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Geomagnetism 1 (S R C Malin)

MAGNETIC MEASUREMENT AND OBSERVATORIES

Definitions

At any point on the Earth, the magnetic field is a vector, having amplitude
and direction. It is usual tc describe it in geographical components: X,
the north compenent; ¥, the East component and Z, the vertically downward
component. Other elements are H, the horizontal component (Hz = X2 + .Yz);
F, the total intensity {FZ = X2 + Yz + 22); D the angle of declinaticn

(ten D = ¥/X); I the angle of dip or inclination (ten I = Z/H)

From Chapman & Bartels, Vol. 1, p. 2

The intensity elements (X, ¥, Z, #, F) are usually messured in nano Tesla (aT);
this unit used to be called the gamma ().

5
10" nT = 3 Geuss; 109 nT = 1 Tesla

The angular elements are measured in degrees, D positive to the East I positive
downwards .

Measurerment of D

The measurement of declination (D) requires & determination of true north and
of magnetic north. Until very recently true north was invariably determined
via an astroncmical observation, usually of the Sun or the pole star. When
at sea, with & clear horizon, the magnetic azimuth of the rising or setting
sun could be compared with the true azimuth given in an ephemeris such as

the Caroline tebles, for the sppropriste latitude and date. This was the

method used by Halley, who also took account ef atmospheric refraction.

When there were no satisfactory tebles an admirable method of determining the
north from the Sun waes thet used by Borough (1581). He noted the azimuth

of the Sun as it ascended and descended through a chosen almacantur, using

a quadrant to define the altitude. The mean of these two azimuths gives

true north, and is independent of refraction. A simpler version of this
method, using the shadow of & vertical wire, is described by Bourne (1574).
If only a single cbservation is made of the altitude and azimuth of the Sun,
true north can still be determined with the aid of an ephemeris. This methed

was .mmonly used in the 17th and 1B8th centuries.

In the 19th and 20th centuries true north was still commonly determined from
a sclar observation, particularly when doing field work. However, the
altitude measurement hes been replaced with & time measurement. A theodolite
is clamped st & fixed azimuth and the time of transit of the Sun across this
azimuth is noted. The readily attained accuracy of 0.4 a is sufficient to

define the north to 0.1'.

At observatories, true north is usually obtained by observing polaris with a
theodolite, both directly ané reflected in mercury. These observations are
reduced with the aid of pole star tables and a knowledge of the time of

observaetion which is mueh less criticsl then for a solar observation.

Since the direction of true north does not change with time, at least to the

accuracy required for declination measurements, it need be determined only very
infrequently for each site. It can be recorded either by inseribing a meridian
line on & fixed object (as was done by Gunter (1624) on the dial in the King's



gardens at Whitehall), or by noting the true azimuth of a distant reference mark ,

as is the practice at observatories and survey stetions.

Over the past few years an instrument has been deveicped that glves true north
by sensing the Harth's rotation without eny reference to an astronomical object.
This grevity-influenced gyro fits on a theodolite, is battery powered, &nd
permits true north to be determined to within 20 zeconds of an are in less thsan
half an hour. Its disadvantages are its cost and the fact that it allows

survey work to continue in bad weather.

Magnetic North

For the early determinations of declination, the magnetic azimuth was determined
by mesns of megnetized needles fixed to a pivoted card, as deseribed and
illustrated by Moore {1681). In better instruments the cerd was dispersed with
and the compass needle was fitted with sn agate cup which rested directly on
the pin. Various refinements were added, such as a reversible agate cup to
aliow the needle to be mounted either side up (and hence remove errors due to

a difference between the magnetic and geometrical axes of the needlie), mirrors
to avoid parallax when reading the needle, verniers and a microscope to improve
the reading of the cirele, etc. Cavendish (1776} givee a good illustrated
description of the Royal Society instrument, which wes a fine example of such a
compass. Some observers used needles several feet long; & few inches to a foot

was more usual.

