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Parallelism.

o M Corollary 1. If P is a principal bundle on the unit interval,

Theorem, Iet P be a principal bund d i . foa s
—_— principa leﬂan W a connectlon form and w is a connection, then P may be trivialised over U such

on P. If K = dw + (w,w) vanishes on M, then P is associated o
) ' that w becomes trivial.

to a representation of the fundamental group of M in G.
Proof, We notice that the curvature form of w is locally a

Sketch of Proof. will first 4 i th i icn. .
—_——= We firs eal with e local situation 2-form on the l-dimensional manifold and hence 0. By the theorem

7
let be a simpl o lbad ' i ‘ :
v 8 BiRply conr.it open subset of M Then using a above we may conclude that there exists a section s : I + P such

1 ti i * . X i s :
ocal section of P we may as well assume that w is a form on U that s w =0, This shows that with the trivialisation of P = I x G

on-
satisfyi aw + = 0. . * ;
fying dw + [w,w] = 0. Then we claim that &y a smaller open given by the section s, w is p,a , where g is the Maurer Cartan

*
get U there is a function ¢ : U+ G such that g o = w where a

' form.
is the Mayrer-Cartan form on G. In fact, we will construct the
* 'Corollary 2. Iet P be a principal G-bundle w a connection form,

graph of ¢ as follows. Consider in U x G, the form p:w - Py .
» * . and Y : I+ M acurve. If E g P with 1L = Y(0), then there
The distribution given by {X : (pyw - p,0) (X} = 0} is checked to be L ~ ~ s
- -exists a lift Y : I+ P of Y such that ¥{(0) =§ , and Y w=0.

integrable using the Maurer-Cartan equations da + [a,e] = 0 and the .

N * .
agsumption dw +{ w,w ]= 0. Hence by Frobenius theorem, there exists ‘Proof. On the pull back bundle Y P, we have the pull back connection

]
. . . h
a maximal integral submanifold for this distribution. Taking this to form w'. By Corollary l, there exists a section s of Y P suc

*
' ‘ —_— i - ired lift.
be the graph of a function ¢ . we obtain the desired map. In fact, that s w 0 This may be interpreted as the require .

if the section of P over U is modified by ¢ , we will in—fact If M is a manifold and we have a connection in a tensor
* ‘ . _
have s w = 0, Moreover, it is easy to see that if ¢ . P are two bundle, then the above considerations show that given any curve and a
* “x .
G-valued functions on a connected U with pa=yYa, then tensor at the initial point, it can be carried along the curve. Thus

g(x) = P{x)-g for some g g G. Hence if we have a covering of M -in particular, a connection on the tangent bundle T(M) enables one to

by open sets Ui » sectlons By 0> F and functions Py Ui * G | talk of tangent vectors of M at two points of a curve being parallel.

* * -
satisfying @iu = &, w, then it follows that for every 1i,j with

i But this notion of parallelism is not absolute in the sense that it does

Ui n Uj # #, (which we may assume connected) the functions P and ¢j ‘ not enable one to say that a vector at m is parallel to a vector at ml

differ by a group element sij . This shows that P 1is given by The concept depends on the curve joining m and m'.

constant transition functions 91j and it is easy to see that this

implies our assertion.



.Getting back to the case of a principal G-bundle, if

is a loop at a point m, then an initial frame £ gives rise to a
'

lift of ¥ and hence an end frame £' at the same point. In

general, E'® E and would be related by an element of the group
G. Namely, there exis® g € 6 with E' = Eg. Then g is said

to be the holonomy of the connection along the loop “¥ . As the
loop % is allowed to vary at a fixed point, the various elements
obtained, starting with a fixed frame £ form a greoup called the
holoncmy group. If the loops are only allowed to vary over
homotopica}ly trivial ones, then the corresponding group is called

the restricted holonomy group.

