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2. Basic equations -
2.1, Introduction

"The basic equations of hydromagnetics can be found in several textbooks and
reviews {eg Alfvén and Filthammar 1963, Cowhing 1957, 1962, Roberts 1967,
Shercliff 1963); here we follow the treatment of Hide and Roberts (1962). Non-
relativistic equations sutfice for most problems and as the relativistic equations are
«uite complicated their tull presentation here would serve no useful purpose (but
see § 2.4 and Hide and Roberts 1962).

2.2. Hydrodynamic and thermodvnamic equations

The continuity and momentum equations governing the flow of a Newtonian
tuid of density p, coefficient of shear viscosity pv, and coeflicient of bulk viscosity
pv' relate the values of pressure (), fuid velocity (1) and body force {F) at a general
point in space with position vector r at time ¢ They are, when r is measured
relative to an inertial frame, the following:

Dp op B -
m:gﬁ-tt.'\?’p—upﬂ".u (2.1)
and
Du u
pﬁ}-m p(a—‘-,-(u.V) u)
= —V{p-i-plfv'—--ﬁv)div ﬂ}—VX(vaXU)-!—F. (22)

We shall be largely concerned with conditions when the speed of fluid flow is much
less than that of sound in the medium and when accelerations are slow compared
with those associated with sound waves. The continuity equation (2.1) then reduces
te that appropriate to the casc of an ' incompressible’ fluid, namely

Tou=0 (2.3)

and the first term on the right-hand side of equation {2.2) reduces to —Vp.

In the case of a conducting fluid carrying an electric current, density j, in the
presence of 2 magnetic ficld B, to the usual body force we must add the Lorentz
force jx B. 'Thus

F=—pV0+jxB 24)

where @ is the gravitational potential (cf equation {2.19)).

"The scven scalar equations to which (2.1), (2.2) and (2.4) are equivalent contain
fourteen unknowns, and must therefore be supplemented with further mathematical
rclations. ‘These relations stem from thermodynamic and electrodynamic con-
siderations. 'The thermodynamic relations comprise an equation of state together
with statements concerning irreversible transport processes, such as diffusion,
thermal conduction and radiation. The electrodynamic relations are Maxwell’s
equations (or, more precisely, the “pre-Maxwell’ cquations, se¢ equations (2.10)~
(2.13)) together with 2 statement concerning the dependence of the current on the
clectric ficld present (eg Ohm’s law). We shall assume in this article that © is a
known function of the space coordinates, thus excluding processes such as Jeans
instability leading to gravitational condensation (but sec Chandrasckhar 1954a,

1961 and Lynden-Bell 1966).
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‘We can illustrate the thetmodynami¢ relations required for a typical con-
pressible fluid by considering a perfect gas for which

plpT = constant (2.5

where 7" denotes temperature. Two extreme cases will be cited to indicate the
range of possibilities as regards entropy variations, without having to write down the
ficld equations governing irreversible transport processes. ‘I'he first is the isentropic
case, in which changes of state are so rapid that transport processes can be ignored
so that the entropy per unit mass

c,In{pp7) T(2.46)
{(where ¢, is the specific heat at constant volume, ¢, is the specific heat at constant
pressure, and y = ¢,/r,) of a fluid element remains constant. At the other extreme,
the isothermal case, transport processes are so efficient that the termnperature of a
Auid element remains constant.

It is convenient to consider two types of incompressible fluid, namely thosc
which are ‘barotropic” and those which are ‘baroclinic’. Barotropic incompressible
fluids have uniform density and in consequence the gravitational contribution to
F cannot exert a torque. In the absence of hydromagnetic effects, hydrodynamic
flow of a barotropic fluid has to be generated by applying forces at the bounding
surfaces of the fluid. When p is kept constant in equations (2.1) and (2.2), the
thermodynamic relations are redundant.

Baroclinicity is associated with density variations, the action of gravity en which
gives rise to buoyancy forces (see the first term on the right-hand side of equation
{2.4)). Owing'to the torque exerted by these forces, it is not generally possible o
maintain hydrostatic equilibrium in their presence and hydrodynamic flow must
ensue. Baroclinicity ariscs in a variety of ways; it may be due to variations in
temperature, chemical composition, or both.

