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BOUNDARY VALUE PROBLEMS AND FREE BCUNDARY PRORLEMS
FOR QUASILINEAR HYPERBOLIC~PARABOLIC COUPLED SYSTEMS

Ta~tsien Li¥, Wen-tzu Yu’#, and We-shi Shen*=v
1. INTRODUCTION,.

Hare <4 handle with so-called quasilinear hyperbolic-parabolic couplad systems which
often occur in applications. Roughly speaking, in this kind of system a part of aquatlons
formulate a first order quasilinear hyperbolic systsm with respect to certaln unknown
functions u = {u1,...,un}. another part of aquations a second order quasilinear parabolic
system with rispect to the remainder of‘unk_awn functions v = {v1,...,v_}, and thase two
parts are nonilnearly ‘coupled each other. For instance, the syatem of motion for a
compresaible viscous, heat-conductive tluid[1], tha systam of radiation hydrodynamics[zl,
the system of motion of visccelastic material:"l atc, are of this kind.

The initial value problem with smocth initlal dara has been atudied by several
authors. For aexample, for the system of motion for a compressible viscous, heat-conductive
£luid in 3=-dimensional case, J. Nhsh[‘] and N, Itaya{sl[sl have proved tha exiastence and
che uniqueness of the local smooth sclution. Recently, A. Matsumura and T. Nishida{7]{14]
have evan proved the corresponding global existence thecrem for the samall initial data,

For the quasilinear hyperbolic-parabelic coupled system, the boundary value problems,
especially the free boundary problems ars more important in applications, because -he
latter is concerned with detarmining the corresponding digcontinuous solutlon which can
describe, for instance, the behaviour of a fluid contalning a radiation shock in radiation
hydradynamica, But for the boundary value problems, especially for tha frse boundary

problems, we can only find certaln resulta in some spaclal cases even for one-dimensional
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cace {for instance, A. Tani[a] has discussed the mixed initial-bcundary value problems for
the gystem of compreseible viscous, heat-conductive fluids in a ¢ylinderical domain with a
special Dirichlet boundary condition: the velocity : = 0 and the aksclute temperature
T = T1(t,x)a A. V. Xazhikhov and V. V. Shalukhin[gl have considered the corresponding

one-dimensional initial-boundary value problem with the boundary data:
u(t,0) = wlt,1) = Tx(t'n) = Tx(t,1) =0, t 20y

Moreover, A Tani[15] has also studied a free boundary value problem for compressibla
vigcous fluid metion etc.)s So it is worthwhile to carry out a systematic research on this
subject.

In what follows we ghall concentrate our attention on the boundary value problems and
the free boundary problems for the following general types of guasilinear hyperbolic-
parabolic coupled systems in one-dimensional case:

I:

n du da
! t,,j(t.x.u,v)[rti * A,y ) 3] = uteauvv ) (B ) (1.1
=1

2

3 3

5% - a(t,x,u,ux,v,vx) -—% = b(t.x,u,ux,v,vx) ' (1.2)
x

where v = (v1,...,vm)T is a vector function and a is a giagnnal matrix:
a = diag(a1,...,am). On the domain under consideration, we suppose that
det|C£j| #0
and
a, >0 (A=1,..0,m .
In thig system, (1.1) is hyperbolic with respect to u = (u1,...,un)T (under the
characte}istic form with the characteristic directions g% - Az (2 = 1,00a,nt), (1.2} i3

parabolic with respect to v and (1.1}, (1.2) are nonlinearly coupled each other,
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. .o'n - . . E Y Tt
TR "?1 -C'Ij(t.x.u.v)[ﬁi + Agteaxsu, v, ) 3;-1)-
-
- (1.3)
3
C‘(t.x.u.v)(g-:' + l'_(t.x,u,v.vx} f’;] + u"(t.x,u,v,v*) (£ = ¥, .00,m)

2
g{ - alt,xe,v,v) _a_; = BlE,X,uv,v,) _ (1e4)
1%

in which the coefficlents a and b don't deper.! on L but on the right~hand side of
(1.3) there i3 an additional term which denotes the directicnal derivative of v along the
tetic directlon 5= = A

characteristic rection at | 1

Our goal is to discuss varioua kinds of boundary valus probleas . and of free boundary
problems for these systems in a class of smooth functicna or plecevise smooth functions and
give a condition of local solvability In order to obtain the corresponding existence and
uniquensss theoram. The rssults obtained by us can be applied to many practical cases and

imply an affirmative answer for a conjecture given by C. M, mfcm-ul about the

incomplete parabolic damping.

