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1. DIELECTRIC TENSOR AND WAVE BRANCHES OF A COLD MAGNETOPLASMA

1.1 Dielectric tensor and wave dispersgiocn equation

The dielectric permittivity tensor £, is defined by the equation
13

D'\.‘—'Z&;‘tj (1.1)

ry .
ALl j is the electrical induction. In the case of a

cold magnetoplasma one obtains

where D = E +

€, e, 0
€, =\ € 0
Y 3 1 (1.2}
0 0 €,y
with
1
W Wen Wex
&L =1- ) €
kA
o W= Wy w(w" - wey )
{1.3}
—  Wpa
&=1-5 =
% w
e m :
Here the index a refers to particle species, w = Bl is the
11
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plasma frequency and mBa = the cyclotron frequency of speciea a
i, L

particles.

when there is no magnetic field, BO=O. the tensor €,  becomes proportio-
2 ij
nal to the unit tensor

eii = es%q (1.4)

and the plasma is isotropic.

The expressions sbove refer to a loss—free medium (no collisigns! in
which case Eij is a Hermitgah tensor. The fact that there are off-diago—
nal elements of Eij {proportional to c2) when EO#O. implies that elec-
tromagnetic waves in a cold magnetoplasma cannot be linearly polarized
{with the exception of propagation across the field) and are, in gene-
ral, elliptically polarized.
Notice that tﬁe elements € and <, have singularities for |uw|= {mB“I
corresponding to cyclotron rescnance. In actual fact the cold plasma
approximation becomes inapplicable near these rescnances and pressure
aﬁa kinetic effects must be taken into account to have a proper descrip-
tion of the plaema dielectric properties.

The dispersion equation for electromagnetic waves in an anisotro-

pic medium with a dielectric permittivity tensor eij has the form

{stix, 1962)
A =clek\f'\¢'j] =90 ' (1.5)

where

A= z(*cv-s 3,.) :
=mn - + € (1.8)
'y K ) ‘) .
with k wave vector and

n o= — (1.7}

the index of refraction. Substituting in (1.5) eqs. (1.3) for the

£ ijs' we obtain the dispersion relation for a cold magnetoplasma in

the well known form

N = A, Bmt € = 0 (1.8)



where

A = EqSU}I‘e + 6:31.3516

; b3 i 5.
%='§1é? U*mle)_-(e‘-é‘)me (1.9) "

L= &5' (E.T— 611 )

and 6 is the angle between the wave vector k and the magnetic field
B . It follows from (1. 8) that it is possible that two waues can propa-
gate in a plasma. w;th a given frequency but with dxfferent values of

the refractive index

"o _gth‘-m(_ Lo

as it will appear from the plots of n{u} to be given latnﬁn

1.2 Mave branches in s cold magmetoplewma amd their ¢lassification

Eq.‘(l.s),.taking the wave vector k as given, is an equation for

. (v)
the eigen-frequencies a v {k,8} of the plasma coscillations and it is

. , 2
easily seen to be of fifth order in w soc that it defines ten eigenfre-

quencies. As, corresponding to each eigenfrequency mu, there is an

X . v s :
eigenfrequency -w , we shall assume for simplicity that all eigenfre-
quencies are positive and, correspondingly, distinguish five branches

of oscillations of a cold magnetoplasma.

In Fig. 1 (which is not drawn to scale), we show the five branches
in a plot of n2 versus o referring to propagation oblique with respect
to the magnetic field (870, 8# N[l ). We will name the five branches
following the classification of Shafranov. {1966). As indicated in the
figure, the branches are called: the Alfvén Branch (A), the fast magne-
tosound branch (FMS), the slow extfaordinary branch (SE); the ordinary
branch (0); the fast extraordinary brancﬁ‘(FE). The reiation of these
branches. to other names which one finds in the literature {(ordinery 0
and extraordinary X, L and R wgves)'will be clarified later.

Let us nqi discus; the remaining notation of Fig. 1_(uhich also
follows Shafranov (1966)). There are three cut-off frequencies, denoted

{1) (2) (3)

2.
with 'o o o . which sepurato regionu withn. >0, i.e. re-

‘glone of trlnapnrency. fron regions (n <0) where the waves cannot propn-

gate. It is clesr that n2=0 when Cee (c 2. 22)=0. From this we find, «

nezlectin; smull ionic contr1hutionl to €, , ez

1 3 the following expres-

sions for the cut-off rrequencxes

N arEarmeel | o
o e
| (1.a1)
'I(S‘ ] 4

W, = NF:’ ﬁ u%: - %T'Qa“

The meaning of these values is that

= lim "'k 8)

K+Q

The corresponding behaviour of u(“) as a function of k in the transpa-
rency regiona is indicated in Fig. 2 (always referring to oblique propa—

gation}.

