form on M, we can define the exterior

Let E and F be finite dimensional vector spaces over R, differential dg , which is a (p+l) form with values in F. If we wishs
It is clear how:to define an alternating p-form on E with values in we can define d by the analogue of the formula in Prop.6.6 {p.30) for 4.
F. For instance a 2-form ig a bilinear map £ : E x E* F with In particular if o is a 1-form with values in F,

f{x,x}) =0 for xe E. Let Fl' F2, F3 be (finite dimensional)
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da(X, ¥} = Xol{¥) - ¥a{X) - a[X, Y], X, Y being vector fields

on M.

In the case F = O} a Lie algebra)for differential forms

as B, ¥ with values in 03- we have i), ii) above and

d [a.p] = [da,B} + (-1)F [a, aB] .

The Maurer-Cartan form and equation.

We give an illustration of the above notion. ILet G be a
Lie group with lie algebra 65, . Then there is a canonical l-form on
G with valuyes in Q} , called the Maurer-Cartan form on G. This form

a is defined as follows. Iet v be a tangent vector of G. at g.

‘Then there exists a unique left invariant vector field X on G with

Xi{g) = v. Define alv) = X. Note that a is essentially the identity

map on Te(G).
Proposition (Maurer-Cartan equation) 11.3.
1l
We have duo + EEG'a] =0,

Proof. Ilet X and Y be left invariant vector fields. Noting that

1
3 fo,al %,¥) = [aix), a(¥)] , it suffices to show that

daf X, ¥ 1+ [a(X), a{v)] = 0. But
da{X, ¥) = Xa(¥) - YoaX) - ofX, ¥]
= -a[X,¥], a8 a(¥) =¥, alX) = X are constants

“Bﬂj"ﬁmm.aWH.
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BEquivariant forme on principal bundles.

Iet p : G+ Aut(F) be a finite dimensional representation

of G. Iet o be a p-formon P with values in F. We say that
+
a( )

* -
a is equivariant (with respect to g ) if Rgu =plg 1)

(Here p(g_l)a ig the p-form on P defined by

-1 -1
[plg )m](xl.....,xpx= plg Yo (xl,...,xp) for X, .
p = 0, the condition means afpg) = plg alp), peP, ge G

* *
& being a function from P to V). Since 4 Rg = Rg d, we see

that if o is an equivariant p-form then 4 is an egquivariant

(p+l) form.

An equivariant p-form is said to be basic ("coming from the
base") or horizontal if a(xl,...,xp) = 0 if at least one of the
tangent vectors xi is vertical. Basic egquivariant p-forms can be
identified with the sections of the bundle i T*(M)Qb F,on M, where
Fp is the vector bundle on M associated to the representation p .
Hence such forms are also called p-forms on M with coefficients in
the bundle Fp . In particular applying this to the case of the trivial
l-dimensional representation of G, we see that a p~form (in the usual
sense) on M can be identifiéd with a p~form a on P which is
invariant under the action of G and which satisfies a(xl...;,xp) =0

if one of the xi is vertical.

Note that if o is basic, the form doa , while being

equivariant need not be basic.

* .
+ Rga is the inverse image of o by the map Rg. BF PG

.,xp tangent vectors on P.For
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12, CONNECTION AND CURVATURE

Connections and connection forms.

Definition. Iet P be a principal G-bundle. Iet T(P) be

the tangent bundle of P and T1T the tangent bundle along the
fibres. A connection on P is a subbundle $& of T(P) which is
supplementary to T1T and which is invariant undér the action of

G on TI(P).
Thus if }Qp is the fibre of ¥ at p we have

= v b} for EG g G,
a) TP §€p® o ) g )

TR Xe) = 8 . An element of J£ 1is called an horizontal vector
Pg P P9

and Sﬁp is called the horizontal space at p.

1f n: TP} » TTT is the projection defined by the
decomposition T(P} = SC.GDT% we can consider 1 as a l-formon P
with values in O}_ , using the isomorphism of T1T with P x0f . We
dencte this l-form by w and call it the connection form {of the

connection).