2. EXAMPLES.

1. System of motion for a compressible viscous, heat-cornductive f£luid.

1In one-dimenslonal casa the system can be written as follows

%‘E*“?r:"*’%- (2.1)
SRR day 13

BroelRG@ -8, (2.2)

a7 i 1 ) (,\ 3‘1'.'} . B [h)z ’_ps_ﬂa_u (2.3)

LR T o'rs,!?; T’ T oS x 5y ax

whare +* : time, x i1 spatial coordinate, ¢ : density (P > 8}, u : velocity,

3=

p t pressure, T : absolute temperatura (T > 0), $ : antropy, N : coefficient of
viscosity (u > 0}, A 1 cosfficlent of heat conduction (A > 0), f : outer force which is
a given function of (t,x), and p,5,5,A are given functiona of (p,T).

It is easy to ses that in this coupled aystem (2.1) is A aingle first order
(hyperbolie) equation for p, (2.2}, (2.3) is a sacond order parabolic system for {u,T).
So, this system is of the following form of quasilinear hyperbolic-parabolic coupled

systems:

n My da
jI1 :lj(t'x'u'vl[ﬁif *l(t""“'v"%)‘#] - ”‘[taxt“ovo'g%] (*,-_‘,---,n) '
' (*)

v

It l[t,x,u.-g':%,v) -':—,2‘—‘2’- - b(t,x,u,'g;":',v,-g-z) .
in which lg and 1, are affine functions of r » -;-:, a doesn't depand on g__: but b
doas. Obviously, (%) Lis a special case of the system of type (1}.
2. gystem of radiation hydrodynamcis.

In order to determins the motion of a fluid with very high temperature we have to
consider the hydrodynamics in the presence of a radiation field. For the one-dimensional
unsteady flow, under the diffusion approximation the corresponding system of radiation

hydrodynamica can be written in Lagrangian representation as the following conservation

laws

Ju Ap + Py}
+ = 0
Tt x ’

2 4]

u v
e + o4 12 ) . ulp + py) - 00 5} i

9t éx

in which
T= % : specific volume,

P = RPT : pressure, R = constant > 0,

-g-
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Py -%'1'3 [ . - . 4—0-. 2 1 light spead, J = constant > 0,
e = :TT‘ i inner enargy, Y i1 adiabati: exponent,

E, = 3Pv - a'r‘ t radiation enargy,

D= ;’—c, t » ar® (A, 4 > 0 constants): Rosseland mean free path.

Taking {u,P,T) as unknown functions, the system can be written as

3 3 2 * 16 0 _3
fﬁ'[b—:-+p/ﬁri}+p{ﬁ+a/§5£]--o{vta—zr)%E-. (2.4)
Jew (3 Py, prdm Juy a3 31
R'r[at ofRT 3B) « (57 - ofRT ) = atrR ¥ 5 ST g {2.5)

3 2
R 16e Ty 3T _ 16AT 34z 3°T _ 18Ad _3+x 3p 3T
7-1'ca]a: x T 3xz':l T ¥x Tx
(2.6)

16 AT 2+a{3'r~2
'

160 _4 g
3 (3 + ader +(3=r +am‘)an-o.

It is clear that {2.6) 1s a single sscond crder parabaelis equation for 7, and (2.4),

{2.5) is a first ordar quasilinear hyperboliic system for ¢ and u (with the

characteristic directions % - k‘ 2™ gnﬁ). then (2.4)~{2.6) ls also a spacial case of
r

syatem {*).

3. System of one-dimenslonal viscoelastic matarials of the rate typa

ut-vxsn,

(2.7)
Ve * ptu)x " Vax
and gystam of one-dimensional thermoviscoalastic matsrials
ue - v“ =0,
v +pl{u,d =v
t x (-3 (2.8
v2
o Nv] - - @ r
[e{u,?) + 3 ]t + [plu, )wx [w*]x X ey > 0}

are both a single firat ordaer {hyperbolic) equation for u coupled by a parabolic equation

or system respectively.

System of one-dimenaional thermoelastic materials

a = v_=0
(3 x ’

v +P(“ta) =0, (p* ¢ 0) ,
£ x ° (2.9}
v2
[a{u,B) + T * plu, vl =8 (e) > Q)
is a hyperbolic system for u and v coupled by a single parabolic equation for 8.
These systems are of the form (¥).
4. System of a model of nerve impulae propagation
u, = r{x)uxx + Fotu,w) .
(2.10)
L Glu,w)
and syatem of reaction-diffusion
2
2 X8y rum
b {2.1%)

v
= glu,v)
are cbviously of the form (*).
5. Morsovar, cexrtain highar order eguations can be alsc reduced to a hyperbolic-

parabolic coupled system, for instance, we consider the following problem (see J. M.

Groenberg[w]' J. M. Greenberg, R. C. MacCamy and V. J. Miz-lln], also asea J. L.

T...tonl“z] )t

2 2 2

0 gy 3T 3 du
——Z-E(n—x]—z—lrt-—-z-o, o<x<t, £>0 (A>0),
14 Ix dx

w(0,t) = u(1,e} =0, (2.12)

du
u{x,0) = uotx). R u1(x) .

