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L. Alfvén waves ir the magnetosphere

1.1 Introduction

Alfvén waves cccur for freguencies well below the ion gyrofrequency. They
occur in the magnetosphere in many forms. Generally they have long periods
(v 1071 - 10”7 &) and the wavelength may often be comparable to the size of
the magnetosphere, so that in studying them we may deal with resonant
cavities rather than propagating waves. The geometry of the medium is thus
important in discussing them. We begin by discussing the propagation of such
waves in uniform media, then consider oscillations in more reslistic magnetic
field geometries.

1.2 Constitutive relations and Maxwell's equations

Hydromagnetic waves are often thought of as somehow more like hydrodynamic
than electromagnetic waves. They are, however, perfectly good electromagnetic
waves as we shall emphasize by deriving their dispersion relation in the same
way as was done by Budden for high frequencies. We shall see that in the low
frequency limit we obtain hydromagnetic waves,

Consider a uniform single species cold plasma with uniform magnetic field B.
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So far no approximations have been made.
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and is called the Alfvén speed.
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Here b is the perturbation magnetic field. From (8) and (9)
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for the pependicular case, and w;; Jits» | for the parallel case. Thus
we can write (11) as
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We then combine (8) (10} and (12) to give
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where (13) amd (14} are sufficient to determine the ficlds and (15) fixes J".

It should also be noted that, if we consider the mean velocity of the plasma,
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equations (1) and (2) give, on multiplication by m?, m? respectively
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The implication of this is that the perturbation velocity of the plasma is
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as can be seen by taking the cross product of (17) with ?_

1.3 Uniform medium Bispersion relation

i = . . . ' 4
In a uniform medium we assume spatial variation of the form Lep {"‘ I"";

Then the ¥ operator may be replaced by -ik and equations (1. 2.13), 1.2.14)
become :
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into two sets. -

—k . E, = b, ky £, = db,
kabo-ky b, =l E, ko by = ~ (D/V)E, )
k>lE|3 - ‘\)bz'

sy =
The first set has a. dispersion relation _
z k3 2 2 ?
k)," kLE k =‘-O/Vﬂ

It is an isotropic wave travelling with speed V,, and is generally known
as the fast m.h.d. wave. The other wave has the dispersion relation

k: = ‘\)z/\/qz

This is remarkable because it does not involve k_. That is the wave can have
any transverse behaviour whatscever. The magnetlc and electric perturbations
are at right angles to B and for this reason it is knoyn as the fransverse
Alfvén wave. This means that the-Poyntigvg vector Elfﬂ"p is always exactly
along B no matter what the direction of ¥. From anothér point of view the
refractive index surface is as shown, so that the ray direction iz parallel
- to B. The result of this is that magneto-
hydrodynamic waves with very long wavelengths
n oy can be very closely confined to a particular
- magnetic field line, on a length scale very
> B much shorter than the wavelength measured along

#5 the field, To see this it is useful to discuss
A the propagation of such waves in mon-uniform
media.

1.4 Magnetic coordinates

In studying Alfvén waves in the magnetosphere we note that there are substantial
advantages in taking the magnetic field direction as one of the coordinate
directions. In the special case of a current-free region, for which

there ave advantages in choosing these coordinates in a special way. In such

a region we can express B as the gradient ¢f a scalar magnetic potential §m

—
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Then choose the w=coordinate.of a curvilinear system as
-1
w= A"B )

where A_l is constant. Since B ig normal to equipotentials, u and v axes will
lie in equipotential planes., Now

= -t
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where h,, is the scale factor, i.e.

hy = A /B (%

Now congider a flux tube of cross section du dv. The flux is conserved and thus

B h hy A dv = conctant x odu dv
The constant may be taken as A so that in such a system

h hy = hy

An example of such a system ig the set of magnetic dipole coordinates. In a
magnetic dipole field

§,_oc sin 0 /¥t
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where T, 9,(? are spherical polar coordinates, with # the latitude not the
pelar angle.

The equation of a field line can be shown to be :
v e al sin®b (%)

where L defir.les the radius at which the field lime cuts the equatorial plane.
Then take ¥ in the weridian measured outwards and H in the directiom of 3,

with
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The scale factors can be shown to be
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1.3 Alfvén waves confined to a field line

Fejer IZJ: Geop]:xys. Res: 86, 5614, 19811 has considered this problem.from a
ray tracing point of view. We take a different approachusing the field
equations. We shall consider a current-free medium which is non-uniform.

Choose magnetic coordinates u,v,w. Then the field equations (1.3.13),
(1.3.14) are
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Assume that the phase variation perpendicular to the field is very rapid
compared to the variatjon of the densityr'and_r'na netic field. In this case <"
we may write ALY b fovz -(i,

where l(“_, k, ))fo is the length scale on which B and $ vary. Using

thesge results and eliminating bu bv from (1) - (5) we get.
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In these equations it is to be expected that k_, k_ are slowly varying functions

of u,v,w and that the variation of field compo%entg with u and v are of phase
integral type:

onp [ fihue - fohoar}] (@

If this is the case then, locally, u and v may be chosen so that u is in the
direction in which the phase varies most rapidly perpendicular to the magnetic
field. We cam then make k.u »» k . Assume that the scale length for

variation along the magnetic fie’fd, VA/'J. is comparable with £ i,e. Kk, > “)/‘(n .
Then (7) implies

Er [br ™ (-ku/‘a)vqt = (k“\fn/a))\/“ > Vg

and (8) implies

Ev[br ™ Dk << V,
E, = (k. /k. )E, «E,

Thus the only way that the equations can be congistent is for E_ to be small
and b_ to be small. To the order of approximation we are using equation
(6) then becomes

i, il Blee)f v BN 0 (@

which is decoupled from E_. The resulting oscillation has rapid phase variation
in the u direction; the magnetic petrturbation is transverse to this,

. P
60- = (L/‘D“w“u) Tur(kusu-) (")
and the variation along the field line is given by (10). To this arder of
approximation the other field components are zero. Comparison with (1.4.3) shows

that, in a uniform medium, the wave is identical with a transverse Alfvém wave.
The plasma velocity is then

- e

= ExB/8

unless

i.e.

v, = -E./8 (12)
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which is the equation for the guided poloidal mode. This equation
Because of its confinement to a field line such a mode is often called a is important in discussing waves propagating in the azimuthal
"guided" mode. . direction. .
1.6 Dipolar coordinates . 1.7 The ionosphere as a boundary
Two special cases are of importance when we use magnetic dipolar coordinates In the previocus sections we have shown that lomg-period hydromagnetic waves
(eqs. (1.4.6) - {1.4.11)). are guided accurately by a magnetic field line. These field lines are bounded
) at each end by the ionosphere. Frequently the wavelength is comparable with
(i) "Guided" torvidal mode the length of the field line, and the possibility of standing waves (like thuse

on a guitar string) arises.
1f the phase variation is in the V direction equation (1.5.10)

becomes Above about 120 km the iomospheric collision frequency is negligible at the
h 2 k of * z frequencies of interest. In the E-region between 100 — 120 km the ion collision
ﬁ' { jF T\—‘% 5-1 ; + & &0/\/4 =0 ¢ ') frequency is comparable with, or much greater than, the ion gyrofrequency, while
¢ Hhy o electron collision‘; can s5till be neglected. The net effect is that the
where we have written . ionosphere has an anisotropic conductivity, which is a function of height.