Thus the form w 15 defined as follows. Iet Vv £ Tp(P). Write

v = leB h with v, ¢ VP, h g &tp . Under the isomorphism of VP

1

with q} N corresponds to an element vi in q} . Then we define

w(v) to be vy

If w_: T (P} » qy is the value of w at p, note that the
P P

K lof w is #_.
erneop P
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The connection form w satisfies the following two

conditions.

1) If xo -is a vertical vector at P, w(xo) is that element
x& of ca. whose associated fundamental vector field a(x;) takes
the value Xo at p.

* . =1
2) (Rg) w = (Adg’") (W) .

These properties follow immediately from Proposition 1il.l.

Note that the second condition means that w is an equivariant
l-form on P with respect to the adjoint representation of G on

its Lie algabra.

Conversely given a 1-form w on P with values in
satisfying 1) and 2} above it defines a unique connection whose
associated l-form is w. 1In fact define M = kernel of wP H Tp 4-%?,

where wp ig the value of w at p.

Often we do not distinguish between a connection and the

associated connection form.

If P' is a G-bundle over M' and h : P'+ P is a bundle
homomorphism and w a connection form on P, it is immediate that
* R \ N
h {w) is a connection form on P' , called the inverse image of w

by h.

The curvature form of a connection.

let P be a G-bundle with a connection. ILet p : G -+ Aut(F} be

a representation of G. If o is an equivariant p~form (with respect
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to p)., the form o oH, where H : T(P} + §¢. is the projection
onto with respect to the decomposition T(P) = 5¢@ T
is an equivariant form which is clearly basic. (Note that if
xl,...,xp are tangent vectors at point of P,

ac H(xl,...,xp) = o(H xl,..., H xp) where H 1is the pi:ojecti.on

on to the horizontal space}. We define

d\j(d.) = do o H,
i.e., dw(d) is the ba_s:i.c form of degree (p+l) associated to 4.
Definition. The 2-form dw(w) with values in. 0}.18 defined to be
the curvature form of the éonneqtion. It is denoted by Q .

Remark 12.1. 1) Q(X,, X,) = dw(mX,, HX)) (by definition) whare

X x2 are tangent vectors at a point of P.

1'

12.2. The curvature form is a basic 2 form with values in Cg, .

equivariant with respect to the adjoint representation. As such it

can be identified with a 2-form on M with coetficients in the wector
bundle assoclated to the adjoint representation. (This bundle is called

the adjoint bundle of P).

Proposition (Structure equation} 13.3.
We have (I = dw + %[w,w] where § 1is the curvature form
of the connection and w the connection form,
’ . 1
. = + =
Proof. It suffices to prove that QX ., Yo) dw(xo.Yo) 2[W.W] (XO.YO)
in the following 3 cases 1) X, Y_ are both horizontal vectors

2} xo,'Yok,are both vertical 3)_'_)(0 vertical and Yo horizontal..
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Casze l. xo, xo both horizontal. Since w(xo) = w(!o) = 0, -
1.
we have E[w,w] (xo,!oj = 0, Hence

1p 1
(. Y ) = Qw(HK , HY) = dw(k, ¥ ) = aw(X . ¥ ) + el &, v .

Case 2. xo. Yo both vertical vectors at p. The proof is similar

:to that of the Maurer-Cartan eguation. Let A,B ¢ 0} be such that,

if X = g{A), Y= o(B) be the associated fundamental vector fields
on P , we have X(p) = xo' Y(p) = Yo . Then w(xo) = A, w(!o) =B,
since o[A,8] = [0(d), c(B}] , we have w([x,y]P) = [A,B]. Note that

]_ .
Slwiwl & . }foi = [wix_), wwo)] = [A,B] .

Now, since H xo =H Yo = (), one has n(xo, Yo).vﬂ 0.