.

-

By e



The frequencies labelled = in both Figs. 1 and 2 correspond, on
the other hand, to infinities of the refractive index which means wave
phase velocity going to zerc. From the dispersion relation {1.10) we

gee that one of the selutions for the refractive index tends to = when
A=0 : (1.12)
The solution behaves then as

“:._:__P:_ (1.13)
A

while the refractive index of the other wave (the mecond solution for
the refrective index) steys finite and ie given by

w=_C (1.14)
B

Using the expresgions {1.3) for the dielectric tensor components, eq.

(1.12) for the resonant frequencies becomes

1 NP: N W 1 1
e PP S A = I LT (ol < B
Lot u{_wi Wt

1
. S(A‘E} =0
\-\J‘L - UE;L

{1.15)

2 .
This is of third order in w and thus defines three rescnant frequen-
cies

w o= w(8) j=113

which are the ones correspending to the vertical asymptotes in Fig.

2
1 (n +=) and to the horizontal asymptotes in Fig. 2 (w/K+0}.

©

The behaviour of the resonant frequencies as a function of 8 is de-
picted schematically in Fig. 3 where we {ind alsc the limiting values
of these frequencies for parallel and perpendicular propagaticn. Thus

we see that, going from perpendicular to parallel propagation,

(&3
0 ¢ wa (8 ¢ wy

w w @
S e (@) ¢ M CT
*

1 /2 2
whereas u_( ) decreases from wpe +mBe at perpendicular propagation to

Max (w e) for parallel propagation. In the above expressions it is

w
pe’ _B
2
n=w fuw .
pe Be (i)
The resonance frequencies ©_ J {8) have considersble physical
meaning in that, as one approaches one of these frequencies, the corre-
sponding electromagnetic wave becomes longitudinal, i.e. the compo-
nent of the electrical field strength parallel to the wavevector, §1=
- 2
5(5(5)/k becomes apprecisbly larger than the compenents at right an-
gles to k.
To see this, we multiply the equations I AijEjzo by ki and sum aver i

from 1 to 3. A8 a result we get

Z&LJKLE] =0 (1.16)

n
')
Putting §=§l+§t. we find from this equation

T

— .
) etj'(tttj (1.17)
Yl

=4
: A

where



P\ _—_% Ze‘] l‘-l"KJ = ti‘SW\La * 65 ‘-U‘Sle (1.18)
ld

.m0 that, indeed |§1|/J§tF‘“ a8 A+0. Az one can always put E =-Ve=-ike,
§t=VxA=i(Exﬂ). with ¢, A scalar and vector potentials respectively, one
can also say that the plasma oscillations become irrotational {i.e.

N

quasi-electrostatic) near the frequencies w
In the literature the frequencies m‘(j) are often called hybrid resonan—
ces, Near the hybrid resonances, as the wave phase velocity tends to
zero (see Fig. 2}, one cannot use any more the cold plaéma approxima-
tion. Temperature and kinetic effects must be taken into account. I

will not however enter here.into the new complexities introduced by a
kinetic description.

Summarizing the results_ahoun, referring to oblique propagation
{(Fige. 1 and 2), we have that a cold plasma in an external magnetic
field is an anisctropic medium with temporal dispersion in which there
are five branches of vscillations: the ordinary, the fast and slow
extraordinary, the Alfvén end the fast magnetosonic mode. The frequency
dependence of the refractive index of these branches is shown in Fig.

1. All waves have normal dispersion in the sense that their frequencies
increase with increasirig wave number, as indicated in Fig. 2, and are
elliptically polarized. We must add that, as it is easy to show, the
-dispersion of the high frequency branches (0 waves, FE waves and also
éE waves with @ not too close to n/2) is determined by the electrons
alone, while the dispersion of the low frequency branches {FMS waves A
waves and alsc FE waves with @ ~ 7/2} is determined in general by both

electreons and. ions.