(L) We shall not derive expressions for this conductivity here, but it can be dome
by including a collision term in the basic equations of motion (1.2.1) and

Assume that 5 6,6 6 = 2 (1.2.2) and making appropriate approximatioms. This results in a tensor
B = (a'- L /? ) 'B¢1, (4"' 3un'd) (3) conductivity so that - - )
L&}

and 'f = fq/ LaL/T)P (t') d’ = g-_'E
Then o 2p-n where .
\{‘L = (6% /}("Pq) [ 9 ((&-3:.0,‘9) (S‘)
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where (1.4.5) has been used. Now make the substitution 2=ces® 0 ( %)
and use (1.4.9) ~ (1.4.11) for the scale factors. Equation (1)

becomes ag_g, et (-2 E, =0 () %
z* L4 > Here OF and ¢, are the Pederson and Hall conductivities,

T, ® - .
?/z = ppdtal Fay, /Bq, &) Now let ¥ be in the x-z plane and have dip angle’X as shown. Then equation
The only requirement for this equation to hold is that the phase (1) may be written
variation in the ¥ direcrion is on a length scale small compared
v_vi::h all cother lemgth scales. It is interesting that this equation
iz often derived on another assumption. Because of the cylindrical
symmetry of the dipole field a cylindrically symmetric solution
with 9/2¢s0 is possible. Equation (1.5.6) then has Ky z Mp = ©
and ig decoupled to give an identical equation for the toroidal
mode, In this solution the oscillation is seen to be that of a
complete shell. This is unnecessarily restrictive; it is omly
necessary to have the phase variation in the meridian much larger
than that in azimuth.
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where

(ii)} "Guided" poloidal mode Tranaform to the (x,y,%) system getting

If we carry out exactly the same procedure, but choose the ¢ direction i
ag that for which phagse varies most rapidly, we get for % &N
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If we now regard the ionosphere as a region in which no vertical current
can flow then jz =0 and .

t a1t
R N - T e X+ $ra I
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Using this expression for E_ we can express j _, j_ in terme of E E :
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. The approximations hold if &), ¥ unless tanX <& oF log
They are then valid except very near the equator. ’

Thus
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Now oftén" the thickness ‘of the “fonosphere. is small compared with the waveleng'tﬁ
along a field line and it is convenient to work in terms of a‘E’hin sheet

current. We assume that over the thickness of the ionosphere B is constant
and thus so is T (why?). Then

= (e ({7 ) () o
r,)” . (Jg i j' o fewx o Je\Ey,
or
T, /= T, /8% (9
= 3
Iu Z, / S A Z\v
where ZM Zﬂ are height-integral Pedersen and Mall conductivities.

In ord?r to discuss the effect of the ionosphere on a signal which originates
above it, we follow closely Walker et al LJ.G.R. B4, 3373-1979]
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It was first recognised by Dungey {1963] that for signals varying in the
horizontal direction, on terrestrial length scales, currents flowing im
the ionesphere would effectively screen that part of the magnetic field
that has a vertical component of its curl from the ground. This can be
most easily seen by considering Maxwell's equaticns in the free space
region below the ionosphere. We now adopt a new rectangular coordinate
system (x', y', 2'). This is rotated abouc the y axis of the (x,y,z)
system, so that in the northern hemisphere the z' axis is vertically
downward, and the x' and y' axes point magnetic morth and east,
respectively. The ionosphere fills the region z' < O, and the region

z' > 0 is free space. For the time being, we ignore the ground plane.

We assume that there is-a hydromagnetic wave incident from the ionosphere
on the z' = O plane. It is partially reflected and partially transmitted
there. This wave can be Fourier transformed spatially. The resulting
Fourier components are plane waves with wave normals in vertical planes .
making various angles with the magnetic meridian (the x'-z' plane).
Consider one of these Fourier compoments. We adopt a local coordinate
system (¥ M,{ J, chosen so that the € axis coincides with the z' axis
and is vertically dowaward and so that the wave normal lies in the (¥-%)
plane. The assumed time variation is exp (iwt), and the dependence on 3
is exp (-i k,f ). - Below the ionosphere, where {> © the dependence on £

of the transmitted wave will be exp (-ik, § ), where . (8)
9/3;5 ":kg 4 7/3.(;“5*;}')/93!0

T 3
k‘ + k! = (“}/")1
Now,, in Maxwell's equ‘afionqg ebaiw, E

The equations, curl E = —9 /5t aced cunlh= CYIE /M may be written

N . L3
= £
d(( b,“ { (/<) x

;k{ Ep* -.'.ob!

g rine, b cikhrikh s TG Ey (D)
i Eq sl - ikeb, = ((ef€) Eg
These separate into two sets, one involving b’;,b , Eﬁand the other EffE(’b“) ;
f = -wob % E <
ke Eyz-oby  Eeub } (®
Ryl e (I e
by = G/VE, by s ~EFVE i O]

-k R
o B = Eg = b

= -
The first of these sets (the E, polarization) has E and curl b perpendicular,
to the plane of incidemce; the second (the b,,_' polarization} has P and curl E
perpendicular to the plame of incidence.

Now, for pericds of the order of hundreds of seﬁonds the quantity ( e/ e )‘

on the right-hand side of (6} is about 10-20 mw™¢ (corresponding to free space
wavelengths of about 10° km). The quantity k; , however, dependeé on the horizontal
length scale imposed by the boundary conditions at € = 0. This is typieally of

the order of hundreds or thousands of kilometers. For any length scale less

than, say, 10 000 km, K 1o v Wt ‘

Thus for all terrestrial iength scales the right-hand side of (6) is negligible

and L
k‘ [ g
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with {&{{ and {k;gbcth very much greater than ayﬁ:.

Now consider (9). The valiue of bq is of the order of nJE}/Lfff

which for length scales less than 10 000 km is less than & x 10 E,

E; is the horizontal component of the field in the plane of incidence

bélow the ionosphere, and boundary conditions at the ionosphere require

that E_ be contimucus across the boundary. In the icnosphere its value_

is at most about 1071 v o7, and thus below the ionosphere, LI x 107, T

It is reasonable to assume that b, within the ionosphere is typically

10 - 100 nT, so it is clear that this field must be reduced essentially

to zero at the boundary. The implication is that ionospheric currents flow to

screen bs from the ground. We note also that (8) implies that [& f AJ}hﬂb fk ]
~ k [ A 4

Even with bg as large as 100 aT, Ey does not exceed 4 oVl for length acales
of the order of 100 km, . Thus both Ea and ba, are negligible below the
lonosphere. The signals below the ionosphere are dominated by components

of the electric and magnetic field in the plane of incidence, and these
have horizoental curl only. The electric field below the ionosphere is

a quasi- electrostatic fringing field matched to the electric field Ef

in the lonosphere.

If the ionospheric conductivity were isotropie, this would be the end of the
story so far as magnetometer observations of the pteviously deseribed
hydromagnetic resonances were concerned. Since by et and is screened by

from the ground, the signals observed on the ground would be negligible. However,

several authors have noted that the effect of the anisotropic icmospheric
conductivity is to rotate the horizontal component of the magnetic field

through 90°, thus supplying a b which can be observed on the ground. We

present here a simplified picture of the theory, whichis adequate for our
purposes and show the essential features of the problem.