-



Taking
du Iy
Ve we R

as new anknown functions, this problem is equivalent to the following cone

2
3 2 3 3w )
x
vid,t) = w(1,t) =2, (2.1}

u(x,0) = un(x), wix,0) = “6(’"' v(x,0) = ui(x)

-

in which the first two'equationa formulats a hyperbelic system for u and w and the last
one s parabelic for v, so this system le of the form (*), too.

Now we shall point out that in many cases by means of adding certaln new unkncwn
functions some problems for system (*) can be squivalently reduced to a corresponding
problem for the systea of type (II), for which the existence and uniqueness thecrem seeus
somewhat sasier to prove.

Example 1: Consider Cauchy problem:

u -0
‘{ C,_j(t,x.u.v)(ﬁi + X‘ft,x,u,v,v,‘} 3?:1) = Ul X0 e, ), (£ = 1,,04,0} , (2.14)
j-'l B

2

;% - ate,x,u,u ) %—; » BlE,xun, Vv, “(2418)
X

t = 0:u=@{x)}, v ¥x), {2.186)

tn which '»\t and ul(l = 1,,.0,0) uare affine functions of r = -gl. Set
x
du

v =5t

differentiating (2.74) with respect to x and using equation {2.1%), we can prove that

{3 = Treee,m)

g, and w waciafy the follswing Cauchy problem

-7

n du du
121 Clj(t,x,u,v)[ﬁl+ A‘(t,ﬂg“lvtvx) '5;1) d uttt,x;uuvuvx) r

n dw Iw
- [} 3
121 cf,j‘t'xf“f")[ﬁi + lg(tl"l“uvr"x) };i) - Cllt:x'u.w.v)(a—: + ?l ﬁ)
+ il(tlxl“lwlvlvx)l (L= Teeva,n) 4 {2.17)
2
'?Ev - alt,x,n,w,v) :_;_r- b(tlxlul‘ﬁ"ﬂ’,‘) ’
td

tE® 0 u=F(x), wmyg'ix), v = Px)
in which

- au,_ n 31\1 . -
:l‘tfxl“l“lv) - (-E-E- »- 121 t‘j '5?' wj}/l(t,x.u,u,v). {l‘ denotes };] '

T X 3u" ‘f au" iu‘ v n Hz n 33\’.
W (t,x,u,w,v,r)} = + r— - b re o
g LT %0, W,V T“x . Evk v x jz‘ :!-jwj( X + k£1 “k \l'k
2 S n 9 n ¥ 14
2 v 2 13 $4 3 Xk 3 2
s o ~ 351 (ot R~k s o -2 3.1 - Ty, - 2

are determined by the coefficients and (Cjk) ia the inverse matrix of “lj)'
Conversely, if (u,v,w) is tha szolution of problem (2.17), then we can prove that
{u,v}) is the solution of the original problem (2.14)-(2.16) and w = g%.
Example 21 Taking
b ™

as an unknown function, problem (2.13) is equivalent to the following problem of type (I1):

8-




3u vy v 2y
RIS ol ﬁ-x(fg-!(d}l,.-ﬁ--!(vu-’\a—i'0 .

X

v(0,e) = v(1,2) %0, _ : {2.18)

wlx,0) = u _{x), wix,d) = u'(x), s{x,0) = u;{x), vix,0) = u'(x) B

0 4

Here, we can find cut that on the right-hand side of the third equation, there is a

directional derivative of v along the characteristic direction :—:— = 0 and that

(du, v 2ay
X’ ' T

Hence, in order to axplain our resuclts and methods, in what follows we shall take as

a=1, b=Eluls don't depend on

an example the gsecond initial-boundary value problem for the system of type (II}. All
other kinds of problems [such as the Cauchy problam, the first inicial-boundary value
problem, the initial-boundary valus problem with Interface etc.) can be discussed in a

gimilar way and the similar results for the system of type (I) hold true, too.

3. SECOND INITIAL-BOUNDARY VALUE PROBLEMS.

On a rectangular domain

t
(3.1)

¢} 1 x

R{S} = {{t,x)j0 €& 0 ¢<x< 1)

wa conslder the sacond initial-boundary value problem for the system of type (I1):

n I 3y 3 3
T : - Y ¥
3:1 :Lj(t.x.u.v)(r& + l,_ft.x..t,v.vx)xl) C,_{t,x.u.v)(ﬁ * ll(t.x.u.v,v,‘irx]
(3.2)
+ u,_(t.x.u:\hvx). (t=1,...,n} ,
vy azv
" a{t.x.u,v,vx)—'i— = blt.x,u,v.v‘} . (3.3
3%
Without leoss of generality, the initial conditions may be written as
t=0:u=yvald, (3.4)

-G

Morecover we can suppose that
af{b,x,0,0,0) ¥ 1 {3.5)

(Otherwise, use the transformation of independent variables

- X
x=J — )
i}

Ya(6,8,0,0,0)
and that

b(0,x,0,0,0) =0 , (3.8)

.{;-

. £
£g4f0x0,0) 26 M =§ s 3.7

3

(to thls end, it is sufficlent to introduce tha transformation of unknown functions -
v = v - b(0,x,0,0,0) ,

n

u, = 121 Lyy00.%,0,00u,) .