The main problems with pivoted compass needles are the friction in the bearings
and the difficulty in persuading them to stay horizental. Indeed, it was this
latter problem that led Norman to his discovery of dip. These difficulties

are overcome with a suspended magnet, as in the Kew-patiern magnetometer, which
cen also be used for measuring horizontal intemsity. A detmiled description

of this instrument and its use is given by Stewart & Gee (1903). It is essen-
tially the same instrument that is used for absolute measurements of declination
in present dsy observetories.

Another instrument that can be used to find the magnetic north is the fluxgate.
This is a pair of ferrite rods with coils of wire round them connected to
electronic equipment that can be used to indicate the magnetic field intensity
along the rods. The field indicated will be zero when the rods are magnetic
East-West, so this direction can be found by holding the sensor horizontal and
rotating sbout a vertical axis until a null resding is obtained. With suitable
precautions, this can be as accurate as a suspended magnet, though probably no

better.

A similar null-detector is the turbcmag. This consists of a single-turn coil
rotated at great speed by compressed air. Only when the rotation axis is
aligned with the magnetic vector will the magnetic flux through the coil te
censtant, and no alternating current will be generated. The orientation is
detected optiecally, using reflection from a mirror on the coil. The turbomag

shows greset promise as a survey instrument, but is still being sssessed.

Meesurement of Dip

For dip, the reference datum is the horizontal, which is readily defined by a

spirit level, mercury dish, or vie & plumb line.

Until the beginning of this century dip was invariably measured with a dip cirele,
consisting of a magnetic needle free to turn about a horizontel axis at the
centre of a verical greduated cirele. It wes usual to observe with the plane
of rotation of the needle in the mmgnetic meridien (defined to sufficient
accuracy by a simple compass), though dip can readily be deduced from obser-
vetions made in two perpendicular azimuths. Eccentricity of the axis is over-
come by reading both ends of the needle and taking the mean, and misalignment
of the magnetic and geometrical axes of the needle is allowed for by cbserving
with one face of the needle first east, then west. A more serious problem is
that the axis of rotation does not, in genersl, pass through the centre of
gravity of the needle. Tt can be made to do s0 Dy means of comterweights,
adjusted with the plane of rotation of the needle perpendicular to the magnetic
meridian, but it is easier to sllow for it by meking two sets of measurements
with the sense of magnetization of the needle changed in between, by stroking

the needle with a magnet. This method is strictly valid only if the magnetic
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mement is the same for each direction, when the tangent of the true dip is the

mean of the tangents of the two measures.

Another serious problem with the dip circles is mechanical resistance to rotation.

Various means were tried to overcome this, such as roller bearing as described
by Nairme {1772), or a cylindrical axle rolling on agate flats or knife edges,
but the problem was never completely solved. Despite mumerous detailed refine-
ments, the dip circle changed remarkably little in its essentials from that which
Normen built in 1586 to the Airy apparatus of 1B61.

The dip cirele remsined in use as & field instrument until quite recently, but

at observatories it was replsced by the dip inductor from 19ik. The dip inductor
consists of a coil of wire conhected vig & commutetor to a galvanometer, and
mounted within e verical cirele on a firm horizontal base. When the coil is
rotated {by meanz of a band or cable drive) it generates a current except when
its axis of rotation is mligned with the magnetie vector. The null point is
found by adjusting the orientstion of the sxis, and the dip is read off. This
instrument is still in use at some observatories, though its use has generally
lepsed. Its mein drawbacks are the vibrations caused by the rotation, and the
difficulty of adjusting the lignum vitae bearings to allow free rotation without

sleckness.

The turbomag (mentioned under 'declination') is essentially a modern versicn of
the dip inductor, but with the drawbacks overcome. The turbomeg and the fluxgate
can both be used as null-detectors tc determine dip in the same way as with a

dip inductor. The fiuxgate has the advantage of no moving parts.

Instead of measuring dip directly, it is not uncommon nowadays to deduce it from

measurements of H and Z, or of # and F.
Measurement of H

The early measurements of magnetic intensity were relative rather than absclute.
For example, Humbcldt compared the magnetic intensity in meny parts of the world
by comparing the rate of osecillation of his standerd dip-needle at the different
sites. In this way, he showed thet the field strength increases towards the

poles, but he could not have measursd changes with time at the same site since
he could not have known if such changes were in his megnet or in the Earth's

field strength.