Consider that the E region of the ionosphere may be regarded as a thin layer
in which sheet currents may flow. It is characterized by a height-integrated
conductivity tensor of the form (5), The closure current whichshields b

from the ground is the Pedersen current. It is continuous with the fielR—
aligned currents that must flow because curl T has a component along the
magnetic field. Associated with it is a Hall current flowing at right angles
te the electric field. It is this divergence-free Hall current that is the
source of the bs seen below the ionosphere. Thus b changes from being
esgentially perpendicular to the plance of incidence above the E-region to
being essentially within the plane of incidenmce below it. This is the
esgence of the explamation of the rotation of the polarization of b. The
implication is that if one measures the Hall current in the ionosphere, one
should be able to deduce the magnetic field on the ground without considering
the Pedersen current, or any field-aligned current.

To sum up, the horizontal componment of the dominant magnetic field is rotated
through 90° with respect to that abowve the E region, while the horizontat

component of the dominant electric field i{s not so rotated. Additional electric

and magnetic fields are present, perpendicular to the plane of incidence, but
these are negligibly small.

1.8 Standing waves

As an example of a standing wave we consider a pure toroidal oscillation with
b=3. As a start we consider the problem with an infinitely conducting
ionosphere. Then €,28 at the boundary. We will solve this by a standard

perturbation technique (e.g. Morse and Feshbach, p.1002). With a slight change

of notation equatiom (1.6.6) becomes

Here the origin of z is at the foot of the field line in the southern

)

hemisphere rather than at the equator. E represents the scaled toroidal

electric field and = =5m¥. The equation may be written

€, + {‘bz“ %’-,,'(3)]5.\ =9

A2+

z

where

Mz s 3e-iz) - Ya- i)+ (245,

The exactly soluble problem is
T
d i" T 5 =0
;11. + q’v\ “h

with the same boundary conditions, having solutioms

Q (2y- BT7] s (WU2/2), nef,23--
with the eigenvalues ¢, being given by

q.,:' T (’\_‘T/zo)t

and normalization s5.t.

fﬁbgh@mdt = s“‘W\

The first order perturbation solution is

(>
(3

(&)

(f.‘)
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and q}ﬂq.m 5’? Mpn
g 8.5 wre = 8% e b

where

z’
Mon = L ép(-..) M @ (2) dz

It is easy to see that this integral is bounded, Let é be the upper bound 0f1
Then for sufficiently large p the terms in the series in (8) are less than R/P

and the series converges.

Now consider the n = 1 mode:

b 2Tz x CL P '
M, % J: S (E) {3z Lz)-3(mim) '+ (2-42) [ o (1)

()

()

Man
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Thus, from (12)

[ Z
me ) (- B (4 b2

Thus the first eigenvalue is given, from (6) and (7} as

A R Y AR Sk Ao

2.467
T ST 3i- 036y 0.233g - 0.01805° (:;)

The first order perturbation for the n = 1 eigenfunction is, from (8) and (5)

6,(1):J§°{ﬁ; q-':;:- My gr 3323; - “'_'iqu;;—"-?*w--f (15)

& af Ze
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(The even order times in the series are zerc from the symmetry of tl:xe problem).
The series converges rapidly, and a high degree of_accuracy is obtained by
taking only the first term. In order to assess thie accuracy we shall evaluate t\",s
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[
[_"f - gmy o elw
160 1z + "g};

+iw

(_-u}



_15_

2. T A fita 7
9w 4 = [9‘,‘: (6m9+k9&;\0)] + 5]9‘;,,*9,:9 - 2] 8wtpus
=N T -Rihy B -hh
3f Al In¥, et usw _i,g[_ﬂ_rf“ 578 &m]
=E[8% A T S A 5T vt o
3} w7 asnf sy 282.5"11‘]
=%l @™ FXy? FXy e (72)
Combining (18}, (15a), (20), (21}, (22) we get
. - | Gt . (i;_ 15y 4 (3_ 228 2815y ¢
M= A - e 5] L (f B 2, (2
ey
= S ot 0.2 “ ¢
o en 19s, + 0. 434 5, (214)
Thia
ERN QU 2 ‘1"'33_“.-__...}
BPJ: -2 {&& = E(o.t;ﬂ-o.lr%ofo.ua ‘a)% Fo
2y . on 3 -3 .
= E{ -z - (9.05'?0 - 0.007s, + 0. Uer?sp“)so Free 3%’ - f (2%

The value of the coefficient of sin{3W2/2;) is always less than

0.0570 - 0.0274 + 0.0618 = 0.0914. Thus even the unperturbed eigenfunction
is accurate to 10%Z,

Now suppose the boundary has a finite Pedersen conductivity ¢,

Ignore the
coupling into the other mode due to Hall conductivity.

At the boundary

bq = p E £, wiu (257

where &&=  is the dip angle,
and « the dip angle. Thus

’6.‘0' thg/h,) Fol s w T =0

2 the height integrated Pedersen conduectivity

or, since ’e"qa z ‘G/‘O) v" 3E, /D—z_ (7_‘)
LoVh, 1 ey
ot o T, Misca 32 7O f272)
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I

hy ) S |
Fe = 7V Vas3aTh T TV irz@int

Now
rﬁ-h o = 2 rM B
2 5 B
Pt TTRED
Al .
L 'I{::‘ St T T IVelp
Thus
(v %
{ ~TpEws %o
ot . .
[ 2€,
&, op & (z-4z,) 7z O
At z = Q
oV 2f,
€, (00 + wf(,!-'?-o ) =0
At 2=Z,
(v i
Zv(z,,) T oLz, (3% 2, ro
Let "
Z - wh, T 2o
0 &y,
Then Z, (o) "ig'(ﬁ)nao

. ( 2T,

Fozd i3 57 =0
are ‘the boundary conditions, and ¥ is small if & is sufficiently large.
Suppose now that the first mode solution for F =0 is

. 0}
E(o T Sa k( S
v

This satisfies diff equ with appropriate 4

% = 'TT"/&U
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Look for a solution with perturbed ¢ 3 Ev

ev-.: S [?'f(mo*.{)z]* m’qnﬁ"(a)?-

where %' and (H are small and terms of second order are ne lected, . Thus

£, % wq,m + (m+ q,ﬁ'f-)wv%)

2%5; - %, cas'w ST Cj(%,.f)

Substituting in the boﬁﬁdary conditions
z:0 n o+ f-'{cbw:—a
R
222 s {04n) o T4 w0
(Of, =243
7z 2i%/z,

Thus g = 40U+ = T (10 1)
o gz 1 B s

. VT 27 me.
= S ;:‘ +wm (-—-I)m*—-
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Now

- Thus
; v - l]
- Uﬂ%wﬁi - f*oEL Qfﬁ

rdl‘\.zgﬂ
L g i p; -
o i ,ﬁakzlab‘zo )
. T":. .—&
E’\): e = o+ f‘o Z-.'nq"-o (._-t) i s (LQ)

These can be combined with the expressions for infinite comductivity.