Differential heating produces temperature variations from place to place in the
fluid and owing to thermal expansion they give rise to density variations (seu §0).
If the heated incompressible fluid has a volume coefficient of thermal expansion
¢ the equation of state is

p = po{1—4T) (2.7)
where p, is the density at 7 == 0. Entropy changes are taken into account by
including the equation of heat transfer

pBi(e ) = o[G0 T+ V) 6, 1)

= V.(Kpe, VT)+ 0 (2.8)
where K is the effective thermal diffusivity, equal to the coefficient of thermal

conductivity divided by pc,, and Q is the rate of internal heating per unit volume,
including radiative effects which could be negative (see Chandrasekhar 1961).

2.3. Electrodynamic equations

Now we must write down equations relating current density §, magnetic ficld
B, clectric field E and charge density @, If
H=B/. (2.9a)
and
D = ¢E {2.90)
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where i and ¢ denote, respectively, magnetic permeability and dielectric constant,
then the equations are

VuHej (2.10)
V£ — -{Bjet (2.11)
V.B (2.12)
V.D = p. (2.13)

Equation (2.10) is Ampére's circuital law relating the magnetic field to its basic
source, the electric current, Maxwell's displacement current being neglected (cf
equation (2.17) below) and equation (2.12) expresses the fact that the magnetic
field is solenoidal. Equation (2.11) is Faraday’s law of induction which, in its
differential form, contains many subtle difficulties of interpretation brought oyt
clearly in relatively few standard texts (see Alfvén and Filthammar 1963). Equations
(2.13) and {2.95) relate the electric field to the volume density of electric charge .

A unit electric charge moving at velocity u relative to a magnetic field B

experiences a force E+uxB. Thus, if the conducting fluid satisfies Ohm’s law
with conductivity o, then

J=oE+uxB), (214

This completes our set of equations governing seven unknown vector quantities,
u, F, E, D, H, B, j and four unknown scalar quantities p, p, T and , or twenty-five
scalars in all,

2.4, Range of validity

Now we must consider the range of validity of our equations, and for this
purpose we introduce a typical absolute flow speed W/* (relative to an inertial frame,
cf equation (1.4)), the ordinary sound speed @, and the speed of electromagnetic
waves ¢, = (ue)~=. The ratios (W*/c,)2, (@yfco)® and (¥ */ey}® {see equation (1.2))
are respective measures of the ordered kinetic energy, thermal energy and magnetic
cnergy in terms of the rest energy of the fluid.

When W*/cy<1 the D/D¢ terms in equations (2.1) and (2.2) are nonrelativistic.
'T'o the same approximation, although the cffective clectric field E+ux B depends
on the local frame of reference in which it is measured, the magnetic field is frame
independent. When ayic, < 1, that is to say when the root mean square speed of
thermal motion is much less than the speed of light, the relativistic correction
plej to the density p is negligible.

If 7* is a typical time scale associated with the hydromagnetic flow, L* being a
typical length, then by equations (2.9}, (2.10), (2.11) and (2.13)

ERl

* e,

lsﬂEIr(ﬁ%)zllfxBl (2.15)

)lil

[t~ (7{:

&
€,
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Thus, when #* is much greater than the time taken for c]cctrorrnagnct'ic waes ‘tu
traverse a distance L* the neglect of the displacement current éDfét in Cqm}““.lt
(2.10), of the clectrostatic body force gE i{l tl'fe expression for thc_ bodg If:n.l%
(equation {2.4)), and of the advective contribution pu o jin .equatt*on (’.1 ‘] 1.l
justificd. However, when our cquations are nc.mrelatmstlc (ic W [q,q:' .‘lm.
aylca <€) but % is not much less than ¢, then it may be shown that equations
(2.4), (2.10) and {2.14) become

F=—pVb+jxB+yE (2.10)

_ i 9D (2.17)
VXH—]-FE-

F=oclE+uxBytou. {2.18)

We see that the neglect of terms of order (¥ */¢)? i.D. equations (2.4)_, (2.10) and (2. 14)'
filters out electromagnetic waves. Plasma oscillations are automatlc.ally t{xcludcq‘l))
taking Ohm’s law (equation {2.14), f Spitzer 1956) as the relationship between
the current and the effective electric field, _

In addition to supposing that relativistic cffects can bt_: neg[ec{cd we h;\\_l.:
assumcd implicitly that the fluid can be regarded as a continuum wEth 1sutmp.m.
transport coefficients v, X and a. This proceduf'e is valid for suffictently der}ejt‘
media, but in the case of a tenuous flnid continuum theory breaks down (sce
Spitzer 1956). It would, however, take us too far away frem our main topic even to
summarize how criteria for the validity of continuum t.hcory can be deduced from
the equations governing the motions of individual ions, electrons and neutral
particles.