Let P be a principal G-bundle, w a comnection on P and
£ € P. Consider the set P' of extremities of all horizontal paths
in P startingat E . Let E'e P'. Then over a locally trivial
neighbourhood of wE' , we may take n linearly independent G—invariané
e s
horizontal vector fields xl....,xn mapping on

3 -
= ..., 2Vvisa
atj: alh A

coordinate system at 7" . We have a map of I x R"” into P°' given

by (t, a ) ¢éa}(Eo) where ¢éa) is the flow corresponding to the
vector field I ay xi . Since I ay xi is horizontal, the curve

t -+ véa)ﬁgo) is also horizontal, proving that @{a)(g)e P' . The map
ta) » 7 g{a’(g) has as differential the map {a;} + 2, E%I and

is hence of maximal rank. 1In other words, we have a section over a
neighbourhood of TE' with image P'. Hence the transition functions
for P with respect to such a family of local trivialisations will

have images in the holonomy group at a point £' ¢ P'. Since E can

qu,- o X,

be joined to ' by a horizontal path, we can see easily
that the holonomy group at E is the same as that at E' .

Thus we have

Proposition. If P'C P consist of extremeties of horizontal
paths of a connection w on E‘ starting from a fixed point £ ,
local sections may be found with image in P' and the transition

functions taking values in the holonomy group at £ .

Theorem (Cartan-Ambrose-Singer) The restricted holonomy group
iz a Lie group whose Lie algebra is the subspace of the Lie algbera
of the structure group spanned by the value K(X,Y) of the curvature

form.

Sketch of Proof. Using the above proposition, ¢ne might replace P
by P' so that without loss of generality, one may assume that

any two points in P can be connected by a horizontal path, and

thﬁt G = restricted holonomy group. One checks easily that the
subspace V generated by K(X,¥) 1is actually a Lie subalgebra. Take
the set of all vector fields on P such that the value of the
connection form w is contained in V. One proves that this gives an
integrable distribution. If P' is a maximal integral submanifold
through £ for this distribution, then by definition, horizontal

paths through E are actually integral for this distribution.




Linear connectieons

Iet M be a differentiable manifold. A connection on

the tangent bundle T(M) is called a linear connection.
. w
let &= (m, v} € T(M), where me M and a tangent
A
vector at m. Using the connection, we can define a vector

GE € TE

vector field is called a geodesic vector field and the associated

(T(M)) thorizeontal lift} such that TE(“}(GE) = y. This

flow g, the geodesic flow. The orbit of £ under this flow
projects .onto a curve on M, starting from m with v as its

vector at m. This is called the geodesic from m with initial vector

v.

Proposition., The map § + ml(E) is a diffeomorphism of a
neighbourhood of 0 € Tm(M) with a neighbourhocd of m in M,
where m = 7§ .

Proof. Let U be a coordinate neighbourhood in M with

(xl,...,xn) as coordinate. Then on ﬂ_l(U}, we have the coordinate

system given by (xl,..,xn, yl,...,yn). where any tangent vector at
LY

(xl,...,xn) has the expression L ¥y 3%— « Then one checksﬁthe
geodesic vector field G is given by I ¥ 4. z I‘k.y1 yj e
i axi ij Byk
k . 2 . ko 4.
where rij are determined by V—g_ axj 2 rij “xk .
%, °

. 1 1
The differential at 0 of the map (¥ ,...,yn) > ¢l(x1,..,xn,y ,..,yn)
3 . .
can be computed to be E;T + Ti; so that by inverse function thecorem
a3 .

it followa that 9 gives a local diffeomorphism as claimed.

Now the geodesic vector field on T(M) gives rise only
to a local group of local automorphism so that in general
geodesics cannot be continued indefinitely. We say a connection

is complete if the geodesic vector field has a global flow.



Universal Connection

let G be a Iie group and H a closed subgroup. Then
one may actually show a) that H is a Lie subgroup. b) G/H is
a differentiable manifold, and ¢) G + G/H is a principal
H-bundle. (In the cases where we will actually apply these, these
facts may be directly verified). Morxe generaliy, if H, H' are
closed subgroupé of G with K normal in H', then G/H -+ G/H'
is a principal H'/H.: bundle., Consider the particular cases
G=0(n), H' = 0(r) x O¢{n-r} and H = ¢(n-r} and
G=U(n} ., H'=0Ulr) x U(n-r) and B = G(n-r). Here H' is

.

imbedded in G as matrices of the form [0 g] + while H is

0 ' :
] . Then we may identify

imbedded in G as matfices of the form [g B

G/H qith-the Stiefel manifold of ort@ogonal r-frames in n!n or m" .