1.9 Reaonance theory
—

So far we have assumed that, if k* is small enough, we can completely
decouple a field line oscillation. We describe mow a problem in which there
ig coupling between adjacent field lines.

Work done using magmetometer chains has shown that the polarization of a

Pc 5 geomagnetic pulsation is 2 function of local time and of station

latitude. This led Southwood (1974) and Chen and Hasegawa {1374) independently -
to propose a theory of hydromagnetic resonances to explain the magnetometer

data. This theory (hereafter SCH theory after the initials of its originators)
was successful in explaining the magnetometer results and made further
predictions which could not be verified by magnetometers because of an inherent
lack of spatial resolution due to the effect of the earth-ionosphere cavity

on the signal.

The basis of SCH theory is as follows: It can easily be shown that, in a
cylindrically symmetrical geometry, magnetic shells can oscillate toroldally
with eylindrical symmetry independently of adjacent shells. The plasma motion
is thus everywhere in a direction perpendlcular to the magnetic meridian plame.
The frequency of this toroidal osciilation is determined by the plasma density
and by the length of a field line. In an ideal case the ionasphere is a node
of the electric field but if the ionosphere has a finite»conductivity the
oscillation is damped. The natural frequency of oscillation is a momotomic
decreasing function of L except in reg1ons where the plasma density changes
rapidly, such as the plasmapause. It is assumed, in SCH theory, that, as
illustrated in the figure, the solar wind sets up monochromatic waves on the
magnetopause through the Kelvin-Helwholtz instability. These waves drive an
oscillatory motion in the magnetic meridian, decaying with distance from the
magnetopause, but penetrating deep into the magnetosphere. Because of the
dipole geometry this motion is coupled to the toroidal motion. If the natural
frequency of toroidal oscillation matches that of the Kelvin-Helmholtz wave,
resonance takes place. The resulting motion of the plasma in the equatorial
plane is shown in the figure and maps down to the ionoaphere.



Sehenutic diagram of SCH jne-
chanism.  The solar wind causes a
suface wave on the magnetopause.
The fiehilines A. B, C, D, F, ¥ Gmaove
asshown.  Tiie toroidal frequency of
T3 nnarches the wave frequency leading
0 & large tocoidal component, The
pelarization changes aeross the res-
onange.

Let us return to equations (1.5.1) - (1.5.5}). Assume a dipolar geometry with
phase varying with ¢ as exp (-imf). Use the substiturions (1.6.2), and (1.6.9)
and eliminate by) H k?‘; getting

h h a - I.M;lp N ai
kit JRSC/UVRNESE SR CS R SN

he 2 f- ¢,
v

We assume that we are near a resonance in the toroidal mode, occurring over a
narrow latitude range and as a first approximation we assume that the equation
(1) decouples. The left~hand side is then identical with the guided toroidal
equation (1.6.1), and has an eigenvalue given by (1.2.16) and (1.8.28}),

and eigenfunction given by (1.8.29). To the next order of approximation we
assume that the right-hand side of (1) is not exactly zero, but amall. The
actual eigenvalue will then differ from that obtained by a small amount so
that equation {1) becomes

s vur h . 2f
(K= ky ) &, = - ot (i, B (3

L
where Kk is related to ¢* and depends on ¥ ., Equation {2) has the terms on
the left-hand side negligible compared with the right-hand side so that

. ?
B%" {tmi’v-b ‘;‘SF:O {Lr)
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Now if ,'Lv ,L-q ,L\-,.- ara all slowly varying.functions of W
cowpared with £, Jf‘?J Lt we substitute from (3) into (4) to get

& (ikif’foz)fvf =0 (2
Thus Ev - A Li) /KZ(\J) (G)
where ‘(L?- ket ‘(ol and A(z) is the eigenfunction (1.8.29)., There is a

small error due to the neglect of the dependence of the scale factors on V.
Now, to this order of approximation

2%y

'b\? —iue‘,

X

L A{-LJ/.'{

L& = —im Ay | r,% + Bof

Y]

If the equations are linearized so that
KL ~oQa (\)'Va)
where v' is complex because of losses in the ionosphere)

EQ ot 6«(\7"”0)

and

if B is zero.

As V' varies through Qf'io) this leads to a resonance behaviour in £, as
illustrated where suitable assumptions have been made alout A and B.

frwp Phase
s & -

<
<
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2. The earth-iomosphere waveguide
2.1 Natural waveguides
Waveguide mode theory can be applied to radio wave propagation along
elongated structures whose transverse dimensions are comparable with
the wavelength and whose properties do not change substantially in
the direction of the elongation for many wavelengths. Familiar
examples in the laboratory are:
(i) Microwave waveguides.
(ii) Coaxial cables.
(iii) Transmission lines.
(iv) Optical fibres*.
Examples of natural waveguides are:
(i) The earth ionosphere cavity. (Wdit,1976 , Budden,1961b)
Between the conducting ground and the iomosphere v.1.f.
(f = 2 - 100 kHz; X = 150 - 3 km) radio waves can be
trapped and propagated to large distances.
(ii) Tropospheric ducts
Very small vertical gradients of density in the troposphere
can provide refractive index gradients which guide v.h.f.
waves (™ 100 MHz) over the horizom.
(iii) whistler ducts
Field aligned ducts of ionization in the plasmasphere.
(iv) CGuiding of waves by electron density gradients in the ionosphere
or at the plasmapause.
In this section we shall consider the theory of guiding of
radio waves in such natural waveguides under idealized conditions.
Before embarking on the atudy of guiding we summarize some
properties of waves propagated in a uniform medium.
*

The transverse dimensions of an optical fibre are large compared with
a wavelength but they are included here as an example of 2 dielectric
guide, which has analogies in geophysica.
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2.2 Maxwell's equations and constitutive relatioms

iut g0 that 2 =i w.

In all that follows we assumetime variation e 5T

We consider a non-magnetic dielectric medium with dielectric tensor
K. Maxwell's equations, in the sbsence of curreat and charge
densities may be written

vxE=-ik®B 4}

VxB=ikEKE (2

§.I. units are uaed but, following Budden (1968), we make use of

a magnetic field variable
@ +
=c B (N

which has the same physical dimensions aa E, thus retaining some

advantages of Gaussian units. We have defined
k = wfe, (4)

The dielectric tensor depends on the medium. In free space it

is simply
1 0 0
E=lo 10 (5)
o 01
so that equation (1.2.2) becomes
7xg =ik E (6

Similarly in an isotropic dielectrie, characterized by dielectric
constant K

Vx‘-B.=ikKE (7
For a magneto~ionic medium

K=L+H 8)
where L is the unit tenmsor and M the susceptibility tensor given by
Budden (196la, eq. 3.24).
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) In an isotropic plasma € = 1 - X (Budden, 1962) where
2.3 Plane waves in a uniform igotropic dielectric ’ .

We assume a harmonic wave propagating in a direction defined by a X = 2 (9
o .

. . - . . .
refractive index vector M, so that spatial variation is of the
form Very often the boundary conditions determine the spatial variation
on a plane. In guch cases Sl and Sz can be regarded as given.

