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ni: GBMWCING IN INHONOGEREOUS MEDIA

5.1 Ray path equations

In this section I will derive the equations which describe the
path of a wave packet in an inhomogenecus medium such as the ionosphe-
re. More precisely, I will give the equations which have to be used
for the simplified case of a horizontally stratified medium. If this
refers to the ionosphere, them, fdr examble, eafth's curvature is ne-
glected. More general ray equations are derived, for instance, in Chapt
14 of Budden (196la). ‘

The equations for ray paths in a horizontally stratified ionosphe-
re make use of a variabie, denoted with g and first introduced by Boo-
ker in his radic studies of the ionosphere: q is simply the wvertical
projection of the refractive index wvector {i.e. a vector of magnitude
equal to the refractive index and directed along the wave normal direc-
tion}. Thua, if 8 is the angle which the wave normal makes with re-
spect to the vertical {z axis), which is taken as the direction of

stratification, 1t is
Q=n cos' @ o (5.1)

It can be derived (see, for example, Budden, 196la) that q obeys a

FH)E“{'F{*V\I'S(}'E (5.2)

its four solutions representing therefore four rays in the ionosphere.
If we further call 51, S2 the x and y compenents of the refractive

index vector, then

5 25" 4+8. =n sin2 8 - (5.3)
and Snell's law of refraction (see Appendix A) tells us that

S.= const {(5.4)
Furthermore it is, obviously

q =n -5 ' (5.5}

" and the ihree direction cosines of the wave normal are given by

2 2.1/2 2 2.1/2 2
+q ) / R 52/(51.+3“2+q H / y q/(Sl +5

5 22+q2)l/2 (5.6)

2
51/(51 +Sz
The coefficients a,...,e in (5.2) are function of Sl’ 52 and the fre-
quency and will not be given here.

In terms of the above quantities any field component F in an elec-
tromagnetic wave moving in the medium, which is supposed to be slowly
varying, can be written in the WKB form

z

th)=F0(z)exp[ik(ct-51x—szy - q dz)} (5.7)

o
where Fo(z) represents an amplitude variation on a scale slower than
that contained in the exponential factor. More precisely, (5.7} repre-
sents a single wave which extends indefinitely in the x and y direc-
tions and has a single frequency. A real electromagnetic signal, which
is limited in lateral extent and in time, i.e. a wave packet, is for-
med, as we know, by adding together an infinite number of waves like

(5.7) with various values of Sl, 32, k (q which is a root of eq. {5.2)
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is a function of k, S_, 52)-Such .wave packét can theréforefbg'géﬁeralef_;;-

ly written as

Flt,x,y,z) =

4= e ) - . C -
s Ja Fo(lffsl'sz)exphk“t'sl?"szy'

z
- ‘dz))dk dS_dS
q dz}} - 45, 95,

(5.8)

It {s the path of this wave packet, or ray ﬁath. which we want to deter-

mine. Now, the contribution to the integral in (5.8} will only be appre—-

ciable near the values of 51. 82 for which the phase ¢ in the fuﬁc-

tion under integration is stationary. The phase is given by

= kict - Slx - 52y - q dz) (5.9)
o . .

. ang, for this to be stationary, we must have

f}d) = ] -——1—&1 = 0 : : (5.10)
BS

o Pl
¥, T ’“J b

= 9 (5.11)

These equations must be solved for Sl. S2 at any given position. If
the solutions are Slo' 520, the amplitude in (5.8) can be replaced

approximately by F(k,Slo.Szo). If we suppose, for example, that the

PP

. wave packet leaves, say, a transmitter in the x-z plane with s,=S s

52=O. the amplitude F_ will have a maximum for these two values of Sl.
o .

52. Corresponding to the equatiocns {5.10), (5.11) we then find, for

an element of the path of the wave packet, the differential equations

LI ?.L L _d.L =_(9—L\ - (sa2)
A.l'.' s, /S8, dl : ..BS’- 5,<0

Now, the quartic equation (5.2 ) for the variable q must;bg satisfied
by each of the component plnne'ﬁﬁye#lof the_vlé. packet considered.’
Therefore, at any level, it musf'bc valid for #ny vulges-of 31. 52‘
and we can write, correspondingly, ' . '

) _ ) o

| (5,13}
ds, - dS,

Thus
dF(ﬂ %F E}_ 'M 4 \F 3 f‘a, '&% -"(5.1'4).:. '
ST ‘1 %s“ %S“ 'i's -

and. there is a similar equation with S_ replaced by Sl. These twd egua-

2
tions can be used to obtain explicit expressions for the right hand

sides of eqs. (5.12) in terms of the Booker quartic and its coeffi-

cients. For the case considered SI=S°, szzo. we obtain

k_}uqmﬁsqy 1 F

N LR R mg" 'bs"ks, Y

(5.15)
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where derivates with respect to Sl. 52 are calculated for Sl=so' SZ=0
respectively. These are the ray equations which must be integrated
to find the ray path in an horizontally stratified ionosphere.

