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(Meaning of symbols used unless ctherwise stated)

Alfvén velocity (B,, B,)/(up)?, see equation (1.3)
modulus of A .

r.m.s. valuc of 4

coefficients in cubic pelynomial, see cquation (B4)

basic magnetic field vector, see equation (1.3)

modulus of B

(x,y) components of B

discriminant associated with cubic polynomial, see equation (B4)
function specifying the latitude dependence of B2, see equation (A2)
r.m.s. value of G

(x, y) components of wavenumber vector K, see equation (1.1)
components of wavenumber vector x paralle] and perpendicular to B,
see equation (2.4)

ki Is integer characterizing longitudinal dependence of the cigen-
function of a slow mode and 2=/l is angular scale characterizing
variation of N with v, see equation {A3)

amplitude of eigenfunction of siow mode, see equation (Al)

4K — KY)[Ko M w? — K3 + cos 8}/w sin 8, see equation (2.8)
circular polar co-ordinates (x? ~ Y32, tan~Y(y/x), see equation (B1)
radius of curvature of thin flgid shell, see equation (1.2)

ume o .

group velocity dw/éx, see equation 3.1 _ :

(x, ¥} components of U, see equations (CI) and (C2) -

(Y, Y} components of U, see equations (C4) and (C3)

. {r, ¢} components of U, see equations (C7) and (C8)

local eastward and northward Cartesian co-ordinates on the surface
of the sphere, see equation (1.1) '
local co-ordinates parallel and perpendicular to B L

rate of change with respect to latitude of the radial componcat of £,
see equatton (1.2}

a hydromagnetic Rossby number, see equation (2.2)

2w + k/x%, see cquation {C3)

2w + (Kcos 0 — Lsin 6)/«2, sce equation (C6)

2w + cos ¢/x, see equation (C9)

- tan~(B,/B.), see equation (1.4) . e _
‘general two-dimensional vector wavenumber, with components (k, Do

(K, L}, or (x, ), see equations (L.1), (2.4) and (B1).
modulus of x

AR

Wy
@y, W, wy
Wy

Q

magnetic permeability, see equation {1.3)

density, see equation (1.3)

general latitude, see equation (1.2)

latitude at which beta-plane is tengent to the sphete, sec equation I

. polar angle tan~*(y/x), see Figure 1

general longitude, see cquation (Al)

gencial eigenfrequency, see equation (1.1)
eigenfrequency of slow mode, sce equation {Al)
critical frequencies defined by equations 2.10), (2.1
defined by equation (B5)

basic angular velocity of rotation, see equation (1.2)
modulus of 2

Note: Ordinary dimensional quantities measured in SI units are used in equations (1.
to (1.10). Quantities used in all other equations are dimensionless, being based -
(4/8)* as the unit of time and (48)™* as the unit of iength unless it is sta:

otherwise.






Hydromagnotic Waves on 2 Beta{ﬂane:
A Numerical Study of the Dispersion Relationship

by R. Hide, Sc.D., F.R.S. and M. V. Jones, B.Sc.

SUMMARY

The nced for a thorough understanding of effects produced by Coriolis forces on hydromagnetic waves
in a hounded Nluid arises in various theoretical studies of rotating magnetic astronomical bodies (notably
the Farth, Jupiter, the Sun and certain stars, incluaing pulsars), Stewartson and Rickard have recently
given an exact thearctival analysis of slow waves in a thin rotating spherical shell of an incompressible

i flgid pervaded by a uniform mdenetic leld directed (in its undisturbed state} paratie! to latitude curcles.