2.5, Equations referred to a rotating frame .

When referred to a frame that rotates with instantaneous angular velqmty Q
relative to an inertial frame, the equations of meotion and continuity for an incom-
pressible fluid of uniform coefficient of viscosity vo become

plonfit+ (u. V) u+ 28 x u}
=—-Vp+ix B4vpViu—pVh+ or x dQ/dt {2.19)

and

V.u=0, (2.20)

Here @ now includes the centrifugal term —1[Qxr]® as well as gravntatmpal
effects, r being a vector from the origin to a general point P at which the t:u!::n:m
Auid velocity vector, now measured relative to the rotating frame I(sce Kibble 1960),
15 1, and the corresponding pressure, magnetic field _and electric current density
are p, B and j respectively. The last term in equation (2.19) vanishes when @
sle: . .

: t;fdfk{e density of the fluid depends on temperature or_l]y then equation (2.7)
helds, and if variations in Kpc, and ¢, arc negligible, equation (2.8) reduces to

%+(u.V)T=Kv2T+q (2.21)

where ¢ = Q/pc,,.
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Equations (2.19) and (2.20) hold when | & x r+ u|, the speed of absolute motion,
is cverywhere much less than the speed of sound. Provided that |Qxr+u| is
much less than the speed of light (see §2.4) the electrodynamic equations (2.10) to
(2.14) are the same in the rotating [rame as in the nonrotating frame {Trocheris
1949,

When j and E are eliminated {rom equations (2.9a), (2.10), (2.11) and (2.14)

we have

i—f = Vox (o~ B) +4 V2B, (2.22)

Here
7= (po)t (2:23)
which has the same dimenstons as v and K, namely (length)*(time}~!. According

to cquation (2.22) the rate of change of B depends on two agencies, namely motional
induction, represented by the term V x(ux B), and ohmic dissipation due to
electrical resistance, represented by the termn V2B, The magnetic Reynolds
number

F=U*L* o = U* L¥jy (2.24)

is a measure of the relative importance of these two agencies. When & <1, equation
(2.22) reduces to the diffusion equation, with solutions corresponding to magnetic
tields decaying on the timescale L*3n, which is typically ~3 x 101 g (~ 1G% yr) for
the liquid core of the Earth. When, on the other hand, ¥ % 1, diffusion effects are
nepligible and the magnetic lines of force move with the fluid (Alfvén’s theorem, see
§3.3 below). The quantitative basis for the dynamo theory of the Earth’s magnetism
(Bullard 1949, Elsasser 1946a,b, 1947, Parker 1955), investigations of which have
been largely though not entirely concerned with the so-called ‘kinematic dynamo
problem” in which u is specified a priori when solving equation {2.22) (for up to
date references see Moffatt (1972, 1973) and reviews by Roberts (1971), Roberts
and Stix (1971) and Weiss (1971)), is the recognition that motions as slow as
102 ms! give & ~100 in the core of the Earth. In these circumstances the
magnetic energy increases at the expense of the kinetic energy of motion, the final
balance being attained when the rate at which work i3 done on the system by the
forces that drive the motion is offset by dissipation due to electrical resistivity and
viscosity. [or the Earth this dissipation rate is ~ 3 x 10'® Js~2, some two or three
powers of ten less than the energy of thermal sources within the Earth (but evidently
comparable, inctdentally, with energy released by earthquakes and with the rate of
working of the forces that move the continental plates). The source of energy for
core motions has not yet been identified with certainty, but mechanical stirring
assuciated with the Larth's precessional motion (cf the r x dS2/d¢ term in equation
{2.19)) or thermal stirring due to radioactive heating or to the release of heat of
cryvstallization might suffice (sec Jacobs ef @l 1972, Malkus 1968, 1971 and Stacey
19AY for recent discussions of this question and references to earlier work),

2.0, Energy and vorticity equations

It ts instructive to consider the energetics of hydromagnetic flows (sce
Chandrasekhar 1961, Hide 1936, Iide and Roberts 1962, Roberts 1967). Nulti-
piving cquation {2.22) scalurly by o' B we find, after some manisulation caaking
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use of equations (2.10) and (2.14), that

2 22
%(%)=—J;—’%V.(Exﬂ')—(ij).u. (2.25)
The left-hand side is the time rate of change of magnetic energy density, while on
the right-hand side the first term represents decay of magnetic energy due to ohmic
heating, the second term is the Poynting effect and represents the flux of electro-
magnetic energy across the boundaries of the (elementary) region considercd, and
the third term is a measure of effects due to motional induction. We observe that
&, the magnetic Reynolds number, is a measure of the third term divided by the
first term.