Atk the Grpadresaivion of T it
while the space G/H' may be identified of R o T
N

. In fact,
the former identification maps any X £ G on the first r column
vectors. The latter associates to any X £ G the subspace generated
by the first r column vectors. The space of orthogonal r-frames is
simply the space of (n,r) matrices ¥ such that Y*Y = II . The
action of H'/H may also be described as right multiplication by an

L ]
(z,r) matrix g with g g = I. This bundle is called the yniversal

bundle in view of the following.

Theorem. Given any principal GO{r) {(or U{r))-bundle P on a manifold

of dimension < m, there exists a equivariant map of P into the

universal G-bundle (inducing a classifying map of M into the Grassmannian).

Here the universal bundle means the above mentioned bundle for sufficiently

L R

large ambient n depending on m.

Sketch of Proof. Iet (Ui) be a covering of M such that P

is trivial over each Ui . Then clearly we may map a section of
P over Ui onto .a constant matrix € G and extend this map to P

as a G-equivariant map into the universal bundle. Now one uses the

femma. Given a covering (Ui)i el ’ there exists a refinement
and a partition I =1 ---uIn such that V, N Vj = ¢
if i and 3 belong to the same Ik . If Ui are such that
P/U, is trivial, then it is equally true that P/WE is also trivial,
where wE = L) Vi . Thus we have found an open covering

iegl

L

WO,...,Wn with P/WE- is trivial. Choose a partition of unity with

respect to the covering (W£) in the sense that I ¢i = 1 and support

Py c Wl . ‘Then the map

£z xin - is easily seen to be a gleobal differentiable map

into the space of ({((n+l)r,r) matrices. Here fb""'fn are the
local G-equivariant maps P‘Ufay-s. Moreover, it is clear that
* 7 2. 2 :
££= i P 555 = {Ip3I = I.. it is also obvious that £ is a
i=

G-equivariant map into the universal bundle.

Now on the Stiefel bundle, we have a connection form given
* *
by @, = A dA. Singce A A = 1, it follows that this connection has
values in the Lie algebra of the orthogonal (or unitary) group.

Moreover it is invariant under the action of the orthogonal (or unitary)

—— g



group in n variables acting on the stiefel manifold on the left.

It is easily verified that this is a connection form. We will

call this the universal connection. This is justified by the

Thecrem. Given a principal G-bundle P on a manifold of dimension

m and a connection form w # there exists a G-equivariant map
’ *
¢pf1’into the Stiefel bundle such that @ wo = w, for sufficiently

large ambient n (depending only on m).

Even when the bundle P is trivial, this requires proof,
for the connection could be nontrivial. Once the probiem is solved
locally, fortunately the use of partition of unity as in the previous
theoem automotically takes care of the requirement about the pullback
of the universal conrnection being w. The local problem reduces to

the following, Given a matrix form w on an open set in " with

values in the Lie algebra of G, (namely w is skew symmetric or skew
Hexmitian), one has to find an (n,¥)-matrix valued function ¢ such
that ¢*d¢ =w and ¢*¢ = Identity. We will not give the general
proof, but indicate the idea by dealing with the case of G = uil) .
In this case g = (wl,...,¢n ) has values in €" and we need

= 2 ig
z q&;d ¢, =w and I l¢k|. = 1. If we take ¢ =&,

k
-ig ig ig

- k k : k
{Pk d (pk = rke + ].l'k e de

k

e s then

. (drk e )

k
= ¢ dr + irz d8e
k k k k

anéd L 5k ¢ = I r: = 1.

11L=-f

Thus we need to find functions L, and ek such that

. e . =
5 r: =1 and I dr +ildr 48 = iw . But Lrdr =0

if I ri = 1. Hence these conditions are equivalent to

w. Since the integer n 1is at ocur

2 2
I rk =1 and I rk a ek

n

. - :

disposal, we may write w =tkzl fk dxk in lotal coordinates,
1

2
By shifting a scalar to X, ¢ We may assume fk < n then one may

G .- 2, od
Jrine k 14 2 = i the proof.
efine fn+l Syl - X fi N Bn+l 0. This completes P

n i=]1

The general case is similar, but one has toc take scme care in view of

noncommutativity.