I
exp {-ik p.r}. n Equations (2) and (8)  require

Where it is necessary to consider a particular coordinate system Q@ + 'SIZ. . Szz ceml-x

we shall denote the components of _1: by or
2 =1 - 2) -

. ) q 1~ (87 +52) - X (10)

u=xsl+ysz+2q. (2)

Thus if the x and y spatial variation ig given the z variation is

From (1.3.1) the operator V may be written determined.

. -
vVE=-1kun (3) 2.4 Plane waves in a uniform anisotropic dielectric

When K is a tensor we can carry out an analogous procedure. The
Thus equations (2.2.1) and (2.2.8) become

xE =g )
xé;-i{ﬁ (5)

details will mot be given but can be found in Budden's (1961a) book,

For a magneto-ionic medium we find that y depends on X and Y where

Tt T

¥ = uyle, (1}
We can find the value of u in terms of K by first taking the scalar When S, and S, are given we can find q from the Booker quartic
1

- :
product of p with (1.3.5) getting equation (Budden, 1962, eq.13.13).

u.E. =0 2.5 Angular spectrum of plane waves

Consider a field component represented on the plane z = O by a

... + \ O
This implies that E is perpendicular to y while (4)  shows that & suitable function £(x,y). Then £(x,y) can be Fourier analysed in

. . > * > . .
18 perpendicular to u and E and §, @, #form a right handed triad. space 50 that

Now take the vector product of U and (1.3.4) getting
PR -ik{8.x + S,¥)
£(x,7) =~ £= /[ F(S,,5,) e L 27 gs, as W
N 4m? 1°72 . 1772
ux8=- w2k, (7 -

) ) o . iiee T (_}_ ) E) i (+ E) PO where F 'is the double Fourier transform of f. Equation (1)
where we have us e vector ldentity u LEE A represents a superposition of quantities which vary harmenically

and equation (6) . For consistency of (5) and  (7) with x and y on the Z = O plane. We have seen that the z variation

of each of these quantities is determined through (2.3.10) or its
pt o= e, (8)

equivalent in an anisotropic medium. Thus the field component

varies throughout all space as
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-lk{Slx + S,y + q(Sl,Sz)z}
dSl dS2

(2)

k? = .
£(x,y,2) = 5 Lj F(5),8,) e

This is a superposition of plane waves propagating in all the possible

directions defined by the values of §; and §,. It is called an

2
angular spectrum of plane waves (Clemmow, 1966 ). Because q is not
single valued and there are branch peints on the 81’52 axes the
contour of integration must be appropriately chosen to satisfy

causality and the boundary conditioms at infimity.

Inhomogeneous and evanescent waves

In equatiom (2.5.2) 5, and 5, take all values between —= and ®., Thus
it is quite possible that q*, given by (2.3.10) could be negative if
512 or 82’ is sufficiently large. Thus some of the plane waves

in the spectrum (1.5.2) may have imaginary values of g. Thia
will happen unless F is zero in the range where this occurs. Let
us take, as an example, a wave in free space for which 81 =5 >1,
52 = 0. Then

£ i(sr - i

r=]
]
+

=+ ip ,
say, where p is real. The wave then behaves im space as
exp {-ik 5 tkopzh, 3y

Because of the sign ambiguity this wave cannot exist through all
space as the field components will become infinite as z + % =,
Suppose it is defined in the half space z > 0. Then, to satisfy
boundary conditions as 2z + =, we must choose the upper sign. The
resulting wave has phase depending on x and amplitude depending on z;
planes of constant amplitude are parallel to the x-y plame and.

planes of constant phase are parallel to the y-z plane. Such
a wave is called an inhomogencous wave. Sometimes the medium is
such that q can be imaginary when S is zero. Such a wave varies
in amplitude in the z direction but has no phase variation. It

is called an evanescent wave.

£

2.7
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Reflection and Transmission coeffcients for sharp boundaries
In and isotropic medium

In considering reflection and transmission at a plane boundary we can,
without loss of gemerality choose the orientation of the boundary so
that the normal to the boundary is parallel to £, and Che direction
of the wavenormal to be in the x-z plane (the plane of ineidence).

Then equations (2,3.4) and (2.3.5), with K = 02, may be writtea

I = T % = - 2
+q Ey %x +q v W Ex
= = - pd
s E.y gz S‘By wE, (§9)]
Bo- = p? - =93
tg®., sﬁgz u Ey + q_Ex SE, 7

i,e. there are two independent polarizatioms, ome involving‘gx, ﬁ%, EY
and the other involving E_, Ez,15y. The first is called trangverse
magnetic or TM polarization because 2 is perpendicular to the plane of
incidence and the second is calied transverse glectria or TE
polarization. If equation {2.3.10) holds, the equations are self-

consistent, and the last equation of each set is redundant.

Let us now consider reflection from a sharp boundary located at
z = 0 for various media. In each case the upper sign of g corresponds
to a wave propagating upwards and the lewer sign to a wave propagating

dovnwards .

In considering reflection and transmission at a sharp boundary we note
that, in order to match the boundary conditions across the boundary,
the incident, reflected, and transmitted waves must each behave in the
same way with respect to variationm with x and y at the boundary.

This implies that 5, and S, (or S in the case of §, = 0) must be the

1

same for each. This is an expression of Snell's Law.

(ix/....



(i}  Perfect conductor

z -

TE potarizationm

E1 + Er =0
¥ ¥
Define
JR )
RTE = Ey/Ey
t, i
T.. =E /E
TE Y/ Y
Here
Rpg == 1
TTE =0

M polarization

El T

+ E =0
*® x
i.e. i T
- + =0
B, B
Define .
R'm“?r"81
y ¥
€ i
Ty =B./8
™ By ¥
Then
By = 1
TTM =0
(ii) Two dielectrics
Medium 2 >
F; Medium |

The boundary condition is Ex’ Ey =0

(2)

(3}

The boundary condition is that the
transverse compoments of £ and i;

are continuous.

foviiiiins,

IE polarization

El + Er - Et
¥y ¥y ¥
-q Ei +q B = - q ES
1t 17y 2y
i.e. 1+R=T
-9 {1 -R) = = 9, T
s0 that _
S
E ql +q2 ‘
; (4)
TE q1 + q2 .

These are the Fresnel forrulae for TE polarization. The are
usually written in terms of u and 8, the angle of incidence
(see Budden 196la, eq. 8.23, 8.24).

M polarization
It can easily be shown that
) () = ay/u,?)
2
(qy /ug® *+ {ay/uy®y

2q1/u1’

R WAL R CTY T

2,8 Reflectiom coefficients as a functiom of z

In the previous section we have definmed R at the boundary z = Q.
We could equally well have defined the ratic of two field quantities
for an upgoing and downcoming wave at any other level. Consider the
example the TE wave at some Yalue. If the incident wave is E; at
Z = Q then at z = -h it is E; exp(- 1 k g 2), Similarly the
reflected wave is E; exp{+ i k q z). Thus at =z

R(z) = Er eiqu/Ei e—iqu
Y

= R(0) o2ik4Z : (1)

This is the rule for finding field ratios at various levels z.
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2.9 Waveguide modes - Heuristic ideas

As an example of how waveguide modes arise consider the case of a perfectly
conducting sheet. A wave is reflected from it. The diagram illustrates the
wavefronts of incident and reflected waves, The phase differenmce between
illustrated wavefronts is Aan,

Now along the lines AA', BB', the resultant field components have the same
relationship as at the conducting surface. A sheet of conductor could be
inserted to consider with AA', BB' or other similar surfaces without changing
the field components between the plates. The boundary conditions at AA' or
BB' are automatically satisfied, The resultant disturbance can be regarded
as propagating between the plates., Clearly the separation of the plates
depends on the angle of incidence of the plane wave on the boundaries.
Conversely, if we have plates separated by a distance h, the condition

for a wave guide mode is that as the wave is reflected backwards and

3 forwards across the guide, as illustrated by the
T AN ray ABCD, the phase change in moving from A to D
W
A0 -
e z_LSL
[

must be an integral multiple of 2w, This will

in general be achieved for a discrete set of wave-—

normal angles, corresponding to the waveguide
modes.