It ia of interest to note what these equations tell us about re-
flection of a wave packet in such a stratified medium. At reflection,
the ray path must become horizontal and, hence, dx/dz and d;/dz must
become infinite. The numerators, on the right hand sides of egs. (5.15)}

cannot become = unless q is w. Hence the denominators must be zero

which means that, at reflecticn, one must have

WEY -0 (5.16)
i)
!

provided that neither numerator in (5.15) is zero at the same level.
This is also the condition that implies that twe roots of the quartic
are equal. Notice that this double roct needs not be zero. If it is
different from zero, when the ray path is horizontal {at reflection)
the wave normal is not. Similarly, at a level where one root for g
is zero, the wave normal is horizontal but the wave packet iz in gene-
ral not so. We see therefore that the level where q=C is not in general
a level of reflection of the wave packet unless g=0 is a dcuble root

af the quartic.

5.2 Ray tracing using refractive index surfaces

We will now outline an alternative method, beyond that based on
the differential equations {5.1%) and the use of the Booker's quartic,
of finding ray directions in the ionosphere. The method, which uses
the refractive index surfaces together with Snell's law, has been intro-
duced by Poeverlein {1949) and it is actually the one we will follow in

outlining the phenomenon of trapping of whistler waves in ducts of

enhanced jonization in a later section.

We recall that refractive index surfaces are constructed in spheri-
cal coordinates. The polar angle, with respect to the magnetic field
direction, represents the wave normal direction and the length of the
radius vector to the surface represents the magnitude of the correspon-
ding refractive index. This radius vector is called the refractive
index vector. For each wave normal direction, as we saw in Sect. 3,
the ray direction is given by the perpendicular to the refractive index
surface at the point where the refractive index vector intersects that
surface.

To illustrate the use of refractive index surfaces for ray tracing
in non homogeneous media, let us first consider the case of a sharp
plane boundary between two different homogeneous media. Consider a
ray Rl in direction 01.(uith respect to go), with corresponding wave
normal angle 81 travelling in medium I towards the boundary (see Fig.
28a). The direction of tranamitted and reflected rays can be deter-
mined geometrically as indicated in Fig. 28b. Thia figure contains
the refractive index surfaces of both media I and II superimposed on
the same center 0. We alsc assume that the magnetic field direction
has not changed in goimg from I to II. Here a line is drawn from the
center 0 in the direction 61 of the first wave normal. This intereects
the refractive index surface of medium I at Pl {ul denotes in Fig. 28b
the refractive index vector of the incident wave). The corresponding
ray direction is, again, indicated with Rl. Now, by Snell's law of
refraction {%.4) the incident, transmitted and reflected waves, must
have refractive index vectors whose projections on the boundary are
equal. Therefore, a line drawn at Pl normal to the boundary, must also
pass through all other possible terminations of refractive index vec-
tors. This line in Fig. 30? intersects the refractive index surface of

medium I at P3 where therefore wave normal and ray direction of the



reflected wave are determined. The same line intersects the refractivel
index surface of medium II at points P2 and P4. The construction at P2
gives the transmitted ray Rz. The ray R4 conatructed at the other inter-
section P4 would represent a wave in medium II with energy travelling
towards medium I. This ray is actually not existing as we supposed no
soﬁrce of rays in medium IT (but only in medium 1).

The same type of construction, outlined in Figs. 28a and b for
the case of a sharp boundary, can be applied to find theé change in
ray direction for non homogenecus slowly varying media. By slowly va-
rying we mean that the refractive index varies on a scale larger than
the unvelengthu.of the waves we are considering. Under this condition
we can neglect the reflected components of the wave {see Appefidix A).
The graphycal procedure for ray tracing is indicated, for the bidimen-
sional case, in Figa. 29a and b. The initial condition that we need, ‘
at some starting point Pl' is the wave normal angle 81 with respect
to the direction of the local magnetic field H01 at Pl' From this and
the refractive index surface relative to Pl' we determine the direction
of the ray at the initial point Pl. The ray is amgumed to progress
a certain distance, up to a point PE' the distance being small enough
to consider the index of refraction as essentially constant along‘this
path element. At this point we apply the previous considerations by
considering as the two media those corresponding to the local parame-
ters at P1 and P2 respectively. In other words, we invent a plane boun-
dary which is perpendicular tc the local (in the segment P1P2) spatial
variations of the refractive index. In Fig. 29b we have drawn the re-
fractive index surfaces pl(e), uz(e) corresponding to points Pl' P2
respectively {and having the two magnetic fields Hel' H02 as reference
axes). Tﬁen a normal to the boundary is drawn at 0=e1 on the surface
ulta) and intersects p2(0! at e=92. This intersection gives then both

megnitude and dirsction of the new wave normal at PE. Correspondingly

we also determine s new ray direction (Rz). which is now supposed to

hold for another small segment. The process is hence repeated until one
obtaing the desired path. It in‘elcar'that in such a construction to 7
determine differential rcfraction in a slowly varying medium, the nor-
mals to the locml "boundaries” have the meaning of local directions of

the szpatial gradient of the refractive index.
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