Under the hypothesis (3.7), the uy (2= 1,...,n) are called the diagonal variables.

The boundary conditions are as follows:

on x =1, u - Gr(t,u.v) {r=1,¢e.,h; h€n), {3.8)
3y
5; = !‘+(t.u,v) 7 (3.9)
on x =0, u§=é§(t,u,v) 82k +1,.,.m k »0} , £3.10}
dy
a—; = F_{t,u,v) . {(3.11)

Here the boundary conditions for v are of Neumann type, so this problem is called the
second initial-boundary value problem.

We assume that the following conditions are satiasfied:

-10-
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(1}, Conditions of srisntablliey:

(!- ‘,lcllh J ' (3.12)

1{(0,1,0,0.0) < a, 1.(0,1.0,0,0) >0 o h ot Tiaeen

(r = 1,000,k

=k ?;---.n} . {3.13)

Af(o,o,o,o,oy <o, 15(0,0,9,0,01 >0
Az usual, the characteristic directions are cailed departing characteristic directlons on
the boundary, Lf as long as time increases, they go towards the interior of the domain.

t

Thus, on the boundary, the number of boundary conditions for u is equal to the number of
departing characteristic directlons. For example, on % = 1 the number sf boundary

conditions for u is equal to h, the number which appears in (3. 12).

(2) Conditions of compatibilityy

cr(o,u,m =0, 61(0,0,0) =0 {(r=* t,uss,h) 8=k + 1,.00,0) (3. 14)
G n QGt :
3-‘,_-"_!0.0,0) + jI : to,o.u)ui(on,o,o.o) = u_(0,%,0,0,0 ,
-1 Yy ‘
(3.15)
), n ¥,
‘-t— {9,0,0) + 2 '5:; (oooto)ujtoropu:uru) - ui(oloaotul .
=1 .
{r = t,ene;h3 =%+ 1000,m)
P*M,U,O) -0, (3.18)

(3) Condlticas of smoothneas: the coefficients of the systam and the boundary conditions

ara auitably spmooth. For aimplicity, we omit the detail hare,

=-11=

By means of certain a priorl estimations for the solutions of the heat equation and of
the linear hyperbolic system, using an iteration method and the Leray-Schauder fixed point
thaorem, wa have proved the following

Theorem: Under the preceding hypotheses, suppose further that the following

conditions are gatisfiad:

%
i, =g (0,0,00] #0 (rx = b,
x

.. (317
36; ‘ :
det )., - 3;;7 {0,0,0)} # 0 (&8 =k + 1,.0em)
L. the boundary conditions may be rewritten as -
on x= 1, w - Hr(t.u.,v) {r=1,¢0e,ht s =h + 1,.04,n)
(3.18)
3
ﬁ - !+(t,u.v) .
on x =0, u - na(t,ue,v) (2= 1,000,k 8= %k +1,004,n)
{3.19)

]
-5%- F_(t,u,v) .

.
then, the second initial-boundary value problem admits a unique local classical solution on

R(S) where & » 0 is suitably small.

4. IDEAS OF THE PROOF.
1. A prior!l estimations focr the solutions of the second initial-boundary value

problem of heat equationsi

2
v 3¢
T‘:-az+h(t'x) ’
.4
t=0sv=0, ’ (4.)
x =0 :%‘:—‘-w1(t)| x =1 :%-wz(t) .
a
3a

Suppose that on the domain R(S)), », (€) €C', ¢,(0) =0 (i=12) and b, e ?
(0 <a < 1), where

-]

— e -3

"T#" -



cB,u = Holder space of Punctions f such that f is H31lder continuous with respect

to t and to x with the exponents B and o respectively {0 ¢ a, B < 1),

then it is well knn-n[13] that problem (4.1) admits a unique classical solution + on

R{E))  with
€t 1 t
vie,m) = [ [ Nie,xit,E0bit,§)afat + [ B(E,x1 T, 109, (T}AT
[+ 0
t
- f N(t.er,O)v1(T)dT .
0
. £t 1 e
3
g-! te) = f &L’s:‘—r'—ﬂh(f,hdﬁdt . -‘l‘ﬁ-uf,:—"ﬁpz(r;ax
¥ 0 0 0 :
E oaNge, %y 1,0)
-f ——JE:-L—— W‘(?)d‘l' . (4.2)
0
Bzv t 1 Ozu t
St = [ [ =ttt O b7, = bT,x))akdr + [ Ne,xrT,08,008r
ax 8 0 Ix ]
x

= [ Wexir0pinar,
9

t 1 1
g{ te,x) = [ f ;{- (oo T,E0(BT,E) - bie,£31a8dT + [ N{t,x;0,8)b{t,E)af
L I ] Li]

t t
+ [ wepnr, g nar - [ onex 05, (nar
[} L]
in which

4
nbim =5 lm

{1 =12,
-

MeoaT,E) = 1 (G (et + E) + G te,xT,20 - £3) (4.3}
poea 0 0

is the Neumann functisn for the second initial-boundary valuye problam of the heat equatlon
and

[x = !22

- <1 4.4
Gple,xiT,8) = — 8 Yo f4-4)

(e = T)

is the fundamental solution of the heat squation.