]



Manifolds with additional structures.

In differential geometry, one considers differentiable
manifolds endowed with some additional structure. This
additional structure consists usually of a tensor field with some

prescribed property. We will see some examples of this sort.

1. Riemannian metric.

’ If Mis a manifold and g is 2 symmetric positive
definite bilinear form on the tangent bundle of M, we say g is
a Riemannian structure on M., More generally if we replace the
positive definiteness postulated above by the weaker notion

'hondegeneracy ', we get what is called a pseudo Riemannian structure.

The Euclidean space r" has a natural Riemannian

d

3. d
i axi

'Zbi‘gx_i

structure, namely, for any two tangent vectors I a
at a point x, the scalar product is defined to be z ay bi .
Another way of saying this is the following. ILet V be a finite
dimensional vector space over IR. Then any scalar product { , )
on the vector space V gives rise to a Riemannian structure on the

manifold V. 1In fact at any point v ¢ V¥, the tangent space can be

identified canonically with V so that a scalar product on it ig

readily available. This can be further generalised to the case of any

Lie group G. The tangent space at any 9 € G is cancnically

identified with the Lie algebra -ﬁ} of G. Hence any scalar product

on 43 gives rise to a Riemannian structure on &. This maf be

"

12

referred to as a left invariant Riemannian structure on G. One
can of course define a right invariant Riemannian structure also

in a similar way.

Clearly a submanifold of a Riemannian manifold acquires a
natural Riemannian structure. (This iz of course not true for pseudo
Riemannian structures since the restriction to a subspace of a

nondegenerate bilinear form may well be degenerate).

2, Symplectic structure.

Let w be an alternating 2-form on T which is nondegenerate.

We call w an almost symplectic structure on M ., The existence of

such é form implies that the dimension of M is even. A very interesting
gituation in which such a structure arises is when the manifold is

the total space of the cotangent bundle of a manifold W. Let then

M= T*(N) and 7 : M+ N be the natural projection. Any point of m
consists of a point n e ¥ and a differential o at n. If X € Tm(bﬂ
then Tm(u)(x) is a tangent vector at the point Tm=n of N. We

have thus a scalar (Tm‘h)(x),a )} associated to X. Since this is linear
in X, it is clear that we get a canonical l-form on T*(M). We will
now get the local expression for this form., Iet (xl....,xn) be a
coordinate system in an open set U of N. Then n_l(U) may be
identified with U x ®™ by mappiﬁg (%),(y))e Ux R" onto the
differential [ ¥y dxi at the point (xi""xn)' A basis for tangent

s -1 ] 3 :
vectors at any point m € T (U) is obtained by —, d under
o By
this identification. The cancnical form referred to above associateg

T

i
|
"

- Mol W



2 - 2
to Z.ai 3xi + I b.1 ayi the scalar (X a, axi ' Eyi dxi } = Eai ¥

where (yi) are coordinates of m. In other words, we obtain the
differential form g= I yi dxi‘ Incidentally, this also shows that
the canonical form is differentiable' Now 48 is a 2-form whose
n ‘
local expression is Z dy, A dx, . If we take the basis 2 ’ 2
ju3 & i Bxi 8y1
for the tangent space at m, the matrix of this bilinear form is
o -1

showing that it is nondegenerate as well. Thus we have a
I 0

pnatural almost symplectic structure on T (N).

pefinition. An almost symplectic structure w is said to be
+
symplectic (or locally Hamiltonian) if &w = 0. It is globally

Hamiltonial if there exists a l-form B such that dg = w.

Remark. Notice that if dw = 0, locally w can be written as ap

for some l-form B, by the Poincare lemma.

*
The canonical structure on T (M is by construction globally

Hamiltonian. Then we have

Theorem (Darboux}. If B is a l-form such that df is a nondegenerate
gkew symmetric 2-form, then locally coordinate (xl,...,xn, Yl,...,!n)

" can be chosen so that B = I Yi 4 xi .