Gauss's experiment.

r ! (a) The vibration experiment.
c The magnet, A, suspended by a
s gilk thread, F, oscillates in
s horizontal plane. Its moment
T of inertia can be varied by
) o ,,: hanging welghts, W, from the
Z rod, R. The period of gscilla~

tion is obtained by observing

(0) the reflection of the scele, S,

in mirror M, through the tele-

scope, T, and timing an integral
number of swings witﬁ‘the clock,
¢. (b) The deflection experiment.
Magnet B is suspended and is
deflected from magnetic north

by plecing magnet A at a known
distance, The deflection is
measﬁred by cobserving the reflec-
tion of the scale, 3, in mirror

M, through the telescope, T.

The first sbsolute measurement was by Gauss in 1832. His experiment was in 2 parts,
the first to measure MF, where M iz the magnetic moment of his magnet, and the
second to measure M/H. From these 2 results, M can be eliminated to give H in nT.
In the first experiment the period of cseillation, T, =nd the movement of inertia,

I, were measured. There M = 1m2 I/T_E. In the second experiment, the ratio



of M to H is measured by noting the deflection of & compass from the magnetic

meridian when the experimental magnet is at a known distance from the compass.

For observatory work, the highest accuracy was required, and apparatus for Gauas's
experiment was refined at the Kew Cbservatory, Richmond, to atiain this. The
resulting Kew unifilar magnetometer was a beautiful ingtrument which permitted
the ebsolute determination of D as well as H, From about 1860, this instrument
came into almost universal use at magnetic observatories, and is gtill in use at

some.

Gauss's method for the sbsolute measurement of magnetic intenaity was not improved
upen until the introduction of the coil magnetometer in the 1920's. This instru-
ment was developed by P E Smith at the Nstional Physical Laboratory, based on
principles set out by Sir Arthur Schuster. If a known current is passed through

a coil of known dimensions, the magnetic field it produces at the centre can be
calculated. The current is increased until the artificial field just balances the
horizontal component of the Earth's magnetic field, when & megnet suspended at the
centre will swing round. The accuracy of the instrument dependa on the preecision

with which the current and coil dimensicns can be measured.

The coil magnetometer is excellent for chservatory use, but is not suitable for
field work. The Kew magnetometer can be used in the field, but is slow, demanding
and unwieldy. For these reasons, a portable instrument, the Quartz Horizontal
Magnetcometer or QHM was developed in Denmark. This is not really an sbsolute
instrument (though it is used as such by seversl observatories) and needs to be
calibrated at an observatory both initially and at intervals of a few years to
confirm that its constants have not changed. It consists of a magnet suspended
from a gquartz thread. When 360° of tersion is introduced into the thread

(simply by rotating the instrument while the megnet remains pointing north), the
magnet is deflected from the meridian until the turning moment of # on the magnet
exactly equals the torsion. The measurement consists simply of measuring the
.angle of deflection and noting the temperature, since the torsion is temperature-
sensitive. The reduction takes a matter of minutes and gives # to within a few
nT.

Measurement of Other Elements

F:

Nowadays, absolute messurements of the intensity of the Earth's magnetic field
are made quickly and eas:'.iy with a proton magnetometer, Protons precess

around magnetic lines of force at a rate that depends on the strength of the
magnetic field. The precession of randomly oriented protons cannot be detected,
but if their spin axes are initially sligned by a strong magnetic field, when

it is removed they will precess around the geomagnetic field in unison, produ-
cing & signal which can reedily be detected. A proten magnetometer can measure

the magnetic field to 5/106 and is an excellent survey ingtrument.

By backing-off the ¥ with an artificial field supplied by a Helwholz coil, a
proton magnetometer can be used to measure Z. It is not necessary to know
the wyalue of #; provided the coil has its axis horizontal in the magnetic
meridien, it is sufficient to adjust the becking-off field until the residusl
field is a minimum. Similarly, by backing-off Z with a vertical coil, # can
be measured. A proton megnetometer equipped with coils for use in this way

iz known ag a proton vector megnetometer, Tt is the best observatory sbsolute

ingtrument for messuring # and Z.