-13=

2+0

Moreover, on R(GO) vec {0 ¢ @< 1), where

2 1+a 1 -]
] 3 3 3 3
- [tlf, si. 5%, ;—% continucus, 55 ec 2
x

-2 3 ’
g . g{. —e PLI (4.5)

on wib), v8 0¢85« 60, introduce the following norms:

1£1 = sup
(t,x) & RLO)Y

lfltox}l L3

B If.(l'.1,x)-f(t2,.x)| [f(t.x1]-f(t,x2)|

Htm ) {t ,x?u?t *®) lt, =t IB S (t,x ;mft x_} Ix,=x_ 1% o e
LM 3;5)2' 172 ‘ 1e'n(:$)2 172
a

% = nf[:] +1lU8] (0<a, BSN .

Using the preceding expressions and the property of the fundamental solution, after
a long calculation we have obtained the following three a priori estimations on
R(S) wé, 0¢ 8« 60:

Fl 1 1
T bl gz bel s g1 Co (F21D0 4 Ipl) or dud < ¢, (62 15t + 8851 (4.7

2
v 3%y i v
20, Ivl1 umu Iyl + I-azl + Ia—zl + 5/2 [3;]

£ t
x

5 {4.8)
P yh .

< cz(lbl + & nx[b] + & wl1) (le1 = led + 1320)
1+a 2
2 3y a_dv a 3%y, a

3, Ivl: ] lvl1 + Ht qs? + H qﬁﬂ + H {ale < Cs('h' + H (bl + lvl1) . (4.9)

in which Cl (i =1,2,3} signify constants depending only on 50.

2. A priori estimations for the solutions of the following initial-boundary value

problem of first order linear hyperbolic systems:

-14-



n au au
2 3
121 ty e (et + Ayt ) @ gyt (g« Aptenn gl) + uycem

(= 1,.00,m) 4

t=0;u=20,

(4410}
x-1sEcu-.,nu-¢m {r = 1,0ss,h 1 h €n) ,
3= L
x =901 3 L., (t,0)n -t.(tl A=k +te,m k20,
yuy 83 3
in which v = v(t,x} is a given ¢! tunction and we suppose that on R(Go)
ﬂ‘ﬂcljft-ﬂi L (4.11)
and
Tpgllom) = 80 0 {4:12)
We suppose further that the following conditicns are satisfled:
1*, Conditions of orienkability:
on x =1, lr{:,'l) <0, l'(t,n >0 (T " eue,iy B =h + $,000,0) ,
{4.13)
on x =0, Ait,0) €0, Aoie,0) >0 (2= t,0ne,ks 8 =X+ 1,000,0)
*. Condiclons of compatibility:
v.(01 =0, ¥0) =0,
™1,vee,h
0, u T 0,0 + Ao, Fon) v wton = b, (Tl ) W

v 3y -
:5(0.0){3: (0,2 + A.(0,0) ¢ to,m) + ug(0,0) = ¥:(0) .

3*. Conditions of smoothneas.

Usually, for the initial-bounlary value problem of first order linear hyperbolic
systems, the term on the right-hand side of squatlons should be assumed to be continuous as

well as lts ficst derivative with respect to x. 1In the present case, since v(t,x) is

1

3 2
a C' fuanotion, ﬁ + J\,'(t.x) ﬁ is only continvous. But, noticing that it is the

diractional derivative of v along the characteristic curve - l\llt,x), we can

&

de
3 ?

integrate by parts this temrm :!.('5% + At -5:{) when we integrate the aystem along the

characteristic curve, then we can prove as usual that problem (4.10) admits a unique

1 1+B 1 3¢ 3t 8,8
classical sclution u on R(ﬁo) with u8c or uec = {rjrec’, Ter R ec }

under the different hypotheses of smoothness respectively.

Introduce the following classes of functions:

1 '
Ty = (s Bgr vy WA 1;(1:,0)} '
3z,. A a l;
gy 3y Sy 3 1
A O i R = Y E'-tlc_,dl} ’ t4.15)

r.ru{“zu duy 1 1y
2° 07 e e B e, XTe07

(R, = 1,000,07 T = Y,00s,h) 8 =3+ 1,.4.,0)

and the following norms of functions on R(&} (0 ¢ & < Go)

Tal

Ju du
1 Iul+lﬁl+l};l,

* u du
Iu'1 - lul + l-azl + tI-EI .
(4.16)
Ll
hat g = tul + uf[ﬁ] * uf[%—“;] .
&
O MU IR O I e - DI
whers
ey = alin + wbin