Unlike the Riemannian situatlon, the above statement shows

that any two symplectic structures are locally alike.

3., Almost complex structure

An automorphism J of the tangent bundle gatisfying J2 = =1

ig called an almost complex structure. A complex manifold, M is a

13

%

manifold in which the maps of an atlas are homecmorphism onto

open sets of c® and the transition maps as in 1) are holomorphic.
We claim that M has a natural almost complex structure. 1In

fact this would follow if we show a)that open set in ¢" have a
natural almost complex structure and b) complex analytic
isomorphisms of one open set in Cn onto another preserved the

almost complex structures. But assertion a) is trivial, since the

' taﬁéent space has a natural identification with ¢" and multiplication

by i -VCf, gives rise to the required automorphism J. ©On the other
hand, if @ : U, * 02 is a holomorphic map, in order to check that
for any X € Uy, Tx(w) : Tx(ul) + thx)
3, it is enough to show the same thing for the functions P, @ where

(Uz) preserves the automorphism

p; are the coordinate functions on U, . Since the problem is local,
we are reduced to the following situation. Let £ =g + iy be a

holomorphic function of (zl,...,zn) with zl = X + iyl . Then

By .q e 3, . Bk e, ang
JTx(f)( axl ) =3 ax% ! axk ) ( 3%y ! axn
g L L _ay Bl
— )} = J{ 3 = | Yy .
JTx(f)( 3¥1 } { ayn ' ayl } ayl I ayl

On the other hand,

3 3 dp b
= £1 ¢ ; = (- )
T8 TG TR gy (G, oy,
2y = T .
ana T8 305 TR (g ) T g x, |

Hence what we need to verify fs that

B0 .38 g . 2L
axl ayl dxl ayﬂ



"%

But these are the Cauchy-Riemann criterion for a differentiable

function to be homomorphic. Thus we have shown

Proposition. Every complex manifold has a natural almost complex
structure. Moreover a differentiable map £ : M+ N of complex
manifolds is holomorphic if and only if Tm(f) commutes with the

automorphiam J for every m e M

We will investigate the consequence of the complex structure
on the deRham complex. If M has an almost complex structure, then

we call a vector Vv in Tm(ld) ® T, of type (1,0) (resp. {o,1)) if

Jv = iv (resp. Jv = -iy). Since J2 = -1, the eigen spaces, Tl'o,

Tu'1 corresponding to the eigenvalues +i, span Tm(n) x€¢. If M

is a complex manifold with local coordinates (Zl,. ..,zn) = (X r¥yee- ,xn,yn) '

i i s a2 O IR
then '.l‘m(M) has a basis consisting of.-( 'axl ' 3y1 reeer Gt 3y ).
n n
We also have J( a%) = ai and J( AL } = - a—i- so that
*5, e ¥y )
2 2. ana 2, i 9. generate ‘1'1'0 and To'l respectively.
Ix ay 3x ay
L % L )
3 9 3 g 9 ] . _0O
We write po- = —— - iz~ and 5= Tt 1% . Clearly
'azg Xy Byz a2y axz By,
I T —basi
{ 332 ' 321 form a O-basis for Tm(MJ 2C.

1,0 0,1

The decomposition T(M @CT =T + T '" induces a

decomposition ‘ar (M) x T = E 8p'q(ld) of the space of differential
pra=r

forms of degree r. We may say that a differential form w 1is of type
(pryg)if w(xl,;..,xr) = 0 whenever more than p of the xi' are of

type (1,0) or more than g of the xi's are of type {0,1). Again

14
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in its local expression, w 1is of type {p,q} if and only if it is

of the form

§ £ _dz adz = ] £, . . dz, A-+ AdZ, AdZ, A ---AdZ; .
I,J I,J I J il< '°‘<ip ll-.uipljlj--jq 1 ip jl Jq
jl<..-<jq

-

We may extend the exterior derivative d over complex differential

forms -I-linearly. Then it is easy to see that ) b‘i
- afI J = de J - f
= PR 7.0
a(k £, 5 dzl)\‘dz‘;r ) E('!:—BE:‘ az; A6z . % oz, az; A dzj g}

This shows that if w is of type {(p,q) then dw is a sum of two forms,
one of type {ptl,q) and another, of type {p,g+l)., These two forms

may be denoted dzw and diw . The eguation dz = 0 translates into

2 2
= = = - 4 A= .
dz 0, dz 0 and dzdz dZ dZ = 0

pefinition. The complex

d= d=
0 &p,o z, zp,l Z ;p.2 e

is called the pPolbeault complex of the complex manifold M. Its

cohomology are called the Dolbeaulf cohomology.