Another way of finding the waveguide modes is to note that a field component

in the wave has undergoue reflection at B and C. If R is the reflection

coefficient at B and'% the reflection coefficient at C, then the field

component at D is given by .

=% e

Ry e,"‘k” _

F R A

AT . L
'RE 311 e-;k‘b(h-z} e'”“if"‘ 6-‘k$l

1l

-}.iki/l'\

1
]

S RR e 3,

Since we require g’b= ‘99 this implies

Y —l{kcyk
RR 2 =]
e.g., Hwo_perfectly conducting plates. TE polarization
At

L= -1 =R
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e TR o

o _.1_k$l\ s dndr
g =1-5"= wnifkh = nn, Jak

The x-dependence of the wave is then of the form

24) {-ik JIonmleR >=j

Exercise Find the values of S corresponding to modes for a ™ mode between
conducting plates and for TE modes in a dielectric slab.

2.10 Locked and leaky modes

Consider a slab of dielectric with n 3 1. Such a medium ?an_sustain guided
modes, If we imagine crossing plane waves with angle of incidence greater
than the critical angle, it is possih!. to have a trapped mode.

cr=-st )
s

TN ()

Then the reflection coefficients for TE
propagation (for example) are

R=G-)/ly+c)
T-= zﬁf//GV“C)

The critical angle occurs for S = 1 and total reflection for S > 1. The mode
condition can again be written

R?{ e'-liki{l\: ]

. T .

i.e. -c) ~2ikgh

G- vk {3)
&)

This is an equation determining 5. There is no straightforward so}ution for

this equation. It is best solved numerically. In general there will be &

nvmber of roots, We shall net do a detailed computation but make some gemeral
points,

n=i Let

Suppose $ is real and greater than 1., Then € is pure imaginary and q is real.
In this case, when we can write

{%ﬁ%f’ = he'f ()

A is equal to unity. Thus along the real § axis, where 'ﬂ > 1, the mode condition
is

(P_ Q_kvl\ =3nT (5-)
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We thus find a number of modes in the positions shown. These are locked modes,
analogous to those for gonducting plates.

1z St

FE s
locked i
;; feak,

Az

When S is less than unity and real then A < |and we cannot find a solution for
(3). There are, however, solutions which have $ complex. These will lie on
the contour A = 1 in the S-plane at values of the phase given by (5). They
correspond to leaky modes and we briefly indicate the physical characteristics
of locked and leaky modes.

Locked modes:

If we examine the field compoments they all vary as exp (-ikSx) Yhere § is
real. In the medium above the slab, they vary as exp {-k[(1-5%) [z Ewhere the
-sign is chosen to satisfy boundary conditions at Z = +0. Similarly, below
the slab they vary as -!-,.p{i-kj{l—S)""h.]. A sketech of E is showm.

€ Voraliin  wnllin guide sltpansds s orolis £ wrcle .

Leaky modes:
If 8 is complex we cam write §= SY ~ (S

Cet {1-(8)-50) -2 55,3 "

i C «i G i) Seuy
Variatfion in the x direction has behaviour

.-t,g}')(—- kS, ) &xb("“‘ Sy ) e

Thus the amplitude decays with imcreasing x. Froio boundary conditions at
Z = +ta we might expect that above the slab it is necessary to choose the
negative sign for C so that the wave decays. exponentially with digtance from
the boundary. If this is done, consideration of the energy flux shows that
energy propagates from infinity towards the guide which is unreasonable,
The opposite choice satisfies energy flux requirement. We sketch planes of
constant amplitude {dotted) and phase (full lines)}. In the guide the
X & amplitude at A is larger than that at B, Tt is
% possible to show that the Poynting vector is
aligned with the planes of constant amplitude.
\ The amplitude at C is then determined by the
~ amplitude at A and that at D by the ampiitude at
// ~ ’{/ \s~ B. This explains why the amplitude must grow with
~ distance from the guide. Of course at great
distances from the guide interference with other

+
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modes must ultimately reduce the signal to zero at z = &

3. Excitation of waveguide modes

3.1 Introductiom

This section gives an example of the techniques used to study the excitation
of waveguide modes, We shall consider the particular examples illustrated
below and ocutline the treatment necessary. It is beyond the scope of these
lectures to treat mmerous realistie cases, Our treatment follows that of
Wait (1970).

2 .
l'\ t v lill He . lhq%f‘»‘
=z, — . f“o ar
a

Yok e

The case to be treated is a simple model of the earth—ionosphere cavity as
illustrated.

3.2 Use of the Hertz vector

We shall work in terms of the Hertz vector TF (Stratton 1941 §1.11). In
free gpace this satisfies the wave equation

r (&) T e "-F/Eo )

where p is a dipole mmen.t density and the fields are derived from ﬁthrough

E = ’.‘go'IT.'_s"V(_V? (>

B = i p /o) T e
Suppose we };ave a vertical point dipole source. We can write

p=%M&@ W

The z component of equation (1) is
' VI -Gl u_,_ = —M 5 [ (s

and the horizontal component of ﬁis zero. In free space the solution of this
is well known to be

T = 2 aupleike) (o)

Thus if the dipole is located at z = z_, a general solution of (1) will in
cylindrical coordinates have the form

Tr-;, f:l:Tﬂ:‘-‘ 'Q“P(_‘.k') + ""(thxi’) 7
YPe e (z-2 b

where f is a solution of the honogeneous equation - equation (5) with the r.h.s.

]



set equal to zero - chosen to make T‘;_fit the boundary conditions,

3.3 Angular spectrum representation

Consider a region of free space.