{4.17)
and the constant £ > 0 will be sultably chosen later on. By means of the integ.ral
realations satisfled by u{t,x} and by %—:-, -g% respactively, after a long calculation we

have established three a priorl astimations on R(§) ¥ 50 >3 >0 as followas _
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1o ] Tul € (1 + xié)lvy'l "f“"g * :15)rlvl * K1d—|ul (4.18) - where A By fi = 0,1,2) are pomitive constants to be chosen.later with

€ < < <
A A‘I Az, Bo B1 32-

. . 0
in which constant ¥, depends only on the nora [ 1 on R(§ )} and ' For any (a,v) @ ] (§), according to the preceding points we can define an iterative
Hy = 2 “ sup . It’;(t.x) I . ’ L ' operator (u,v) = T(u,v} by means of the following linear problem
; 21, 400,00 :
(e,x} & mﬁo:

. < apy
~ ~ 3
| 321 :ij.(t,x,u,v)(ﬁl+ Altoxd, v gt )

_ - - 8 i .

30, . -lul1 < (1 + 4 €+ xz.i W+ K, + 325)(1 + Ivl1) - (4419) .
: ‘ e B T~ o~ 3yl ~ ~ g1

. 'F;(LL\!.‘N(}%*‘ ll(tlxlulvlﬁJ%) + u!’(elxlulvl%J {4 = Teeaosn)

provided that lt'u.t ire #Slder continucus with respect to . t with the exponent B, in

3 . ~ : ~ 2~
. . v 3 . N ) .-~
“which d = 1:1:“ (-\r10,1).,1§(0.0)}. X, depends only on the norm. II'OS on Rtﬁul ) '5-;1 - ;—; - h(t,x,u,v,%’-‘;-) + [l(t.x.u.v,%] - 1]:—; .
r . 9 ®
X+t€§<n
and K, depends cnly on the norm T4 ana H:[?ol on R(§,). - ) - . . ta=0: u=g,vm=0, . (4,22}
.ttt s e2ate s e 8hut iy e m s RSO M ) (4200 xm b T (e L D, = (e,
143 0 ) 2 t 2 3 f*8 . gu1 ) ' , rlle ’ 3 A N ,vle, 1))
provided that all the functions in Tz are Holder continucus with respect to t and x + 1%1 (er‘t:h;(t.‘l).\?(t-ﬂ - Grj)\;j(t,n E Wt(t). r= t,.ss,h ,
with the exponant 2, whers Ky dapands only on ll'zi and 33[1‘2] on R 50).
a - -
3. Introduce the following sets of functions on R(S): }% {t,1) = !’+(t.u(t.1),vtt,1-)) = v lt) ,
1 1 2% ] ¥ vy > - ~ -
Lt ={umviluec, vec, —Sec, atox =vox =0}, x=01 ] T340 & 00aLE,0),9(x,00 uy = & (t ult,0),v(¢,0))
Ix =1
142 3 . . .
- + N -5 H A=
21(5) - {avlaec z’ vac z+u' wto,x) = vi0,x) = 8, 3 (c_j(t.o,u(t,n).v:t,on ﬁj)uj(t,O) va(t), A= k+1,000,n ,
{(d.21})
3u By v ~ > -
2 o = By(0%,0,0,0), F¢ (0,00 = o}, T (£:0) = F_(E,ule,00,v(e,0) 2o () .
I8 = ftu,vila,w o [ (8, €A, tul] <a, t® <y, For the tims being, we suppose that
"z
e Pt
| (0,0,0}] < 1 | (0,0,0)] < 1
< ] < T, ‘YO ' 0y . (4.23)
et €3, vl <B, kel <8}, 4oy o9y joy B
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Then, uaing the preceding a priori estimations, we can chcose a small constant ¢ > 0 and

constants A,.A ,A,r By .8,,B such that the opsrator T maps L(8) lnto itself, if

2 2
§ >0 is sultably small, Because E(G) is a nonempty convex, closed, compact subset of
the Banach space E.(G) provided the norm
327
l(u.vil. w dul, + kgl + I—=1
1 1 P
x
and T s a coatinuous mapping from I(ﬂ) into iteelf in this space, according to Laray-
Schauder fixed polnt theorem this operator (=1 = T(;.;) has a fixad point (u,v) which
is the sclution of the 'origi.na]. quasilinear problem on R{4). The uniquenass of the
solution can be proved as usual by means of the corresponding a priori estimations.
4. In order to finishk the proof, we hava to point cut that the contraction condition
{4.23} can be realized under hypothesis (3.17), Ia fact, under this hypothesis the

boundary conditions <an be written as (3.18), (3.19). Then, introducing a transformation

of unknown functions

E:. =1 (xu (4% %.se,m)

i
and maltiplying the £-th equation of {3.2) by 1,(x), where

Ii(‘) - .i
with L bi -1, lr - b‘ > D small enough, it ils easy to see that tha problma for

x¢b1t1 - x)

{3,v) satisfies the correaponding contraction condition {4.23) as well as all the

hypothesis of tha theorsm, so the theoram i{s proved.