We can deduce an expression for (fx B).u# by multiplying equation (2.19)
scalarly by 4. On combining the resulting equation with equation (2.25) we find for
the rate of change of total energy density in the system, magnetic plus kinetic, the
following expression:

2 i
;%(2%+%pu’) - —[J—+71"V.(Ex B)}

g

-lvp|qu[”+vpV.(qu)xu]—V.I(p+%pu2+p¢) u]

1 ,Dp a8 6
+{¢u.Vp+—u W}+P(uxr)'dt' (2.26)

2
The first group of terms on the right-hand side comprise the electromagnetic
contributions already discussed. Combined in the second group are terms repre-
senting viscous dissipation and work done by tangential viscous forces. Terms
representing the rate of working of normal pressure forces and the advection of
kinetic and gravitational energy inte the elementary fluid volume make up the third
group. The first contribution to the fourth group of terms represents the internal
release of gravitational potential energy, which vanishes when p is uniform. 'This
contribution is much greater than 3u?Dp/D¢ when the gravitational ficld is so
large that density variations are negligible in all terms of the equation of motion
{equation (2.19)} save the buoyancy term (' Boussinesq’ approximation, see Spicgel
and Veronis 1960). Finally, we have the only term directly involving & (for
1 .28 x u = 0}, and this vanishes when d€/dz = 0, It represents the rate at which
work is done on the system by the forces that produce time variations in 82, and in
the case of the Earth’s core is a measure of the contribution to the hydromagnetic
energy of the Earth made by the gravitational torques that cause the Earth’s rotation
axis to precess about an axis fixed in space,

The vorticity equation, obtained by taking the curl of equation (2.19) making
usc of the full continuity equation (2.1}, may usefully be written for future refercnce
in §§6.1-6.5 {where nonhomogeneous fluids are considered) as follows:

(22. V) (pu)+V x (jx B)+ (VD) < (Vp)
=—2Q0pf0t+V x {pinfdt+ p(t. V)i —~1vp Vi —pr x dJdt}.  (2.27)

Hawever, for the problems treated in $§ 3-5, where attention is confined to fluids of
constant density (ie Vo = 2pfét = 0) for which the angular velocity of basic rotation is
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steady (e dﬂ:’dt = 0}, it follows from the last equation that the relative vorticity
€ = ¥V x u satisfies )

GBlEt+ (1. V)E—{(E+2R).Vu} = Vx {(j x B)/p}+v VEE. (2.28)

As we shall see in what follows next in §§3.1-3.5, equations (2.28) and (2.22) lead
o scchal useful general theorems and concepts for rapidly rotating nonhydro-
magnetic systems (Proudman-Taylor theorem, Ertel’s potential vorticity theorem
fgc?ustrophm flow’}and for corresponding hydromagnetic systems (Alfven’s theorem'
‘aligned field’ flows, a hydromagnetic potential :

4 vorticity theorem, - ‘magneto-
strophic flow'). : ’ , i

.

3. Some theorems

3.1, Proudman—Taylor theorem and geostrophy

1f, in addition to making the foregoing simplifications, we can suppose that the
motion (relative to the rotating frame) is so steady and slow and the hydromagnetic
«nd viscous forces so tiny that all the following dimensionless parameters tend to
Zero

o = poujelf2p R u (3.1)

A=puV)uZplxu (3.2)
{see equation (1.4))

M= Fx B/Zpﬂxu (3.3)
and

& = pViuflpQxu : (3.4

(where the overbar denotes the root mean square value), then equation (2.19) takes
the very simple form
2p 8 xu = —Vp—pVib. (3.5)

"I'his expresses a  geostrophic’ balance between the Coriolis force (per unit volu;ge)
and the nonhydrostatic part of the pressure gradient. The corresponding vorticity
equation {cf equation (6.8)) is, by equation (2.28},

2R.V)u == 0. : (3.6)