For field instrument for measuring 2 (the BMZ) was developed at the same time
as the QAM, though it was never so accurate or successful. An artificiel
field ig used to cancel Z and a balanced magnet is used to detect when the
cancellation is exackt. Most of the artificial field comes from a permanent
magnet which is screwed cnto the BMZ, with fine adjustment provided by a
weaker magnet than can be rotated in a verical pleane. The measurement consists
of finding the angle of the weaker magnet that causes the balanced magnet to
rest horizontal (ie no vertical field). It is difficult to attain an accuracy
of anything better than 10 nT. In general, for field work it is better and
simpler to deduce Z from F measured by proton magnetometer and 4 measured by
QHM.

Just as H could be measured with a Schuster-Smith coil, so Z could be measured
with & vertical version of the same instrument, called a Dye coil. It was

never widely used and has now been overtaken by the proton vector magnetometer.



Variometers

The instruments described so far give instantanecus values of the magnetic
elements. For a complete description of the magnetic field at an cbservaetory,
it is necessary to know how it wvaries in the intervals between the spot observe~
ticns., This infermation is provided by variometers, of which the La Cour

variometer is a typical example.

It consists of 3 sensors — one each for measuring changes in D, H and Z - and

a recorder. The [ sensor is simply & suspended megnet fitted with a mirror

that reflects a spot of light from a fixed scurce. As the magnet moves to and
fro, following the small changes in the direction of magnetic north, the reflected
spot moves left and right. The ¥ sensor 1s essentially similar, except that
torsion is introduced into the suspension until the magnet hangs E-W, with the
torsion balancing the turning moment of H. If H increases, the magnet turns
slightly towards magnetic north; if ¥ decreases the magnet moves away from
megnetic north. These wovements cause a reflected light spot to move left and
right. 'The Z sensor consists of a magnet balanced on knife edges so that it

can turn in & vertical B-W plane. If pivoted at its centre of gravity, the
turning moment of £ would cause it to stand vertical, but it is pivoted off-
centre so that it comes %o rest horizontally, with the Z turning moment compen—
sated by the gravitatiocnal couple. Stability is achieved by having the knife
edges above the magnet's centre of gravity. If Z incresses, the magnet turns
slightly towards the vertical, and vice versq, These movements are translated
into left and right movements of a reflected spot by means of s prism and a
polished upper surface on the magnet. The recorder is a horizontal cylinder
vwhich rotates once a day about its axis and which is covered with a sheet of
photographic paper. The moving light spots are focussed on the drum by cylindri-
cal lenses. Time signals are introduced either by interrupting the light source
or by switching on an additional one at regular intervels. Beselines ere provided
by reflec¢tions from fixed mirrors. When developed, the magnetogram shows 3
vwiggly lines that indieate the chenges in [, ¥ and Z throughout the day, time

marks ané straight baselines.
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Before it can be used, the magnetogram must be calibrated. First, it is essential
to know how to convert 1 mm of movement on the paper into nT. This is done for

H and Z by imposing a known field on the sensor, and noting the deflection this
produces on the photographic trace. This gives the scale value in nT/mn, For

D, the scale value is in aremin/mm, and can be deduced from the distance of the
sensor from the recorder, since it is a simple optical lever. Becondly, we need
to know the value of at least one point on the trace before the other values can

be deduced. This is provided by the sbsolute observation.

Tn the well-controlled and econstent tempersture envircnment avasilable at an
cbservatory, the La Cour variometer is an excellent instrument, but it is
certainly not portable. Special variometers have been developed for use in the
field which are portable, robust and compact. One problem in the field is the
lack of temperature contrel. In the Gough-Reitzel variometer, this is overcome

by designing the instrument for installation in a shallow borehole.