5. SECOND FREE 3QUNCARY PROBLEMS.

O a domain
€ x = x{%}
R(&) = {{e, )]0 § ¢ €8, 0 € x & x(£)},

>

a1

0 1
whare x = x(t} 18 an unknown boundary curve, we consider the following second inltial-

boundary value problem with free boundaries (for simplicity, callad the sacond free

boundary problem):

n du d
3
jE‘I zlj{tf"tu:")['ﬁl + At(tvxautvf"x)a_xi) = Cl(t.x,u.v)(-r: + ;\l(t,x,u,v,vx)%-)

+ uzit,x,u,v,v,‘) (L= 1,.00,m) ,

vy azv
}t - “t'x'“'v'vxja_x'z - b“’-nxnulvtvx) ] (5.1)

t=0: u=vs=o,

x =0 ugmduttaum o tExk+ le,n k3>0),
v
I F_(tu,v)

x = x{t)s uw = Gr(t,x.u,v) (= ¥,eaa,hs h €} ,

[}
- Pt
and
dx{t)
= - D(t,x,u,v,vx). x{0} = 1,

which is an ordinary oquétion to determine the free boundary x = x(t) in the procedure of
sclution.

This kind of problem can be met in the motion of the fluid with radiation shocka.

We assume once more that the corresponding cenditions of orientability, of
compatibiity and of smoothnhess hold trus, Por instance, we assume

Atco,1,o,o.o) < p{0,1,0,0,0), Ag(o,!,u.ﬂ,ﬁ) > p(0,%,0,0,0) ,

(5.2}
AEln,o,o,o,O) <o, Ai(o,o,o,o,o) >0

(r = T,000,h, 8= h + 1,000,n7 £ = fo00a,k, =Kk + 1,000,0) &
Heare the essential Aifficulty consists in the presmance of the frme boundary curve, but,
using the transformation of independaent variables

- -_ %
t =t, K'm, (5.3)

the domain R(S} is reduced to the domain

wy

e

e



R(8) = {(E,xy|0<T €3, 0¢x< 1}
Czj(tmlu.v) = C,.j(!:.x(t)x.u.v) .

with fixed boundaries, now the coefficlents of the system and the boundary conditions

deapend on x(t} such that they are certain cparators of (u,v), That is to say, we obtaln ] x'(t)x]/x(t)
- ]

3
Az(t'xhhv) = [lz(tfx(t)xﬂhvl F::' * x(t)

a second lnitial-boundary value problem in Functional form as follows (whara (t.x) is

again replaced €, x
¢ P by (e Cllt,xlu,v) = Laltxitix,u,w

n 2 3‘:1 2 ) (5.5)
ad
3-21 c"j‘t'ﬂu'vi[rti * al(t“'“'v)h ) - zl{t'x!“'v)[ﬁ * ll'-“""‘“'ﬂa_xJ Hg(t.xlu.v) - H;(t,xtt)x,u,v- %v§ * x:t)] B
= 1,000 B 1
* "l“'x!""l (4= Toeeesm) alt,xlu,v) = ale,x(t)x,0,v, %% . ;TET)/letJ .
. alt,xlu,?) 331 ® bit,x]u,v) , 3v 1 x'(t)x v
* ot blt,x|u,vi = blt,x(t)x,u,v, " §T€T) S %
t=0: umv=g, {5.4) S ftlu,v) =6 (t,x(t) 0w ,
éaitlu.v) - 5a(t.u.v} ' (5.6)
x=% u, = Gt!tl“'ﬂ ! F {ela,w) = F (t,x(t),u,v)xie) ,
P_(tlu,v) = P_{t,u,v) x(t)
3
- rtley ,
. and x = x(t} ims defined by
x = 0t a. = Gi(tlu,v'l '
L) - ple,xte) yutt, 1w, 10, B2 (60 o) (5.7

3
r: - r_ltlu,v) v

0) = 1 .
whare x(®

For the second initial-boundary value problem in functional form wa can prove that the
situation is similar to the second initial-boundary value problem, then we can obtain the

corresponding condition of solvability for the original second free boundary problem as

follows:
aéa
datlsﬁ -ﬁ;(u,a,ml %90, (8,6 = X + 1,...,10)
(5.8)
ac;t
- = * F = 1,040
detlﬁn 57; (0,1,0,0)] =0 {r,f = 1,..0,h) ,
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i.e. the boundary conditions can be written as
x =0 u. = RH.(tu.,v) (B = toora,kr @ =Xk + 1,000},

;% - '-(tl“tv) [

(5.9)

x = 12 ur-!t(t.x,u.,v) {2 = 1,000, =0 4+ 1,.4e,n)
3
ﬁ- l'+(t,|t.u,v) .