The 0th cohomology of the Dolbeault complex consists of (p,M

forms o satisfyinzj qu = 0+ locally these are of the form

o ’ZfIdZI

af;

aZ.
3

The condition déa = 0 is thus equivalent to saying that BEI/an

so that aa = ) dzj Adzp -

for every I or what is the same, all fI are holomorphic.
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bBefinition. & form of type (p,0) is said to be a holomorphic
p-form if it is locally expressible as I fI dzI where fI are

holomorphic.

4. Hermitian structure.

Suppose M has in almost complex structure and also a
Riemannian structure g. Then we say g is Hermitian if
g(JX, JY) = g{X,¥) + ig{X,J¥), then h 1is a Hermitian metric on the
tangent gpace considered as . a T-vector space where multiplication

by i is defined as J. For,

h(IX,¥) = g(IX,¥) + ig{JX,Jv}

igx,y) - g(x,1)

ih{x,¥)
and h{iX,J¥} = g{X,JY) - ig(X,Y)

= - ih(X,¥) .

Notice that the Riemannian metric is uniguely determined by h
or equally well by the alternating form (X,¥) = g(X,J¥) . It is
clear that 1 is nondegenerate so that we have a natural almost

symplectic structure associated to g and J.

Definition. A complex manifold with a Bermitian structure is said
to be Kahler if the :associated élternating form Q is cloged.

The importance of Kahler manifolds is due to fact that all
nonsingular projective algebraic varieties are Kahlerian. By this we

mean complex submanifolds of the complex projective space Pe” are

18

Kahlerian. In fact, since it is obvious that any complex

submanifold of a Kahler manifold acquires a natural Kahler

structure, we have only to check that P” is Kahlerian., If
(ZO,ZI,...,ZH) is a system of homogeneous coordinates, then

the form vo'ﬂﬁ-cu_i 1,.3_ preciing b gatiey 'E‘-— 'F“"‘;“““ ‘:“" Lchtgzk.?&"g
JLqumL} T en premmion £ d;a(; 1=&.§§% ffr; f;f

is seen to be the alternating form associated to a Kahler metric

on PCV .



Gauss Bonnet Theorem.

Iet X be a compact, oriented Riemannain manifold. Then
the tangent bundle of oriented orthogonal frames is a principal
50{n)~bundle. The Riemannian connection gives rise to a curvature
form which according to the Chern Weil Theory, gives rise to various
closed forms on X, whose de Rham cohomology classes are topological
invariants of the tangent bundle. One particular form which may be

obtained thus is the following.

Consider the space so(n) of Skew symmetric endomorphisms
of an oriented vector space V with a metric g. Then the determinant
which is a polynomial function on all endomorphisms, when restricted to
so(n) becomes a perfect square. The orientation on V may be used to
define a square root, called the Pfaffian of the skew symmetric
endomorphism. In fact, since all eigenvalues are purely imaginary,

we have a decomposgition V = z va ¢ where Va is the space on
a>0

which the transformation has 2 eigenvalues ig and - ia. We define

(Pfoff) = + a% dim Yy
on V determined by the decomposition v = E(v; + V;) coincides with
the given one or not. By definition it is clear that (Pfaff)2 = Det.

It is easy to see that if A is a skew symmetric transformation and P

is an orthogonal transformation then Pfaff A = (Pfaff}PAP_l .