JThe present paper shows that an approximate dispersian relationship derived previousty by Hide on the

hasis of o simple physical model agrees satisfactorily with the exact analysis, making it possible to exploit

, with <omce conhidence the explicit nature of the dispersion relationship and rendering & numericul unalysis

“of the refationship worih while. The numerical analysis 15 greatly simphiicd by the circumstance that

0 == tan-* {8,/ B.) {where 8, s the northward component of the basic magaetic ficld and B, is the castward

lcompanent) is the only free parameter when the unii of time s [Repen LB+ 8,4) and the unit of

Jength s TROHT = 5,5 wp ¥t where w {5 the magnetic permeability of the fluid and p its density, R s
the radius of curvature of the shell and @ the angular specd of rotation. The complicated propertics of a

wave of angular frequency = and wavenumber k= (K, [y depend inter alic on whether w « wy, wy) <w g

wy OF @ T ws where wy, =2 16119, sin 15} and w; = [6119 cosiiy (in dimensionless units). In the Lt
when the wavelength is so small that Coriolis forces are negiigible {more precisely when a hydromagnetic
Rossby number v =z 2{kcos 8 +/sin 8)<" & is much greater than unity), w = *{k cos & +/sin ).
This is the dispersion relationship for ordinary non-disperave Alfvén waves—which are characterized
by equipartiuon betweer magnete and Kinetic engroy —propugaling along the magnetic lines of force in
opnos.c directons, In the opposite Bmit, v S 1, @ = —A/x7 0 o = <2(k cos 4 +{sin 3)3/k; the former
corresponds to a (last) Rossby—Haurwitz wave, in which hvdromagnetic effects arc negligible, and the
latter 10 a slow hybrid wave, which is characterized by an cxact balance between the torques exerted
on individual fluid elements by Coriolis and Lorentz forces. The ratio of magnetic 1o kinctic energy
is ¥ fo: the Rossby-Haurwitz wave and v °* for the hybrid wave,

1. INTRODUCTION

‘Hydromagnetics” is the study of the flow of electrically conducting fluids in the presence of
maznetic fields (‘magnetehydredynamics’, "M H.I)." and ‘magneto-fleid dynamics’ being
alternaiive terms for the subject). Hydromagnetic phenomena are hard to produce
with availlabie fluids on the limited scale of the taboratory, but they are common on
the cnormous scale of cosmical systems and manry astrophysical phenemena are utterly
incomprehensible except in terms of hydromagnetics, Future progiess towards a satis-
factory explanation of the Earth’s magnetism—which arises in the liquid core of the
Tarth where the nesessary electric currents are produced by fluid motions that arc strongly
influenced by Coriolis forces due to the Earth’s rotatien—uwill be inseparable from develop-
ments in the hydromagnetics of rapidly rotating fluids, which is an exciting and com-
paratively new field.

CROHIDE AND M.V JONES

* . . The problem discussed in the present paper was first studied by Hide!* who propos:

a local dispersion retationship for hydromagnstic waves I u rotating spherical hom
gencous fluid shell of outer radius K. making use of an approximation whichis cquivale
when tie shell is thin to the Rossby-Haurwitz ‘beta-plane” used in dynamical meteorele,
and oceanography (Rossby et alii®). Suppose that the ‘beta-plane’ is tangent to the sphe
at latitude v = v, and denote by x and y the local castward and northward Cartesian ¢
ordinates. When the basic magnetic field 8 is independent of v and y und any basic {lu
Jow relative to the rotating frame is slow and uniform. then the dispersion relatiant

for two-dimensional waves propagating in the (x, y) ptane relative to that basic flow
w4 Bhof k¥~ (A w)® = 0. S

A

FiGure 1. Co-ordinates of a point C in wavenumber space

Here w is the angular frequency of the wave, ¥ = (k, [) is the wavenumber vector (30 1
x = (K + 1)} is the total wavenumber, sce Figure 1},

B =2Qcosu (R, -

the rate of change with respect to latitude of the radial component of the Coriolis £
meter, & being the basic angular velocity of rotation of the svstem, and

A= (B;, B}, e
a two-dimensional vector with magnituds 4 equal to the Alfvén speed based on (B~ &
inclined at an angle

—

§ =tan=(8,[ 1) B

to the x-axis if » denotes the uniform magnetic permeability of the fluid and £ is umih
density (all in ratiopalized ST units).