In the y-z plane the dipole moment per unit area is

P('j,?.)‘—‘ M §(y) 5("""23)

If this is Fourier transformed we get

Ply=r= t+r” ”""f’““g‘j+c(”a)f°‘%°“ )

The Hertz vector m the space x 7 0 is
” Aaap f-ik Sav sy v Clz2)] oS, dC (2

where
5‘?— = [~ S C

andgls either positive or negative 1magmary Now the surface current density
in x = 0 is iIP and the y—componenl of B is ér(bI i.e,, near x = 0O,

(;é‘a = (‘/Bb Sk (I.!A) k"/lnz”) fjw {—tk[gblj + (fz - °)J§ A5, lC (3

But from 3.2.,3

@, (ee)

-l oM, [ex
-wk S,‘)}Tyz'? A IT@* {-«'k (513+C(‘L-z°)]} ds, ofC ()

f

Comparing (3) and {(4)
<
A=-Lik/ens ()
Thus

bm o grter

i
T3 N myes fféa,r{-[k[ﬁnr%?fC(z-zb)J dsdC (€

This can alsoc be written im terms of the zero order Hankel function H( ) defined
by

Hot) = g [ ewlitewms) dg

where the conteur is as shown, i.e,
it runs from -W-im Lo T +i60,

Consider Hg‘)(ksf) - qJF fL P( ik i"“’ié) ;,,;;.",
Let )L.-.guhs‘, ~j=f~'nl.-9 , T-ou-b Then
HE (ks :#IC pliES Lo s y o) de
Let Seovw =5, , Swur S e fmns 5, /0]
i = S /s,
WO 7 [LF axp [ 9D o, o

Consideration of the mapping of the contour shows it lies along the real S,
axis in the negative direction. Comparing this with (6) we see

Tg_: LkM f H()(kS)Q#P[ tkC, Z— ]o{C_ (8)

where, in the § plate, [ extends along the real axis from -w to 0.

3.4 Solution for plane guide

Now we write the sclution in the guide in the form (3.2.7) and that
in the ground and ionosphere in similar form but without the source term.

oszeh: oo P L [ [0 R K s ) 4 0

240 ﬂia)?‘f C}(C«)&;k?cs.t Hc(kgf) dC {2)

220 cu _ f _(C)
The generalization of Snell's law to a medium with cnndrl;l;:tuuty requires that
g (- €5)"™ = (=™ = n (1-C0) ()

with ?.__(U__HE .:J)/;Er.) {s)
- Lot +‘fw)/c.€c.) 76)

We can now apply boun.dary conditions at the ground and ionosphere to relate )
4,B,G,I through reflection coefficients. The result in the free space region is

LM & o) ofC
T - ,?{L Fle) H (kp8)

z Hé‘)(ka)JC ()

whe;a(c) i} -akck( k0, (e _|k(.‘1)(€.'k<‘.(k-zn)+ ,Qi e—:kC(h-zh)) (1)
(I— «%Rl e-Z:kCh)
Q% = (n,,C~ ¢, )/(naC+ C& ) (%)

Q; = (‘ACC - C;)/(H;Cf Ct) (?)



Equation {9) is just the mode conditior and the integrand has poles at each
of the modes. The problem of obtaining the fields is solved if we
can evaluate this integral. We shall show how this is done in principle.

First transform the integral to the S-plane,

. ) .
WM T ey WY (k) (5/€) AS (ve?
z- 7 ¥ r

There is a branch point at § =+1 and we make branch cuts as shown.

There may be cther branch points, One
is shown

The contour must be closed in the negative half plane. It has teo run across
two Riemann sheets as shown. This means that the integral can be reduced

to a portion round the branch cuts and a residue series — the sum of the
modes.

1f the branch points other than § = 1 are well below the real axis the
branch cut integral is small.

The purpose of this section has been to show how, in a typical problem, we are
lead to a solution in the form a series which represents a summation over
wmodes with differsnt amplitudes and phases. We shall not contianue further with
the analysis. Further details are given by Wait (1970, p.139).

4. Excitation of earth-ionosphere waveguide by an external source.

4.1 Introduction

We consider here a simple model which relates to coupling between downcoming

?hist}ers and the earth-ionosphere wave guide. This follows the paper by Walker
1974).

A full treatment of the problem is algebraically complicated and the physical
principles tend to be buried in mathematical and numerical detail. Here an
analogous but simpler problem is discussed. The object is to treat a case
which is analytically tractable, but not particularly realistic, in order to
emphasize the physical interpretation of the mathematical results.
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The problem discussed is this:

A spatually confined electromagnetic wave is propagated downwarqs %n a semi-
infinite isotropic dielectric representing the ionosphere. It is incident
on the plane boundary of a region of free space. Below tﬁe free space region
is a plame perfect conductor representing the g{ound, a distance h below the
boundary. It is assumed that h is comparable w1ty or not much greater than a
wavelength. The refractive index of the dielectric is assumed to be large

The incident wave is represented by a Fourier synthesis of plane waves with
different wave normal directions. Transverse electric {(TE) polarlzatlon'
(electric field perpendicular to the plame of incidence} is chosen as this
allows a simpler analysis.

The initial stages of the treatment are similar to a straight—forwar@ treatment
of interference of plane waves in a thin film. The relat1ve1¥ unfamiliar
features arise from the spatial confinement of the incident signal.

4.2 Plane wave case

Suppose that an incident plane wave has its normal in the x-z plane. _For t@e
TE case E_=E_ =0 and B.=0. In the dielectric Maxwell's curl equations with
ot =i, Hoxs"ikS , omd =0 yield,

o £ . o) 1 £y )
e &2 (B, ) - st o /8.

Here E_ and ii*have been eliminated for convenience because the field components
E_ and” %, are continuous across any boundary in the x-y plane whereas £_ and
yiibare not. The quantity S defines the angle of incidenmce §)such that

9= H S gﬁ {2

Clearly S is the sine of the angle made by the wave normal with the z axis when
the wave is refracted into the free space region.

Two independent solutions of equation (1)} are

(&)-()e™ — Gl o
¥

9
and it is assumed that the boundary of the dielectric is at z = 0.

n

where

= () ()

The first of the solutions (3) represents a wave propagated tow§rds thg b?undary,
and the second a wave reflected upwards. The solution in the dielectiic is then

(3)- () <™ e (G )

where R is a reflexion coefficient to be found from the boundary conditions, and
the incident wave has unit amplitude.

Inthe free space region equation (1} is obeyed with g = 1. _The only solution
which satisfies the boundary cendition 53’043 2+ ~h (the position of the ground

lane) is
. E, { s kClrsh)
% = AT | 0 en kC(zsh)
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where C = Q- Sw_) [z 2

and T is a coupling coefficient to be determined from the boundary conditions.
The factor 2 is introduced for later convenience; it arises because the sinusoidal
signal is a superposition of two crossing plane waves each of amplitude T.

The boundary condition that E and Q are continuous requires that the right
hand side of equations (5) and (6) are equal when z = 0, The resulting expressions

for R and T are : i kCh = € e kCh
LG 3
a i‘t,‘f\Lka+C-unkaf~ (%)

(s)

. Y
T = Lq oo kCRh 4 CoankClh

These may be compared with the Fresnel reflexion and transdission coefficients
which arise when the ground plane is absent:

R - &~ ( o)

F G, +C
T = ﬂr_ (")
F 4,+C

An obvious difference in the interpretation of T is that ‘Rp‘f.’;‘f but —R+T # 1
Another difference is that, for [§]4 1, R and T, are both real so that their
phase is constant, This is not so for R and T, ~The dependence of R and T on 5
is of great importance.

The behaviour of R

Clearly (ol = | (n}

This is not surprising since the final reflexion takes place at a perfect
conductor and there are no losses. If we assume that Al {’szthen $>‘>C so that,

except near KCh = nT (%)
o= )
and p;‘a((z)elnﬂ. (,g}

Thus R and RF approach the same behaviour as q becomes large compared with C
unless {13) 1s true; the wave does not 'see' the conductor but behaves
almost as if it were incident on the boundary between twe semi-infinite media.
When condition (13) holds, however,

2= - (o)
PI\A(R) ?(.lnq.i)'ﬂ' (J?)