1.3 Parallel propagation of electromagnetié waves in a cold magneto-
plasma

when 8=0, we obtain from {1.9)

A=eg , B=-2¢e, |, C=¢6(-€l)

and, consequently, the dispersion relation (1.8) aplits into three fac-

tors
N = (‘n‘—e‘ —6)("-¢ e} =0 (1.19)

The equation :3=0'has solution

m@):‘%:+m; (1.20)

corresponding to Langmuir oscillations unaffected by the magnetic
field. The remaining twe factors define two electromagnetic waves with
circular polarization. More explicitly the respective indices of re-

fraction are given by

v Wpet Wei" :
n =z 4_ g - e {1.21)
YOI TR w (W . wa )
v Wpet weit
n=io - (1.22)

W@ rfuadd)  we-wai)

The electric field vector of one wave rotates arcund the magnetic field
go in the direction of the electron rotation in the magnetic fieid.

Correspondingly (see eq. (1.21) its refractive index has a singularity

Py
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at u-tunel. This wave which is circularly polarized around go with a
right-hand sense, is alec called the R wave (where R etands for right
hand polarization). For the second case {eg. {1.22)) the electric vec-
¢t=- rotates in the direction of the ien rotation in the magnetic field
!o and the index of refraction hos, covidw, endingsly, 8 singularity at
welw il. This is also commonly quoted as the L wave (L stands for left
handed polarization). These waves are alsc commonly denoted, especially
at radio frequencies, as the extracrdinary (R) and ordinary (L) wave
respectively.

Fig. 4 shows the frequency dependence of n2 for parallel propaga-
tion and shows, contrary to the general case of oblique propagation
only 4 branches of omcillations, which are the ones represented by
‘wgs. (1,21) (1.22). The branch which has vanished is given by the Lang-
muir osacillations (1.26) {and corresponds to the O branch of Fig. 1). .
The notation in the Figure continues to be the Shafrancv notation. What
Ais cnllcd/L wave, as introduced before, corresponds therefore to the
two branches FMS and FE (with resonances at ImBel)(‘) while the so
called R wave corresponds to the two branches A and SE (with resonance
at ']lj' Thus for parsallel propl;ntion Fast magnetosound waves and Fast
extraordinary waves exhibit right hand poluri;nt1on Finally Fig. 5
gives the wave numher dependences of eigenfrzquenclea for B-O.IIn this
plot the dashed straight line with label O (ordinary wave) corre-

spoﬁds to the Langmuir oscillationn.-

1.4 Transverse propagation of electromagnetic waves in a cold magneto-
plasma

when 6=w/2 the dispersion equation (1.8) splits into two equa-

tions

(*) when w8i<<w<<uBe, this R wave becomes the electron whistier, for

parallel propagation.

n o €y {1.23)
+ S

e G- {1.24)
€y

The first equation determines the refractive index of a linearly pola-
rized wave whose electrical field vector is parallel to the external
magnetic field Eo' The magnetic field does not affect the propagation
of this wave (which is the 8=r/2 limit of the ordinary wave branch
0). Figs. 6 and 7 give the frequency dependence of the squared refrac-
tive index and the wave number dependencies of the corresponding eigen-
frequencies. We have now three different branches, corresponding to
(1.24) and, in addition, .the 0 branch which is dashed in both Fi- ]
gures. Like in the case ¢=0, also for 8=x/2 one branch has dissppeared
with respect to the general case of oblique propagation. The branch
which has disappeareé for é=w/2 is the Alfvén wave branch. We realize
that this sust be so by looking at Fig. 1 {oblique propagation) where

3
the A branch had a resonance at the frequency u’( )._This frequency, s

already shown in Fig. 3, goes however to 0 when 8=1/2. As for the re-

" maining three branches, described by eq. (1.24) two of them have-resn—

nances, in the region of tranaparency &nd precisely, & resonance at

(2) (1) _

) _::ﬂiilfli.)h(for the FMS branch} and a second at w_
( rnm..)tfor the SE branch).

In relation to other terminology which one frequently finde in the
literature, we must add that, for the case of transverse propagation
the two factore (1.23) and (1.24) of the dispersion egquation are deno-
ted respectively by ordinary wave (O) {which is aleo our present termi-
nology) and extrnurdinary wave (X}.

The ordinary wave, as already mentioned, is not affected by the magne-
tic field while the X wave is. The polarization of the X wave is ellip-



tical in a plane pePPENdiCU¥ar to Eo and, hence, containing the wave
phase speed. This notation of extraordinary {X} wave thus includes

the three branches- (FMS, SE, FE) of Figs. 6 and 7. We recall also that
 this same distinction into an © and an X wave is sometimes used also
for oblique probagation. When this is done the term ordinary includes
both the A branch and.our 0 brench, while the term extraordinary refers

conplexively to the remaining three branches (FMS, SE, FE).
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