Another disadvantage of the La Cour is the photographic recording snéd asscciated
opties. Tt would be preferable to use elechronic means of detecting and recording,
s0 that the output could be immediate, vig pen recorders, and machine readabi=,

by recording digitally ontc magnetic tape. Fluxgate sensors would appear to oe
suitable for this, but at present they appear to be less stable than suspended
magnets. Another sensor with excellent accuracy and stability is the rubidium
vapour megnetometer. This has been used with great success in the field, but

hes not been reliable enough for observatory use, where continuity of record is

"vitsl. Probably the resl answer will be the SQUID magnetometer, but the price

and the requirement for liquid helium will put it beyond the range of most

observatories for at least a decade.
Automatic Instruments

Some 2/3 of the Earth's surface is ccean. For a realistic global coverage it
would be desirable to have ocesn bed observatories, and this requirement prompted
several groups to attempt to develop these. None met with any great succeas at
sea, but they have proved useful at some land sites. One system is the Digitally
Recording-Proton Vector Magnetometer, cr DRPVM. A proton magnetometer sensor

is placed between 2 sets of Helmholtz coils, one with its axis magnetic East-West
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and the other perpendicular to both the magnetic vector and the other set of
coils, in a direction which we will denocte P§. A sequence of 5 observations
gives data from which sbsciute values of X, Y and 2 can be deduced, and this is
repeated every 30 3. The seguency is as follows: {i) no bias field, {ii) a

bias field in the E direection, (iii) the same bias field in the W direction,

{iv) & biss field in the P direction, {v) the same biams field in the @ direction.
The unravelling of these five fielé intensity measures to give X, Y and Z is

left as en easy exercise for the reader!

The Automatic Magnetic Observatory System (AMOS) is an instrument developed in
Canada thet hes been -widely used. Three crthogonal fluxgetes measure X, ¥ snd Z,
ané overall absolute control comes from & proton magnetometer measuring F and
the constreint that F = ¥° + 7+ 22. This is essentially the same system

as was used on the recent very successful satellite MAGSAT.

Observatories

Much has been said of individual instruments. such as might be used at observatories,
but what of the cbservatories themselves? A magnetic observatory is a frixed site
at which regular (preferably continuous) observations are made of the geomagnetic
field. The eeriiest observatories were concerned cnly with D, such as that of
George Grasham, the famous clockmaker, who made thousands of observations of D
at his house in Fleet Street between 172 and 1748, and discovered the diurnal
variation. Mark Beaufoy ran similar observatories at Hackney Wick and Bushey
Heath from 1813 - 1822. However, the present worldwide system of observatories

has grown from the Gottingen Magnetic Union of 1839.

In an attempt to discover the geographical extent of magnetic disturbances, Geuss
and Humboldt solicited the collaboration of scientists from many countries in a
project to observe the magnetic field at 5 minute intervals throughout I selected
"tern days" each year. With time, the number of collaborating observatories
increased (see figure) and the frequency of cbservation increased from the 4 term
days to every dey and (with the introduction of photographic recording in the late
1840's) from 5 or 15 minute intervals to continucus. Various other projects, such
as the Internstional Polar Years of 1882 and 1932 and the International Geophysicel

Year of 1957, have given impetus to the observetory network which has continued
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long after the specific project has finished. At present there azre some 150
observatories in cperation, of which less than a quarter are in the southern

hemisphere.

& typical observatory comprises an office building, which houses the staff,
workshop, darkrocm, electronics laboratory and clocks; en absolute building in
which the azbsolute instruments (eg proton vector magnetometer and declinometer)
are installed on custom~built piers; a variometer building, usually windowless
end commenly underground or double walled for thermsl insulation, and miscellsn—
eous other small buildings for batteries, instrument calibration, visitors
experiments, ete. The absolute and variometer buildings are constructed through-
out from non-magnetic materials, and should be remcte from any artificisl
disturbance., It is the encroachment of artificial disturbances in the form of
electric trains, motorwsys, carparks, factories, and housing estates that is the

most common reasoh for the closure of observatories.
Routine Cbservations

At a typical observatory the routine is as follows:

Daily: change and develop magnetograms, check variograph lights on and drums
rotating.
Weekly: make sbsolute cbservetions (this should ideslly be daily, but we are

considering vhat is typical).

Monthly: make scale-walue determinations.