On the other hand,

dw(xo.' YO-) = xow(!) - Yow(x) - w([x,y]p)

X B - Ya- w([X,Y]p)

-{a,B] (as B and ‘A are constant)

1
- .2[w,w] (xo, Yo)

Case 3. xo. vertical, ‘IO horizontallat p. Let A and X be as
in case 2. It is easy to see that there exists a neighbourhood U

of W(p) and a horizontal vector field ¥ on :rr*]'(U) invariant under
the action of G and such that Y(po) = Yo' We then have

[%x,¥] =0 on n—l(U). In fact the vector field associated to the

l-parameter group 9 = R is X and (cpt)*(Y) = ¥. Hence the

exp (th)

Lie derivative ax {¥) is zero which means that [X,¥) = 0 {see

Theorem 6.5 ).
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Now, since H(xo) = 0, we have ﬂ(Xo, Yo) = 0.
On. the other hand
1 .
dw + 2[w,w]-= XOW(Y) - Yow(x) - w([x,Y]p) + [w(xoi, w(YO)}
= 0
since w(Y) = 0 (Y being horizontal), w(X} = a, [X,Y}p =0 and
w(Yo) = 0. This compietes “he proof of the structure eguation.

Remark 12.4. If X and Y are horizontal vector fields, we have

(%, ¥) (aw + %[W.WI) {x,Y)

XwlY) - YwiX) ~ wx,¥] +[w(x), wiy))

-w[X,¥] since w(X) = w(y) = 0.

Thus the horizontal bundle K is integrable (as a subbundle of
T(P)} if and only the curvature form is zero. A connection with
curvature form is zero said to be flat. The curvature form measures

the obstruction for the horizontal bundle to be integrable.

Covarjant differentiation of forms with values in associated vector

bundles.

et p : G+ AUL(F} be a representation . Iet o be a p-form
on P with values F, which is a basic form of type p . We define
a bagic (p+l) form, dwa + of type p by dwu = do © H., Thus
dwa(xl,...,xp+l} = da(Hxl,...,pr+1) . The form dw is the covariant
differential of o with respect to the connection.

We shall now give an explicit formula for the covariant

differential. For this we observe that p: G=>Aut F defines a linear
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map p': CF » End ¥, where End F is the vector space of

endomorphisms of F, as follows. If A & q}, v € F, we define

EA)v— v
g '{Alv = lim —Q—L%LL——E V.

t
t+0

The map p' may be viewed as a bilinear map, still denoted by p',
pt: q} x F > F.

Proposition 12.5. If a is a basic p~form of type p . we have

dwae = da + w A o o

where the exterior product is formed using the bilinear map
o' G} x F -+ F, noting that w is a form with values in Cﬁ- and @

a form with values in F.

We shall not prove this proposition here. It may be proved by

a method similar to that used in the proof of the structure equation.

Bianchi and Ricci identities.

Proposition (Bianchi identity) 12.6. let I be the curvature form

of a connection w . Then dwn = { (The covariant differential of

the curvature form is zero).

Proof. We use the above formula for the covariant differential,
In this case ¢ is the adjoint representation and the map
p':, 0f xCOf + O is given by (A,B) » [A,B]. We have
) = 4 + [w, 0]
1 1
= d(dw + E[w'w]) + [w,dw + ELW'W]]
1
= Glaw,w] - 30w, awl + [weaw] + 2w, [w,wl]

= %[W.[ w,w}]

0.
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We have used relation i), ii} on p.50 and the relation

dla,8] = [du,Bl + (-1)P [q, @], for a p form g .

Proposition {(Ricci identity) 12,.7.

If a is a basic p-form

of type p , we have

2
dwa = f Ap,c .

We omit the proof.

13. CHERN-WEIL THEORY

let G be a lie group with Lie algebra OJ_ . let Q be a

homogenecus polynomial of degree k on + ¥which is invariant

under the adjoint action of ¢ en G} + (For example if

G =6Lm, C), & =%Ln, ©) , we take, for A €0fd(n, T,

Q(A) = trace A, O{A) = det A and more generally

th N . .
Q(d) = k elementary symmetric function of the elgen-values of Aj.