Equation (1.1) should be valid when the wavelength 2njx iy much less than the lor
of a great circle, so that

xR>»l, L E

* Superscript figures refer to the bibliography on p. 13.
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HYLROMAGNETIC WAVES ON A BETA-PLANE

and evidence that this is so in the nen-hydromagnetic case (4 = 0) can be found in accurate
studics of cigenmodes of a thin spherical shefl (¢.g. Longuet-Higgins®), when equation
(1.1) reduces to the well-known Rossby-Haurwitz formula for ordinary planctary waves

w = —fk|x? ... (L6
(Rossby et alii® and Haurwitz!), Comparable studics of the gencral hydromagnetic case

are not available, but the expression

w

to which equation {1.4) reduces when # = G and w <
anaiyses by Stewartson® and Rickard,® as is shown in Appendix A.

 Equation (I.1} leads to quite simple expressions for o in various limiting cases, notably
iwhen a *hydromagnetic Rossby number’

1

"tends to either zero or infinity. In the first such casc the two roots are

w=—fkl«® and w =(A. kB, r—>0), ...(1%b)

which are the-dispersion relationships for ordinary Rossbyr waves (see equation (1.6))
and liydromagnetic planctary waves (or planetary magnetohydrodynamic waves; see
‘Hide,! Malkus,” Suffolk and Allan,® and Hide and Stewartson?) respectively. In the other _

case the roots are

w=TFlA. x|, {y-w), (LI

the dispersion relationship for ordinary Alfvén waves (Alfvén'®). The purpose of the
present paper is to examine equation (1.1) in order to find the ranges of validity of equa-
tions (1.9) and (1.10) and to clarify the bchaviour of the dispersion relationship when

¥ is neither very large nor very small.

2. ANALYSIS OF DISFERSION RELATIONSII®

Firstly it can be noted that if (.4/8)* is taken as the unit of length and (4A8)~* as the unit
of time then A and A no longer appear explicitly in the dispersion relationship (see equation

(1.1}), which reduces to

w’+ wkfx®—{k cos 0+ Isin6)? = 0, 2.0

an cquation with only one free parameter, 8. In these units, equation (1.8) for y, the

hydromagnetic Rossby number, becomes

2(k cos 6+ Isin O}k + %)
k

Because cquation (2.1) is unaffected by the transformations

&, 5:6) >k, 1,6+7) and (&, 10) >k, — b —0), e (2.3)

no generality is lost if attention is confined to values of ¢ in the range from 0 to =/2.

2

A%k 2 (B ()
A . x|, is compatible with accurate

i. y= 1263(A . )3 ... (18)

. .. (22)

R. HIDE AND M. V. JONES

A useiul way of representing the dispersion r;ialionship is :o;a means ?f s2ts ?f "oﬁ“'*
curves’, which are contour lines of constant w in the {k, /) plune, one set for Lj.c_.-z :‘:
value of @ (sce Figurcs 3-5). Explicit formulzx'c for these conEuurs can be l'oun\.; :g ‘,..ta
ciple by solving cquation (2.1) for 7 as a function _cf korfor & usa f_'unfiuo_n Slf :I‘hL"[ ‘
equation is guartic in k and / ard some sunp!1ﬁ<_:alxon of the anulysis is required. ! 1s:1<:
be achieved by rotating the co-ordinate axes In wavenumber space through an angic
(see Figure 1), so that x = (K| L) when referred to the new axcs, where

(K,L) = (kcos0+Isin8, [cos 8 —ksin§). L2
Equation (2.1) then becomes
w3+ w{K cos B+ Lsin6)/(K*+L7)—K* = L.e 2

which leads io the following quadratic in L:

ewLsinf 1 . wcosf 3 -
= e Lae R e
Whence
w sin 8
e |+ (- *] ee- 4
L 2(&-1&)[ -0 .
wherc
KO TK (2 — K2
Q54K(“’2. ]“)[1““’ I\)+cost‘]. A
wsinf w J

3 . il Y Tt

By equation (2.7} O cannot exceed unu‘y,_for only real values of L are a'ch,:L

By corsidering the variation of Q with K it s readily shown that the generai shap
the normal curve depends on whether w lies within certain runges:

K W, @1<w€w2 Of w > g, e

wheré N
w; = 27/4)Ysind8l,  w, = (27[4)Hcos 14, cee b

(see Figure 2 and Appendix B).