This is the celebrated ‘two-dimensional” theorem due originally to Proudman
(1910) and Taylor (1921} (sce Greenspan 1968), which shows that all components
of u are independent of the coordinate paraliel to & (sce §6.2 for the extensum'uf
(his result to the case Vp#®). The Proudman-Taylor thenrem together th_h
“certain compatibility conditions to be satisfied where an cffectively invi&zf;md
“interior’ flow meets a viscous Ekman layer on a hounding surface (see equation
(5.31)) are concepts of central importance which greatly simplify the theoretieal
analvsis of complex rotating nonhiydromagnetic systems. (There 13 an analogy
hero with certain theorems satisfied by slow motions of a nonrotaring fluid pervaded
by a nearly uniform magnetic field (Hide 1956, Hide and Roberts 1962, Hunt and
Ludford 1968, Kulikovsky 1968, Lundquist 1952; see also §6.4) and compatibil.ity
conditions imposed by the presence of viscous Hurtmann layers on bounding
surfaces {see.cyuation (3.25) ). :
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The gyroscopic forces due to the rapid basic rotation thus have the effeet of
aligning elementary vortices so that their axes are parallel to the rotation axis.
Displacement of these axes would produce restoring forces resulting in ‘inertial’
oscillations. In circumstances when these oscillations can be described in terms of
a superposition of plane waves of small amplitude proportional to expi(k.r—ewl),
the corresponding dispersion relationship connecting the angular frequency o to
the wavenumber vector « i8

w? = (282 . k)?/? (3.7

{see eg Batchelor 1967, Lighthill 1966, 1967 and §4.1). Particle orbits in these
inertial oscillations are eircular and lie in the plane of the wavefront (sce figure 2).

Figure 2. Hlustrating the velocity field in a single plane wave of wavenumber k in an un-
bounded rotating fluid with eor without a corotating uniform magnetic field B,. Particle
orbits are circular and lie in the plane of the wavefront. After Moffatt (1970).

Observe that when w = 0 (steady motion) the wavenumber vector k is perpendicular
to 8, in keeping with the ‘two-dimensional’ theorem expressed by equation (3.6).
The foregoing results have proved useful in the discussion of effects of
irregularly shaped boundaries on flows of rapidly rotating fluids. We conclude this
section with a basic result concerning the effect of rotation on flows which, in virtue
of the boundary conditions and method of generation, are strictly two-dimensional
in planes perpendicular to the axis of rotation.
Consider the vorticity equation (2.28) when (2. V)u=0. Thus we have (when
B =0} S
FEJot+ (0 VVE~(E.V)u—vVE =0 (3.8)

which shows that if the boundary conditions are independent of St then so is the two-
dimensional ficld of relative motion, This result, which was first enunciated by
Taylor (1917), and its extension to cases when it cannot be supposed that the
houndary conditions are independent of £, have been the subject of several
theoretical and experimental studies (Hide 1968, see also Greenspan 1963).

Since 2 daes not appear in the electromagnetic equations (see §2.4}, Taylor’s
result cacries over trivially to the hydromagnetic case provided, of course, that the
¢lectromagnetic as well as the mechanical boundary conditions are now independent
of 2. Thus, problems in which the Coriolis torque (262.V) &2 vanishes by hypothesis
fall into a special category, for then there is no stretching or bending of fluid
filaments that would couple the vorticity of the basic rotation to the vorticity of the
relative flow and the novel phenomena with which this article is largely concerned
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o not ther arise (see” eg- Canisse and Poirict' 1960, Poiciét arid. Robert 1960, cf
- Loper-and Belitmyl‘)?@),ﬁl;bm_l-gh uther intertiting phettomena, are by mo.means - -
o exclided {gee eg Moftate 1965), 0 o e T T T

3.2, Eitel's potential vorticity theorem

We define the ‘potential vorticity’ as
2= pE+20).VA (3.9)

where A is any scalar quantity that is conserved by individual fluid elements
throughout their motion (ie DA/Dt=bAj21+u. VA =0), A theorem, due
originally to Ertel (1942, see also Batchelor 1967, Ertel and Rossby 1949, Greenspan
1968, Lighthill 1966, Pedlosky 1971), can be obtained by multiplying the vorticity
equation scalarly by YA, When Vs = 0 and hydromagnetic effects vanish, this gives

I—])D;{(EHQ).VA} = VA VI, (3.10)

When v = 0 the quantity & is conserved by individual fluid elements throughout
their motion; an application of this result and of 1 hydromagnetic extension (sce
§3.4) is given in §4.5 below, where oscillations of spherically bounded rotating
systems are considered, '