Now the substitution of a curvature form of a principal

14

The sign is + 1 according as the orientation

S0(n)-bundle gives rise to a closed 2n-form w on the base. In particular,

if M is a compact, oriented, Riemannian manifold of dimension n even,

0

then I(Pf K} gives a number. This is independent of the
M

Riemannian connection, since we know that Pf K - PE K'=d

for some (n-1) form o and I da = 0, by Stokes’' formula .
M

Since this number is intrinsically associated éo M, it
is not surprising that it should have other geometric meanings.
The Gauss Bonnet theorem identifies this number as the 'Euler
characteristic' of M. We will give a geometric definition of the

latter and then. identify the two definitions.

let X be a vector fieldon M. A point meg M is a
singular point of X if xm = 0. At any singular point, consider
H
the map v —> [Y,x]m where v ¢ Tm(M) and ¥ 1is any vector field

with Ym = v. To see this makes unambiguous sense, we have to verify

that if Ym = (0, then [Y,X]m = 0, This is of course the case since
- i - - = 2
xm = 0. In fact, if we have locally X =L fi . Y=15 9 Ix.
‘ i W1
af. ag. 9
with f£.(n) = g, {m =0, then [¥,x]= J J (9,2~ -4)3%; .

. T3 3% 3w

Hence [Y,X]m = 0. We say the singularity m is nondegenerate if the
endomorphism H, @ Tm(X} - Tm(M) is invertible. Morecver its index
is defined to be +1 according as det H, z o Inaéocal coordinates,
the transformation Hx is given by the matrix { 3;% }r according to

the calculation above.

Lemma. There exists a nondegenerate vector field. In fact, there

existe a nondegenerate vector field such that locally near any

singular point, it has the expression I x §%~' if the index is positive
n=-1 i
g _ 9 i
and izl x, Bxi X, an , if the index is negative.




at

We now take a vector field as in the Lemma and choose a
convenient linear connection on M . If Ul""U: are disjoint

closed neighbourhoods of the critical points, them on B - Ui ’

the vector field is nonsingular so that we have a decomposition

T(M} = 1 + W , on this set. -Choose a connection in W and treat

it as a linear connection. On the other hand on open neighbourhoods
VN
Vic:lh_. we may take Riemannian connections and choose a ion

of unity to piece up all these connections to a single linear
connection on M. If we substitute its curvature in the Pfaffian,

it becomes zero on M - Ui . Thue the required form is supporfed
in V. . Suppose these forms are v, - Then I w=73 f Wy o Thus

1 M v,
1

we are reduced to the following situation. Iet U be an open
neighbourhood of 0 in ®RY and X a nondegenerate vector field

with only singularity at 0 in Y. We may also assume that X has the

8 “il 2 a
form I x or X, T - X .
i axi ic1 i dxi n axn

Taking a reduction

of the tangent bundle to the orthogonal group compatible with the
splitting of the tangent bundle given by the vector field outside a
neighbourhood of the singular point. Compute I w where w is the

form obtained by substituting the curvature form in the Pfaffian.

In any case, the above recipe says that the local contributions
depend only on the nature of X in a neighbourhood of the singular
point. Thus when X is of the special type mentioned, it follows that
there are only two constants to be computed. This could be done by

direct calculation. But one might also argue as follows. On the

n-dimensional’ torus ™, consider the vector f;eld Esin Bi E%I .
Now since T  1is a group, it is parallelisable and hgnce one
can use a flat metric and see that f w = 0. On the other hand,
it has 2" singular points, which can be divided into two sets of
Zn—l each, where it takes the one or the other form. This shows
that the constants involved are the negatives of each other for
the two types mentioned. Finally, one has only to check that

the constant involved is nonzero for some manifold with a vector

2
E x; Bxi near all singular peoints.

field which is of the form
For example, S" , n even is such a manifold. This completes the

proof of Gauss Bonnet theorem. For any compact oriented manifold

of even dimension, the number I w, where w is the form cbtained
by substituting the curvature form in the Pfaffian is, upto a

constant, the Euler characteristic of M. The latter may be taken
to mean the sum with proper signs of the singularity of any special

vector field oi M

22
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Riemannian connection
Iet M be a Riemannian manifold and g the Riemannian
metric. We wish to construct a linear connection on M which
has no torsion, and which preserves g under parallel translation.
The latter condition is eguivalent to the requirement that
Vg @ = 0y Explicitly,
g(Vch zZ) + gy, vxz) - Xg{¥, z} = 0
forrall vector fields X,Y,2 .
Let us assume that in local coordinates, we have g = I gij dmldxj
3 k 3 . .
and v — = I TI,.—= . Then in the above equality we
2l ij .
1 ox
X
] 4 d .
may take X = __I s X = —~3 s Z = —_E to cobtain
ox 3x ox
0 N
T A I R T L e T L
ax ax ax 't % ax?  ax
2 — 9 ag K
i.e. E I‘13 Lol T + z I‘ik gj - —lE -,
& ~ ' L 3%