The shape of a normal curve x = «($), where ¢ is deﬁgcd oy Figure 1, dcpcnc}!a—‘c‘a
value of w (sce Figures 2-5). When « > wy (see equation (2.10}) there are tﬂn.u]
roots of « for all ¢ (see equation (B4)) and the contour rmay be said to ‘surround
origin, even though two valucs of « tend to 0 as ¢ tcnds' o Q- 1=, Inthe lljlt::'rm‘.?
case When w, 2 @ > w; there is one subrange of ¢, which mcIudc§ & = i, in v
there are no acceptable roots on the opposite side of the origz:ﬂn, an anguier distanse ™
Finally, when w € w, there are two such fubranges, one oI which includes ¢ = a¢
the other of which includes ¢ = 3(§—=).

&






HYDROMAGNETIC WAVES ON A BETA-PLANE .

0 i | | | )
0° 30~ 60" 70°

0

FiGure 2. The dependence on 8 of the critical frequencies w,, wy and wy

Sce equations (2.10) and (2.11).

There is a third eritical frequency

wy = (127 Vcos 10, ... 21D

{sce Figure 2) such that all curves of constant w 2 w, have y > 1 (sce equation (2.2)).
Hydromagnetic planctary waves are characterized by v € 1 {and —l# < ¢ < 17), so
that such waves with « > ey ure impossible {see eguation {1.9)). The equation of the
curve y = 1in 4 {(«, ¢) diagram is

&% = Leos ¢ sec(d — 8)]

(sce Figers 6}, which may be substituted into-eguation (B2) (sce Appendix B) in erder to
find whether the curve intersects normal curves (of constant w). Intersections occur when
w?+ w|2 cos ¢ cos{d~ )~ 1cos pcos(b—8)| = O

is satisfied. The positive root of this equation is '
w = (1 =27t cos ¢ cos(¢ - N[
giving
¢ = {0+ cos Y (2w/(v/2 - 1))~ cos ]},
which has real solutions when w £ wy but not otherwise {see equation (2.11)). It follows,

thorefore, that those regions in the (k, £} or (x, $) plane for which y < 1 lic entirely within
the normal curve for @ = w; (sce Figures 3-5).

g

R. HIDE AND AL ¥. JONES

Frgurgk 3. Normal curves for the case 8 - 0°

Sec equations (2.5)42.8); w, = 0, w2 = |-6119, w, = 02929 (sev Fisurs 2}
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- See equations (2.5)(2.8); @, = 0-6168, wy = 1.488!, w, = 02706 (sce Figurc 2}, ’ : -See cquations (2.51-(2.8); wi = wa = 11398, wq = 0-207} (sec Figure 2).







FIGURE 6. The curve in (k, 1) plane on which y = 1 and within which y < 1, for the
three cases & = 0°, 45° and 90°

On!y that part of the curve for which k'>0is given. All curves ¥y = constant pass through the origin,
kave the same general shape, and converge on the line [ = ktan(#—J=) at great dislances from the
osigin {cof. Figures 3, 4 and 5). . '

Singular points

The dispersion relationship has an apparent singularity at the origin in the (k, ) dia-
gram, where ihe pormal curves crowd together, the corresponding magnitude of the
group velocity U = dw/éx (sce equation (3.1)) being infinite, but this has no physical
significance because the dispersion relationship is not valid when « < (A/BR*)* (see
equation (1.5)). The ‘saddle points’ that occur on the contours w = w, and w = Wy
subtend a right angle at the ongin and are situated at

(0,4) = (09306,3(0+ 7)), w =«
(x.¢) = (0°9306,3(0+27)), w = wy: } - (2.12)

{C-9306)* =~ 3/4. The group velocity (see Figures 7-9) vanishes at these saddle points
and also along the contour w = 0, given by the line ¢ = 0—12n (see Figures 3-5).