Annuelly: check azimuth of mark against an astronomicsl observstion,

Routine Reductions

Daily: estimetion of ¢ and K indicies from magnetograms.

Weekly: determine baseline values on magnetograms using absolute observations.

W

Monthly: edopt final baseline values representing a smooth fit to the
individual determination; adopt scale velues similarly, measure
hourly mean ordinates in mm, convert these to nT using the adopted

baselines end scale values. HNote phenomencn.

Annuslly: complete annual volume by tsking means for all days, quiet days and

disturbed deys for hours, days, months and year.

Use of (Observatories

Observatories provide a means of monitoring magnetice a.ctivrity, vhich is of
importance in communications both by radio and telephone, and in power trans-
mission. They provide a base for surveys where instruments cen be calibrated

and to which survey data can be reduced. They provide informaticn on the secular

variation which is essential for cartographers.

These are & few of the uses which are of direct commerical importance, However,
the real resson for runing an observatory is to contribute ﬁo the body of
geomagnetic data which is used for purely scientific investigations relating to
properties of all parts of the Earth from cors to magnetosphere.
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DESCRIPTTION AND ANALYSIS OF MAIN FIELD

Data
The main scurces of data on the geomagnetic field are as follows:

Observatories: These data have been described in some detail, They are of
the highest sccuraey, but it should be recognised that they refer only to
the observatory site which may be anomalous and not representative of the
surrounding area. Also, their number distribution is poor, with oanly
150 in Yotal mostly concentrated in Europe.

Survey data: Surveys are carried out on lend, at sea and in the gir. Land
survey data are usually of the highest quality, but are available for
relatively few sites and only in restricted aress. Ocean surveys are now
almost exclusively of F, usually measured with a towed proton magnetometer.
The earlier ocean surveys by specially designed ships such as the Galilee,
the Cernegil and the Zarye were of all elements, and more widely spread
than recent cnes, but they are now badly out of date. Air surveys blossomed
in the 195C's and 60's, with the US "Project Magnet" and Canadian surveys
from the Pacific to Scandinavia, While Project Magnet is still going on,
it is at a reduced level except for regions near the US cosst. The quantity

of air data is not, in general, matched by its quality.

Satellite data: Until 2979, nearly all satellite megnetic data was for F only,
though there was a vast quantity of it. The main sources were the 0G0
(Orbiting Geophysical Observatory) series of satellites, the even numbered
ones being in nearly circular poler orbits, giving a detailed coverage of
the whole Earth, though with greeter density of observations near the poles.
The Cosmos 49 satellite did not go to higher latitude {N or S} than 50°.

The recent, highly successful MAGSAT setellite was in a polar orbit at very
low altitude and measured the complete magnetic vector. The MAGSAT dats
are still veing actively exploited by many groups.

A6

Charts

The simplest way of summarizing & body of magnetic data is by means of a chart
showing isolines of one of the elements. The first mep of isomagnetic lines
was probably that produced in about 1640 by the Jesuit Christoforo Boerri and
Martin Martino, though it was not uncommon for earler charts to give some form
of compass informetion. This chart is referred to by Kircher {1643} and is
probably also that alluded to by Whiston (1721). Unfortunately, no copies of
the chart have survived, so credit for the first isomagnetic chart usually goes
%o Edmend Halley for his Atlantic chart of declination, published ¢. 1701.
Certainly this chart, which was based on Halley's ‘own observations, and its
worldwide successor, which incorporated data from other sources and appeared

a year later, were the first to gein genersl acceptance and to be of practical

use to navigators.

As Halley himself was well aware, the megnetic field pattern does not remain
constant, and this secular change gradually rendered his charts obsolete. Over
the next 150 years, various individuals produced charts when the need arose,
collecting data in an ad Aoc manner, reducing them to epoch where they had
informetion on the secular change, and contouring the results. In 1858 the
British Hydrogrephic Office assumed respensibility for the systematic collection
of magnetic deta and the preparation end publication of world megnetic charts.
At first, +the preparation was bj naval officers, tut was later passed on to the
Magretical and Meteorological Depertment of the Royal Greenwich Observatory,
vhich department, though now absorbved into the Geomegnetism Unit of the Institute
of Geclogical Sciences, still retains the responsibility. Similer arrangements
exist in the USA and the USSR. World declination charts are published every 5

years, and charts cf the other megnetic elements every 10 years.