In the neighbourhood of kCH = nli the phase of R changes rapidly.. The greater the
difference between g and C the more rapid is this phase change. This

behaviour is illustrated im Figure la, and is important in the discussion which
follows.

and
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L ot

) pha {R} L

a4

Figure 1(a) Dependence on the phase of the reflexion coefficient on §
(

b) Dependence of the modulus of the coupling coefficient on §
(f‘l=‘0j he %/ a0

The bebaviour of T

If kCH is not near nT and g > then from (9)
T /(i o kek} Qo)
When kCH= nT
15
ITl =q/cC [1%)
Again the phase varies rapidly near kCH. The behaviour of the amplitude of T
is shown in Figure 1b. There are sharp peaks in the values of [Tfat kCh = nfF
which become sharper if q/C is increased. In particular it should be noted
that IT | can be arbitrarily large if q is sufficiently large. This is somewhat
surprising in view of the fact that the incident wave is of unit amplitude. The
interpretation becomes clear when the incident signal is spatially confined.
This is discussed in §§4'i,andk5.
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4.3 The reflected signal

Suppose that the incident signal can be represented by a Fourier synthesis of
plane waves propagating at different angles to the z axis. We may write for
the field components

E,S(u,z)

( B, () ’_j“p‘@ (ql, )"’?‘{'ikfgét-xo)—i(z-zu)]j AS ()

where we have assumed that the signal originates from some point &(WmJin the
dielectric, A(S} dS is the amplitude of the plame wave in the angular

spectrum with direction defined by S. When the wave is sufficiently far from the
source Rayleigh's method of stationary phase (see for example Jeffreys and
Jeffreys, 1956) may be used to evaluate the integral. This assumes that for a
particular value of S(S , say) the component plane waves in the angular spectrum
interfere destructively for most x and z. Interference is congtructive, however,
at those values of x and z where the rate of change of the phase of the waves
with respect to the direction of the wavenormal (i.e. with respect to S}

is zero. This occurs when

2 [ pbal®) - sGe) g Gemny] =0 (30

i.e. where

ex, = B‘% (z-2) - f;(w Al Caw

Equation (22) defines the ray path of the incident signal corresponding to § = 5,

Suppose now that, for § = SO, the ray intersects the boundaty at (0,0). ‘Then

vo- (), = = [& ()], G

so that we may write

o) <L l ik (sxmgn)] dS (e
g:f,("ﬂ')) - -'[. y(s)<%) Mh{ k(_S 4 )}o‘ 4

{ vy

where

By = A(s) ep [iklSn,-q ]

and the phase of t;is independent of 8. By choosing the time origin suitably 4
may be made purely real.

The reflected field components are then Found by using the formula (8) for the
reflexion coefficient and changing the sign of q in the exponential:

H .

E,(%2) . J\R(‘:) 453 ("b) epl-iCuag )] s @0
B.u (’)1)

A crucial point Yin the argument follows. We apply the method of stationary phase

to the reflected signal in order to determine its ray path. If the phase of
R is WW(S) we obtain for the ray path

?fgl = k (3L+ g{:
2

e -3 Y (22)
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We recall that the incident ray intersects the boundary at x = 0. The
reflected ray intersects it where

e £t

Ae shown in Figure la, *Yﬂks is small for most values of 8. Thus incident and
reflected rays intersect the boundary at the same point. This is in agreement
with the behaviour of the infinite plane wave discussed in 3. The behaviour
is as if the conductor were absent. However, for those values of 5 defined by
condition (13),4WHS is large, and, if M), Vs 1s very large. The
reflected ray intersects the boundary at a great distance from the point at
which the incident signal arrives. This is interpreted as meaning that the signal
is trapped in the waveguide formed between the dielectric and the conductor
and travels a great distance before emerging from it., The interpretation is
strengthened by comsidering the condition for a wave to be trapped in a
waveguide mode between two conductors. If the signal is treated as two
crossing plane waves then the total phase change as the wave is reflected back
and forth over one complete traverse of the guide, including phase changes of
on each reflexion, is an integral multiple of 2r, i.e.

2kCh + T+ = amT

or

kCb = nr (‘2‘})

which is the same as condition (13).

4.4 The signal in the guide

4 field component within the waveguide can be represented by e
= o : ( $om kC(Teh)
& (= — ke Gr f Lo *
3 (or) ): [ 90 TO e (o rcam 46 ()
Bu("}‘) &

where the contour of integration is the real axis (distorted slightly if necessary
to avoid any singularities). Here the method of stationary phase is less
convenient. In order to evaluate the integral it is more comvenient to use
techniques standard in waveguide theory.. The behaviour of the integrangin the
region of interest requires discussion.

Assume that 3{3) which is specified by the source, is an analytic function of §
in the region of interest. The function T(S) has branch points at § = %}

and 8 = T . Assume that at large values of S the amplityde of ‘3 becomes very
small sothat where 5 =+fK it is essentially zero and there is no contribution
to the integral for values of S greater than this. At § = ¢/ the functions

T(8). sin kC{z+h) and CT{S)ceskCesh) are analytic even though this is not true for
T(S). The contour of integration of the integral (30) can then be taken to
caincide with the real axis.

Figure 1b shows the behaviour of T{S) on the real axis for a typical case, Tt is
because of the sharp peaks that the method of stationary phase is not convenient.
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It can be shown that these peaks are associated with peles of the function T
which lie just below the real axis for § O, The positions of these poles
are given by the zeros of the dencminater of expression (9).

b, kCh = iC/4,

L
sexpas o T T

4 — 05 10

12 .3 .
{ Ixl 1 L L1 1 la Al
3 05 Iv:; L O~ real

Figure 2 The poles of T(S) in the complex $-plane ( = 10; H =

the contour is closed in the lower half plane; poles contribute
to the integral. x 0 : the contour is closed in the upper half
plane; the poles (x) contribute to the integral.

"
For l%’dll we note that kCH must lie near nT i.e. § must tie near {l-ﬂ"'ﬂ‘/'tl F)
To first order in Sjr condition (31) yields for the value of § corresponding
to the nth pole.

N “L.Iri.
Sl“_ = % [(’ - “1771/)“'"‘.)"‘— — pkin t‘_ WS VR ) ] (3’-)
When n*n*/ k"R M thastilion, is bedler wnaftes

Wt
Sp = t RN (n‘ﬂ?k’kc -1y

The expression breaks down when lS;I is large, i.e. when KR 2 W@l

The poles are shown for reasonable parameters in figure 2, The integral (30)

can now be evaluated by closing the contour in the lower half plane for x » 0 and
in the upper half plane for x £ 0. The value of the integral becomes a residue

series () & Sk f U me kc»\(z’;‘)
;2 oy | = 727 = 9(5.) rea(T ()€ Co o) |8

i (“1"1/"11‘1. - )w.] (.55)
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for x 3 0 or 2 similar series summed from -® ¥o -1 For x'¢ O., Each;term
corresponds to a waveguide mode varying in the x direction as exp(—(kS >}
and if {}S) is known, the amplitudes of each mode can be computed.
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