3.3. Alfvén’s theorem

We turn now to the hydromagnetic situation, but before examining the equation
of motion it is instructive to consider the cquation (2.22) for B. In the limit when
the magnetic Reynolds number %o (sec equation (2.24)), equation (2.22)
reduces to

%?+(u.V)B—(B.V)u=0 (3.11)

(since V.=V, B =0, see cquations (2.20) and {2.12)). The line integral of
equation {2.22) around a material circujt expresses the impossibility when o-»00 of
changing the flux finkage of such a circuit. The [ines of force are then effectively
‘frozen’ into the fluid {Alfvén 1942a,b). So far as their mechanical effects are
concerned (see below) the lines of force behave like elastic strings and permit wave
motions which, in their simplest form (ie no Coriolis forces, etc), are plane ‘ Alfvén
waves’ satisfying the dispersion relationship

o = (V. k)2 (3.12)
{cf cquation {(3.7) and §4.1). Here
‘ B

is the ' Alfvén velocity’ based on the undisturbed magnetic ficld (of equation (1.2) ).
Particle orbits in these Alfvén waves are linear and lie in planes parallel to the wave-
fronts. In contrast to inertial wavee {sec equation (3.7)), Alfvén waves are non-
dispersive. Their group velocity der[ie is equal to + V.

34, 'A'Iigrre;iﬁelﬂ' Aows

.  Hydromagnetivs-of ‘}uifa-a'ing_ﬂziids ’ '0 B

We now consider: the dynamical aspects of hydromagnetic rotating fluid flows,
and it is of some interest to examine first the restrictive but important class of
motions for which the velocity and magnetic ficlds as measured relative to the rotating
frame are everywhere parallel {Acheson 1971, of Hasimoto 1959). Thus we write

B = Cufup) (3.14)

where C is a dimensionless scalar. Such flows are necessarily steady when Cis
uniform and the fluid is a perfect conductor of electricity, for then by equations
(3.11) and (3.14) @B/é¢ = 0. The equation of motion (2.19) then reduces to

(1-CHu. V) u+2Qx t = - p1V(p 4 Jp-1 BY ~VO+ V2. (3.15)

Further, in view of equation (3.14), equations (2.3) and (212), V.u =0 sl.l‘li[
V.B = O respectively, become identical. For such ‘aligned field* flows the governing
equations therefore reduce to a set identical with the corresponding nonhydr.uma‘;mm::
equations (consisting of equations (2.3) and (3.15) with B = C = 0}, provided only
that we make the transformations

(R4 1 Dy 23)= (R, p+ it BL B, 1)(1 - C¥), (3.10)
for equation (3.15) may then be written
(v Viu+2Qextt = —p-1¥Vp, VO, +p, Viu, (3.17)

For the Proudman-Taylor theorem to hold for such flows it is evidently
necessary for | #2(1— C?)|and & to be much less than unity, & condition which may
be much more restrictive than #<1 and &<1 {sce equations (3.2} and (3.4) ),
especially when C, the ratio of the local Alfvén speed to the local fluid speed, Is
much greater than unity. The corresponding potential vorticity theorem takes the
form

(u.V){(E+2R,).VA} = v, VA .V (3.18)
(cf equation (3.10)).

We have already noted that these ‘aligned ficld’ results do not in general apply
to unsteady motions. Nevertheless, in cases when the unsteadiness can be removed
by a simple transformation of coordinates (eg simple waves—see §§4.1 and 4.5)
the above concepts can be both useful and illuminating.

3.5. *Magnetostrophic® flows
By analogy with geostrophic motion (see equation (3.5)) magnetostrophic
motion is defined as satisfying the equation
2pQxu—jxB=—Vp—pV, (3.19)
In this case the dynamical pressure gradient (ie the actual pressure gradient plus

pV®) is balanced by the difference between the Coriolis and Lorentz forces. The
vorticity equation then becomes

2AR.V)u =—-$Vx{(VxB)xB)}, (5.20)

expressing a balance between the gyroscopic and hydromagnetic torques acting on

an imividenl feid clement.
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I order to specify the conditions under which magnetostrophic Hows can be

(-xpcc'tcd ta occur, we must consider the order of magnitude of the various terms in
equation (2.22) for B. Now

oB
ot

B*
 —
*?