In the early days, when data were sparse, magnetic cartography was more art than
science, with considerable scope for imeginative contouring in the spaces between
cbservations, As more data beceme aveilable, the oversll pattern became more
clearly defined, but artistic judgement was still required in drawing smooth
contours through scattered values. Occassionally, charts have been produced with
the contours contorted teo provide en exact fit to all the data (eg Bock 1948),
but experience has shown that smoother cherts usually provide better fits to

subsequent data &s well as being easier to read.
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Besides fitting the data s model may be expected to satisfy physical constraints.
In the case of charts, some of the constraints are geometrical. As well as the
obvious cnes, such as the requirement that conteours should not cross one another,
there sre more subtle ones, perticularly regarding the behaviour of contours

near the geographical snd geomsguetic poles. Where charts of several different
elements are produced they should, of course, be mutually compatible. A full
discussion of the constraints that iscmagnetic maps should satisfy has been given
in a series of pepers by Chapman. These papers ere mainly theoretical. The
detailed technigues for the practicel production of magnetic charts have mostly
been passed on by word of mouth rather then by publication, but some of them

have been recorded by Sucksdorff (1981).

The greatest revolution in magnetic cartography, ss in meny branches of seience,
has been brought about by electronic computers. Not only do they permit the
direct processing of large quantities of data to produce the parameters of a
mathematical model of the magnetic field, they cen also be coaxed into drawing
the actual contours with only the minimum of human intervension. This is not
all gain; there are those of us who miss the satisfaetion of refining a set of
econtours for maximum sensual appeel while still not departing too far from the
truth. Also, computers may make magnetic charts obsolete. Already 1t is common
in aircraft for magnetic declination date to be generated in a small computer
rather than read from a chart.

Spherical Harmonic Analysis

The method of spherical harmonic analysis was devised by Gauss (1839) specifically
for the purpose of modelling the geomagnetic field. He showed that, if the
geomagnetic field intensity cen be represented as the gradient of & potential,

i+ csn be written as & linear combination of an infinite series of spherical
harmonic coefficients, some of which represent the part of the petential of
internal origin and others the part of external origin. Here, internsl and
external are relative to the surface of a reference sphere, which can be chosen

to be the surface of the Earth.
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The potential, ¥, at & point with spherical coordinates (8,0,r) may De

represented in spherical harmonic form by

n+i

Vv = K + R % % {(cs cos md + 32 sin mp) (B/7) + (Eg cos mo

+ u: sin m4) (r/B)*} PZ (cos 8.

Here, 8 denotes the colatitude (North polar distance),
b denotes East longitude,
r denotes the radial distance from the centre of the Earth,
X is an arbitrary constant,
R denctes the radius of a reference sphere, whose centre coincides

with that of the Earth,

c:, sz denote the spherical harmonic coefficients associated with the
part of V that originates within the reference sphere,
Yﬁ, 02 denote the spherical harmonie coefficients associated with the
part of V that originates outside the reference sphere
and ﬂ: (cos 8) denotes the associated Legendre polynomial of degree m end

order n,

Following the recommendsticns of the Internaticnsel Association of Terrestrial
Magnetism and Atmospheric Electricity (Goldie 1940), Schmidt quasi-normalization

is used, 3o that

1 sm(n -m)! (1 - xe)m ! g o n
Eﬂ () = —=— & =),
2l n + m)t dx
Where Ep = 1 for m= 0; £, = 2form= 1,2, 3, venus

The North (X}, East (¥) end vertically downward {Z) components of magnetic

intensity are derived from V as follows:

. 13v 1 av _ar
¥ = 3 ¥ * v5me 55 2T o



That is
m , +9 -
¥ = Iz {(cn cos me + s: sin m¢) (EV%)“+2 + (E: cos me + c: sin m¢)
{P/R)n_1} m’[: {cos 8),
m .
Y = r}';;r {(cn sin m¢ -~ s: cos m) (R/r)n+2 + (.Y:: sin m¢ - cr}: cos mé)

(1’/}?)”_1} ﬂf: (cos 8),

zZ = - % L {(c: cos m¢ + si sin mp) (n + 1} {R/r)n+2 - (EZ cos mé
- cﬁ sin #¢) n (r/R)n_I] Eﬂ (cos 8);
where
nX: {cos §) = g_S{P: {cos 8)} a.ndnyr: {cos 8) = si?xge P:(cos 8).