9

R HIDE AND M. V. JONES

15~

\
4
Vol

[~ ]
L ~or-‘-.:l L
ARy

=05~

[w, =0)
{ur, 516119}
@, S0
T g
/ S “1sle
(a) w < 1-0
15 i
Uy I
,l'
% 1ok !
! X
!
&
/
a5 7
//
-
= ¥ ~ /
) 2@\ )\ \\ /./ , iy e 's
Al 03 oy 1
? E,/ ”/ \\\ ’ A
i \
\\
05— \
A
A T \
ay =18119 =
@i=zoammr W "\ 3
H
1
1
25 ]
®) @z 10

FIGURe 7. Group velocity curves when 8 = (°

Each curve is the focus traced by the tip of the group velocity vector U = (U, I7,) as one procesds alons
the corresponding normal curve in Figure 3. When the total wavenumber « greatly exceeds [ o5
sec{¢ — )]+ (see Section 2), rotational cffecis are unimportaat and U is represented by one of iits tws
points (1,0} in the diagram, ' O .
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Each curve is the locus traced by the tip of the group velocity vector U = (U, ,) as one proceeds along
the corresponding normal curve in Figure 4. When the total wavenumber « greatly exceeds [1cos ¢
sec(¢ — M4 (scc Section 2), rotational effects are upimportant and U is represented by one of the two

points +(Q-7071, 0-7071) in the diagram.
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Ficure 9. Group velocity curves when 8 = 90°

Each curve is the locus traced by the tip of the group velocity vector U = {U,, I/,) as onz proc
the corresponding normal curve in Figure 5. When the toral waveaumber « greatly exceeds [§ :

cads

L e

sec($ — )]t (see Section 2), rotational eflects are unimportant and U is represented by one of the

points +((, 1} in the diagram.
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3. GROUP VELOCITY APPENDIX A. DISPERSIGN RELATIONSHIF TOR SLOW MODES WHEN § = 0
The group velocity ‘ . If the eigenfunction of a slow mode of eigenfrequency wa (see equation (1.7)) has the form
U= fwfix _ (3} ' NEYexp il — wal) ee AT
has components (U, U,), (Ux, Uy) ot (U, Us) depending on the system of co-ordinates ‘where ¢ denotes longitude, » latitude, ¢ time and k. is a rcal and positive integer, then the differentic

. . 1 1 I H L] el -
used (see Figure 1 and Appendix Q). equation for N(v) given by Rickard® can be written as follows:

When the total wavenumber « is much greater than [§ cos ¢ sec (H— )], equation 208y _ G k) [N+ Nane+ 56) )
(B2} gives @ = +xcos{¢p—6), the dispersion relationship for pure Alfvén waves (sce w(A_;“-) —a(;;,—u[ i —1+4cos u[ v “ LAl
cquation (1.10) and Figure 1). Normal curves are thea straight and parallel lines inclined ] ) . ) N -
at an angle 0 1o the line ¢ = 3= (the laxis), which they intersect at distances +o cosec? ffceff[:é)fnﬁzlg}c:Sﬁ%‘l{fii ?{;Fg'g;;iigggc\l‘ﬁlé fﬁ!ﬁ?gﬂ 8‘1)} 'z_ﬂ;sctshq‘;lfiﬁ zozi:‘ G \= ﬁ%{;}pé%i:: :E: i-]'»\