Write three such equations by cyclically permuting i,j,k , adding

" the first two and substracting the last to get

L

: 2 % _ % ) )
N R R (A TR TR RS

i 3T Lk
dgX oX oX

: ] -
dg]:k b i 94,3

The condition that the torsion of V is 0 implies that

24

o d . k _ ok
v s T3 = v 5 ~={ o« or what is the same rij I‘ji

Hence the above equation yields

2 ik, i i
axt bx” ox*

-

Since (g,.) is invertible, this determines Pk completely and we
ij ’3 S . ij
may as well define Fﬁj and check that the linear connection defined
A :
by it has no torsion and preserves g. Although this was done locally.
the unigueness ensures that they would coincide on the overlaps, thereby

giving a global connection. Thus we have

Theorem. Any Riemannian structure on M gives rise to a unique
connection which preserves the metric and has torsion 0. ‘ﬁhenever one
taﬂhﬁ of a geodesic, parallel translate, etc. of a Riemannian manifold,
it is this Riemannian connection that one has in mind.

let us now consider a differentiable manifold M imbedded in
R®™. The Euclidean metric on R" .gives M a Riemannian structure.
It }s easy to see how the covariant differentiation of vector fields is
defined following the Riemannian connection: In fact, given a vector
field X on M, let us extend it locally 4o a neighbourhood in M

o 44;;J£4,:T{~rnlop g et 4
a8 a vector field X of AIR . If v 1is a tangent vector at me M,
then treating v as a gector inl,IRN , we may define the covariant
derivative of X . However the resulting vector at m may not be
tangential to M . But using the metric we may project it down to Tm(M) .

This is easily checked to be the covariant differentiation as we have

defined.

—
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We have on the other hand, a natural differentiable map
of M into the Grassmannian of r-dimensicnal subspaces of r" .
This is called the Gaussian map. Onr the Grassmannian we have seen
that there is a natural Of(r) bundle. Since any orthonormal
tangent frame at mE M gives rise to an r-orthonormal tangent
frame in r" , we get a map of the principal tangent bundle P
into the Stiefel bundle. Now the universal connection on the
Stiefel bundle gives rise to a connection cn P. It is of course
natural to expect that this is actually the Riemannian connection.
In fact, it is clear that the trivial O(n} bundle on the Grassmannian
is obtained by taking the Maurer Cartan form on Oin) and pulling it
back on Gr x O(n) . Now the natural projection of the Lie algebra
sO(n)}=yr s0(r} x 8O(n-zr1l ., gives rise to a so{r) x so{n-r)-valued
form. One checks directly the universa.l connection on Graas is
obtained by taking the trivial O(n} connection and projecting down te
an O(r) connection form. Thus we have only to check that on M, if
we take the trivial O(n}-bundle {restriction of the tangent bundle on
®"™ to M and project it down to an O{r)~-connection on M, then we
obtain the Riemannian connection. This is only a restatement of the
alternative description of covarlant differentiation of an imbedded

manifold. Thus we have
Theorem (Gauss ' thecrema egregium).

et M be a submanifold of m" . 1f Py is the Gauss map

*
M + Grass ("), then ¢ K is the curvature form for the induced

Riemannian metric on M , where K is the curvature form of

the universal connection on Grassr(mn). In particular, if M

is an oriented hypersurface in R", the Gauss map may be

considered to be a map into Sn—l . The universal bundle is s%the

n-1 :
tangent bundle of 5 and the universal connection is the

. n-1 : :
Riemannian connection of § . Thus the Riemannian curvature on

M is the pullback by ¢ of the Riemannian curvature on s“-:L .
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