T

U*B*

\ ~
95 x By~

andd

72 7B*
y52B)~ 2

if * and U* are typical values of |B| and [u| respectively and L* and +* arc
corresponding length and time scales. Hence

L* =z
ven (B

so that the Coriolis acceleration is of order

L* o
ZQ(T—*’“‘E)

i magnitude. Thus when the flow is ‘taagnetostrophic’ we infer from equation

(3.20) that

1. g e
za(._*+rﬁ) Ny (3.21)

7
where V* is given by equation (1.2). Hence

1 e 1

~inret e

so that the neglect of Ju/dt, (4. V)u and »V2u in derivi i
(2.19) is valid provided that : itk equation (3.19) from

P2 7
(m“"*m—) <1
L"Jﬁ
K <1
and
v (L*2,

In.terms of the dimensionless parameters already introduced, these criteria are
satisfied when

F1+ %) <1

- Z<1 (3.22)

&<l
(see cquations (1.1)~(1.4) and equation (3.4)).
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We see immediately from ¢quation (3.22) that %t is the appropriate measurc
of dissipative effects due to vhmic heating. When @31 {ie 7* €L */qas in the case
of the geomagnetic secular varfation; se¢ § 1.2) the criteria for magnetostrophic How
beeome

Zrel ]
A<l (3.23)
and

<1,

When on the other hand €% 1 (ie 7" & L*}y, as in the case of the geomagnetic
dyname problem, see eg Bultard-amd- Gelman. 1954, Elsasser 1956), the criteria
reduce to
gt ] _
#<1 (3.24)
and
&<€1,

We must note here that the satisfaction of these criteria is not sufficient te ensurce
that all modes of motion will be magnetostrophic, as evinced by the exarples
discussed below, ]

When dealing with wave motions we shall frequently suppose that the electrical
resistivity of the fluid is so small that 5 may be taken to be zero. In order to
appreciate the interesting (and sometimes apparently paradoxical) results that
emerge in this limit it is helpful to consider equation (3.21). If 5 = 0 it is clear that
no matter how small the magnetic field may be magnetostrophic flow may always
accur {inasmuch as viscous forces can be neglected; see §5.2 especially equation
(5.30) and cf §4.3, especially equation (4.35}) if the timescale of the fluid motions Is
sufficiently long. More precisely, as ¥*->0 hydromagnetic and Coriolis forces
still remain equally important if +* ~ 202L*2/1/#2 This persistence of hydromagnetic
offects in the dynamics is a direct consequence of the assumption of perfect con-
ductivity, for Alfvén’s theorem (see equation (3.11)) follows directly from that
assumption and the permanency of attachment of the lines of force to the fluid is then
in no way dependent on the strength of the magnetic field. As soon as the fluid is
permitted a nonzero electrical resistivity, however small, it is clear from equation
(3.21) that no matter how long the timescale of the fluctuations in the fluid motion
they cannot be characterized by a magnetostrophic balance in the limit F*->0.

Finally, we note (for reference when meeting phenomena described in §§5.1 and
6.4) that sfeady magnetostrophic motions are characterized by values of the para-
meter %, the Chandrasekhar number, of order unity.

The magnetic field in the liquid core of the Earth consists of two parts, a
poloidal field B, with lines of force that penetrate the upper reaches of the solid
Earth and pass through the Earth's surface into space, and a toroidal field By, which
is largely confined to the core (as it would be completely if the surrounding mantle
were a perfect insulator). Near the Earth’s surface, where magnetic measurements
are made, B,,~5x 10~ Whm™2 (0-5 gauss} in magnitude and largely dipolar in
character, so that B, ~5 x 10~ Wbm~? in the core. The toroidal field B, cannot
be determined directly, but various lines of indirect evidence indicate that

Byo! Bpol ~ 10v505,
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Taking p~ 10 kgm=3 and B~ 10-2 Wbm—2 we find that V*~10-I ms-! and
F 1078 (3.25)

for motions on the scale of the core (sce table 1 and equation (1.1)) and &> 10-3
for any smaller scale motions that might be present. For comparison we note that
for U*~ 103 ms~!, a crude estimate of the speed of core motions based on the
displacement of the magnetic field pattern at the Earth’s surface, we have

Rz 108 (3.26)

(sec equation {1.4)). Finally we note that if the electrical conductivity of the core
is 10%5:%5 ohm—tm-1 {see Gardiner and Stacey 1971) then 5~ 1095x05 ;1251 504

€ ~ 1(1°505 (327)
(see equation (1.3)).
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