.. . . . ende he has ol Y fic 5 0, ; s, aver.ge valt ; nicvi
from the origin (see Figures 3.‘—5)' Th'.: group VClO(E“y u = & (cos 0, sin 0.) and' can there- -—in <v < 3w and A, is the r.m.s, average value of 1h)e Alfvén speed ﬂ,j?(pp)* over the same interva
fore be represented by two single points {cos 8, sin f) and (—cos 8, —sin &) in a group The case treated by Stewartsoné corresponds 10 G = G, = 1.
velocity diegram, in which U, is the abscissa and U, the ordinate (sce Figures 7-9). When Solutions ta the exact egnation {A2) are in general very complicated (i2e Swewartson?®), and it 5
on the other hand the total wavenumber is much less than [4 cos ¢ sec(d—6) ], equation practical to solve the equaiion for w and compare the results with valis s bused on the equation 105
(B2) gives w = —x "~ Fcos ¢, the dispersion relationship for pure Rossby waves (see equation A much simpler approach is to average the right-hand side of equution {A2) with resneltio v an

compare the form of the resulting equation with the approximate dispersion relationship given by equuti:
(1.7). The averaging could be carried out formally by integrating equaticn (A2) wilh respect 1o v, uii
suitable weighting functions, buf it is more instructive to diseuss each tern separately.

1.94); cach normal curve is then a circle of radius 1/2w centred at (e, ) = (=120, 0).
Each component of the group velecity varies continucusly as one proceeds around any

of these cireles. The points (&, 1) = (0, G), (—1/2w, 1/2w), (— Vw, 0) and (120, —1j20) We shall set G/G, equal to unity and 4 = A4, in equation {(A2), which shiould uot lead to sericus errc
are on the circle: at these points the group velocity W = (U, U,) has the respective valees except possibly when G is highly complicated in form. 1f 2s/l; is the anguiar scale that charactorn
(— o3, 0), (0, —207), {«?, 0) and (0, 2»?). Hence, in contrast to the case of Alfvén waves, the variation of ¥ with v, we can set : '
whaose group velocity diagram degenerates to two points in the (U, U,) plane, the group NeIN ~ -1 ‘ , s A
velocity diagram for hydromaguetic planetary waves consists of a set of curves, one for and if }
each value of w, which are symmetrical about the Up-axis, intersect the Up-axis at — o ftan v+ GG < IN*IN} = 17 ees A
o e A AV ie 2 . . . . . .
and o” aid the Uy-axis at £227% then the term (1an v +G'/G) (which vanishes identically when G = cos », hardly an estreme case) can
ignored. Finally, we replace cos v by an average value cos », (say), refate (&, 1,) to (&, 1) as follows:
ks = kR cos vy, h = IR, e (A
and write
B = 2cosv:/R o {4
BIRLIOGRAPIIY (cf. equation (1.2)). Witk these simplifications and the further supposition that X% 2 1, equivabent
1. ok, R.; Free hydromagnetic osciflations of the Earth's core and the theory of the geemagnetic equation (1.5), equation {(A2) reduces to equation {1.7) exactly, and this is the desizad ift.
secular vadiatior. Phifos Trans B Soc, Lerdon A, 259, 1966, pp. 615-647. When it cannot be supposed that 4.2 3= 1, the term «® in equation {L.7) shou!ld be replaged o
2. Rossay, C.-G. and collaborators; Relation between variztions in the intensity of the zonal eirculation x3 - {f cos vj~2, This correction~—which is too subtle to be representu! directly in the physicul me
of the atmosphere and the displacement of the semii-permaneant centers of action. J Alar Res, : feading to cquation (1.1)~would casure that « vanishes not only when the tines of raagnetic fore of
New Haver, 2, 1939, pp. 38-55. . basic magnctic field are undisturbed, as in the case of &, = I = 0 but wiso whea the fines of forse
1. Lowncurt-Iitcoixs, M. S.: The cigenfunctions of Lapiace's tidal equations over a sphere. Philos mercly displaced as a whole without suffering the distartion required to generale magnelic roilor
Trans R Soc, London, A, 262, 1968, pp. 511 -607. forces, as in the cases &%+ = land &k, =@ butf, ~ O
4. Havnwirz, I.; The motion of atmospheoric disturbances on the spherical earth. J Mar Res, '
New Haven, 3, 1940, pp. 254-267.
5. STIWARTsON, K. Slow escillativns of fiuid iz a rotating cavity in the presence of a toroidal magnetic . o ) .
ficld. Proc R Soc, London, A, 299, 1957, pp. 173187, , APPENDIX B, TRE CRITICAL FRIQUENCIES
6. Ricxkarp, 3. A.; Planctery waves. Unpublished Ph.D. thesis, University Ceitese, London, 1970, The critical frequencics w; an0d w, (sce cquation {2.10)) enter more naturally if we introduce 2
7. Mavxus, W. V. R.; Hydromagnetic planctury waves, J Fiuid Atech, London, 28, 1967, pp. 793-302. co-ordinate system based on «, the total wavenumber, and 4, the angle of the wavefront normal 1o
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9. Hine, R. and SiewaxrtsoN, K.; Hydromagnetic oscillations of the Earth’s core. Rer Geophys & ' tan ¢ = [fk, tan{$ - 6) = L/X
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which may also be written as a cubic cquation in «, namely
« oS ~8)—wfx-wcos d = 0. ... (B3)