6. VARIOUS REMARKS.
1, In the case where the given boundary x = x{t} 1is the k-th characteristic curve,

we can consider x = x(t) as a free boundary with the condition

e (exouy, %), x(0) = 1 . (6. 1)
Using the preceding transformation we cbtain again a sacond mixed initial-boundary value
problem in !uncti.onl‘l. form.
2. In a similar way we can also sclve the following preblams:
1*, the Cauchy problem;
2*. the first aixed problem with the boundary conditions:
x =01 u;= &‘(t.u.v) (Fsk+ 1.0
ver? (tu)
x = 1: u = G:(e,u,ﬁ, (e = 1,.40,h) {6.2)
ve !"_lr..u')
and the corrasponding first free boundary problaem.
3", the problem with the interface x = 3 on the domaln

R(&H =R (HUR_(D

. with

-23=

R_(8) = {{e, ;3]0 € £ €&, =1 ¢ x <0},

R (& = {{eym)loseed, o0cx<i},

for the following system

(t)
n 3
() S ) S 2 21 3
jE1 C'_j (t,x,u )(TJ— 1 (t X, u T:—_]‘Q;J_)
{£)
- )“: X, u( (t)][av lui(t,x . ' (t)
(%)
+ u‘* [t x, u , tt) -;;v-—-] (2= 1,..0,m) .

(1) (%) a2 (1)
koAt It)[t,x,u{*),vu),%—}:x:—

on R*(G) r

t = 0: u‘ﬂ -v‘ﬂ -0,

x = 0¢ uéﬂt &i(t,u(t),vu)) f=k+ V,00a,n ,
{~
6 V. Grtt.utt),v(ﬂ) r=1,.4a,h ,

AR TS

et

- e 't B

t-)
2
) o+ qie, 48 {F

x = £1: convenient boundary conditions

with the following hypotheses:

+
3" (0,0,0,0,0) ¢ 0, Aé*’(o.o.o,o,o: >0, Fom liaeirks

A
r

(0,0,0,0,00 < 9, A7(0,0,0,0,00 > 0, r = tiiiihs

-2

- b(*) (t,x,u

(%)

av‘*’ ]av‘*’

'3;_'—]

() 'v!t)

aspactively,

(a> 0)

8=k + Vea,m,

8 =h+ V,000,n .

(65.3)

(6.4)

[6.5)

Loy



4*. The problem with frea interface x = x{t) can bw simllarly discussed, too.  Thig

‘time the conditions on x = x{t) ars the following:

(+)

x = xle) 1 ugte éit:,x.u‘*’.w“’), i=%X+1,..0n .
u:‘) 'Gr{tlxl“(t}ov(*)). T = T,ea0.h o
. (6.8)
" -t . Tit,xly
. 2o (#) (=)
. ?E__' - B(t.x.u(‘),vt*)lgi-—- hd !(t.n.u(’).v(*’)
and
s
& P
Rl RN T (6.7
with the following hypothesea:
+
£0,0,0,9,0) < 0(0,2,0,0,0) = n(o), 3% (0,0,0,0,0) > oeo) ,
AL":o,o.o.n,o) < D(o), x:"(o.o,o,o,o) > D(O) 16.8)

(= 1000% BoX+1,.00,n = 1,000, £ =h + 1,.,.,n} ,

For the system of conservation laws, these conditions (6.6}, {6.7) and {6.3) {with
h=k=1) can bs obtained from *he corresponding Raskine-Hugonlot's conditlons and thae
corredponding satropy condition Tespectively.

Similarly, we can congidar tha problem with the characterietic intsrface x = x(ti,

o0 .

w2§-

7. APPLICATIGN TQO A CONJECTIVE GIVEM BY C. M. DAFERMOS.

The conjective given by C. M. patermos(3] 1s that 1nc6mplete parabolic damping can
preserve the smoothness of smooth initial data but is incapable of smoothening rough
initial data. For the system of one-dimensional viscoelastic materials of the rate type,
he has verified that this conjecture is true.

Now, using the preceding results we can consider this conjecture in general case.
Indeed, the system with incomplete parabolic damping is a hyperbolic-parabolic coupled
system, since the problem with the free interface (or characteristic interface) x = x(t)
is well-posed {under the corresponding conditions of sclvability), if the (rough) initial
data are piacewise gmooth with a discontinuity at the origin x = 0, satisfying the
corresponding conditions of compatibility (i.a. corresponding Rankine-Hugonict's conditions
for conparvation laws) and the corresponding conditions of orientability (i.a.
corrasponding entropy condition), then the local solution is also plecewlse smooth with a
discontinuity on x =x(t), because tha corresponding conditions of solvability can be
checked in many concrete cases. Thus, incomplete parabolic damping 18 incapable of
smoothening rough initial data, that is to say, the gecond part of this conjecture is
true. On the other hand, for smooth initial data, according to the preceeding résults, the
solution remains smooth locally in time, so the firat part of this conjecture is true at
least in a local sanse. As to the corresponding global exiastence theorem, wa have to

discuss the concrete system and the problem seems yet open.
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