Let G be a principal G-bundle with base M. Iet w be

a connection on P and § its curvature. We shall now define a

closed form of degree 2k on M, by ‘substituting’' the curvature form

in the polynomial Q. The form 0 being a 2-form on P with values
k
in 03— , it defines a 2k-form with values in ®%= R ... ®O}

(k times} . Composing this with Q, which can be considered as a
k

linear map @0} + IR, we get a basic 2k-form o on P, which is

invariant under &, since 2 is basic and Q is invariant under

the adjoint action. Using Bianchi's identity one can show that g i= a

closed form. Now o can be considered as an {ordinary) form of

degree 2k on M, still denoted by o ; the form ¢ is closed and
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hence defines an element of the de Rham Cochomology group

2k
HDR (M .

Theorem 13.1. The class of g in HS;(M) depends only on the
poelynomial Q and the bundle P and not on the connection w.
Proof. {See Reference [3], page 226, Remark }.

Since homotopic maps induce the same map on de Rham cohomology
groups (Thecrem 4.2 '}, it is enough to show that, given two
connecticn forms w; and w, on P, they ate inverse images of the
same connection form "( on a principal G-bundle P' over M', by
a bundle homomorphism P + P' whose projections onto M {maps from
M to M’} are homotopic. (Note that the curvature form of the

inverse image of a connection is the inverse image of the curvature

form and that substitution of the curvature form in @ is 'functorial').

We take for P° the principal G-bundle P' = P x IR on
* *
M x R and for.. ¥ the connection form T(p,t) = tq (wol¥(1-t)g wy
pebP,t e R and g: Px IR+ P the projection onto P. It is
clear that the inverse imacjes by the inclusions pr—ai{p,0) and
pi+ (p,1} {which are G-morphisms) of P in P x R are W, and v,
respectively and the projections of these inclusions onto the base

(namely the maps M-+ Mx IR, x + (x,0) and X > (x,1))are clearly

homotopic.

Remack 13,2, The element of HER[M) defined by Q is called the

characteristic class of P corresponding to Q.

R LA
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Appendix
1. Theorem (smooth partition of unit

Iet M be a smooth {paracompact) manifold. Iet

{u;}

iel be an open covering of M. Then there exist smooth

functions 9 - M-+ IR such that
1) cpi(x) >}0 for = e M

2) The support of the function P; v SuPp G, r is contained in U.

3) The family cf (closed) sets {Supp cpi} form a locally finite
family (i.e., given a point x g M, there exist a neighbourhood
U of 'x in M and a finite subset J of I such that

u ﬂUi-:ﬁ for i ;fJ.

4} z cpi(x) =1 for x e M. (Note that by 3}, for x € M,
iel
only a finite number of :pi(x) is different from zeroj.

. ’
2. Poincare Iemma.

tet M be a manifold . We say that M is contractible if

the identity map of M is homotopic to a constant map of M inte M.

(This means that there exists a smooth map & : R x M~+» M such that

&(l,x) = x, xeM and ${0,x) = xo, X € M where xo is a fixed

point of M.

Proposition. IE M is contractible then HﬁR(M) =0 for p 3> L

Proof. Note that the identity map induces the identity map of HgR(M)

p B
and that a constant map induces the zero map & (M} =+ EM for p >

and hence on HgR(M) for p 3 1. Now the proposition follows from the
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Theorem 4,2,
Remark. Thus every closed p-form {p l) is a coboundary, if
M is contractible.
Corollary. (Poincaref Lemma. ) HgR(IRn) =0 for p 3 l.
Proof. m“ is contractible. Take @(t,?) = t':?, for ;? E:IRn

A lemma on inteqral manifolds

et F be an integral subbundle of T(M) . If ¥ and 2
are integral submanifolds of F and if there exists a point

®x £YNZ, then there exists a neighbourhood V of x in M

such that viRYy = VvV Nz,

This lemma has been implicitly used in the definition of

foliation (p. 38).
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