Because the transforimation («, ¢)- = (= », & -+ ) leaves the cquation (B3) unchanged, if for a given value
of ¢ there is an acceptable positive root », then the corresponding root on ihe other side of the origin
is negative and therefore unacceptable. Con versely, if for a given vilue of ¢ there is an unacceptable
regative root «, the corresponding root on the other side of the arigin is positive and therefore acceptable,
Thus, acceptable roats of equation (B3) can be found by first restricting the range of ¢ to two quadrants
(and it is convenient to choose —in < é < 1w} and then finding al! the real roots for «, both positive
and negative.
Associaled with a cubic equation of the form a«*+bx +¢ = 0 where a, b and ¢ are real, there is a
discriminant D -z 46734 +9¢%/? such that there are
3 distinct roots of «if B < @,
! single and 2 coincident real roots of « if D = 0, and
I real and 2 complex conjugate roots of « il D > 0,
From equation (B3)
403 27
D = sagal g o eonts-a-u, e B9

s$o, for example, there are 3 real roots of « when
wt > 27 cos?é cos?(§ —0)/4 = ws,
where _
we 7= [34/3cos 0 +cos(24 —6)1/4] ... (BS)

{sce Figure 10). The critical frequency w, is the maximum of w, and the critical frequency w, is the
subsidiary maximum (see equations (2.10} and (BS5) and Figure [0).

-n g

Figure 10. The dependence on 4 of w.

@, = [3Iv3lcos ¢oos{s—8)! 20 ( = [3/3] cos  +cos(2p — 6| f4(see equation (BS) and Figure 1). The
max‘lmn occur at (}(6_—#),:.”) and (38, ws) (see Figure 2), There are three distinct acteptable roots of
«wnen w > w., oac single and 1wo coincident such roots wheit w = w. and one root only when w < w,

{cf, Figures 3-5),
\§
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APPENDIX C. EXPRESSIONS YOR THE GROUP VELOCITY

It may be shown by differentiating cquations (2.1}, (2.5) and (B2) that

where

where

and

where

see equation (3.1)

Vaw
= — =A-“‘[2 —
Us =3k K

‘ . ol - k%)
U, = ;—z = E'J{Z cos 8(k cos 8 +{sin 0}~ a.‘;:“:)j]'
fw . 2elid . . ]
—— = 30— ——— -2 sind(k d+1sinty [,
U, =] [(k" T sind(k cos }

8 = 2w KK + 1)

W

Wﬁ[”" —K?)cos 0 +2XL sin a]] .

8 . g
Ur =3 = a-{2KL cos 92 - K sin ],

A = 2w+ {K cos @ —L sin 8)[{K?4-L3);

EN w COS% &
U = a = 5;-1[ o +2x cos* (¢~ 0) ]'
12 _Juwsiné o
Us = 1 5% = 5[ 25 4 20 costgansints -1,

5, =DQepdcos M

cen
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