A spherical harmonic analysis is the process of determining the numerical
values of the spherical harmonic coefficients frem a set of geomegnetic data.
Clearly, it is impossible to determine an infinite set of coefficients, so in
practice the zeries is truncated at some peint, The level of truncation
determines the complexity of the model, corresponding tc degree of smoothing
in the case of a chart. Provided the data ere in the form of the orthogonal
elements X, ¥, or Z, each datum can be expressed as a linear combination of
the required coefficients, as shown above, giving an equation of condition.
There are ususlly many more equations of conditicn than there are coefficients
to be determined, so an exact solution is not possible. Instead, another legacy
from Gauss, the method of least squeres, is generally used to determine the set
of coefficients that most nearly fits the data.

It is common practice to solve the X and ¥ equations for gz and hﬂ, where

mo_ m__n_ mo_ m_ nom )
g, (cn n+1Y2)‘ma hn'—(‘gn 7+1n

90-

The internal and external spherical harmonic coefficients are then separated

as follows:
oo m - o
e, ng, + +1)g' /[ {m+1),

m m "
&, = mh + (n+1)h', [ (en+1),

X

o= g =g (a4 1)/ (en v 1),

3

_ g.m
d —(hn

- h':) fn+ 1)/ (2n+1).

3

If, as appears to be true for the mein geomegnetic field, the externsl part is
negligible, then g:: = g"’: and h: = h‘:. In this case, the equations for

X, ¥ and Z may be solved simulitaneocusly to give c:: and 3:: direetly.

If the data are read from charts, a number of simplifications are possible, For
example, with data on a uniform geographical grid, the analysis can be separated
into two distinet parts. The first is concerned with the dependence of the

data on leongitude. This dependence can be described by the first few terms of

a Fourier series, with a separate set of terms for esch velue of latitude.

Since the data sre uniformly spaced in longitude, the Fourier coefficients are
simply the sums of the products of the magnetic fieid values and constant factors.
In the second part of the analysis, latitude dependence i3 considered. Each

of the Fourier coefficients can be considered seperately as & functicn of
latitude involving not more than n spherical harmonic ccefficients. For example,
the first (constant) term in Ithe Fourier series is a functiocn of the spherical
harmonic coefficients g?, gg,...g:. The n coefficients could be directly
determined by least squares, involving the solution of simultaneous eguations

in n unknowns, but a further simplification is possible. Since the data are
uniformly spaced in latitude and spherical harmonics are alternately symmetrical
and antisymmetrical about the equator, the sum of the northern and southern
hemispheres involves only half of the coefficients, and the difference of the
hemispheres involves only the cther half. Thus, there is never need to solve

for more then n/2 unknowns.
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In practice, the deta are not sufficiently well distributed for a uniform grid
to represent their distribution, so it is better to do a direct solution of

the equations of condition, with the data weighted according to their accuracy.

T+ hes been implicitly assumed that the reference sphere corresponds to the
surface of the Earth, but this can be only an approximastion since the Earth is
more nearly en cblate spheroid than a sphere. It is possible to make a
sphroidsl harmonie analysis to sllow for this (eg Jones & Melotte 1953), but
it is more usual to stick to a spherical reference surface, and take account
of the fact that observations on the surface of the Earth are not on the
reference spheré, and that geographical north and verical are slightly off
the directions of @ and ». The only complication is that 'internal' and

fexternal' sre relative to the reference sphere rather than the Earth's surface.

The equations of condition for the non-orthogonal elements D, I, H, F are not
linesr in the sphericsl harmonic coefficients, so their direct solution is not
possible. With the advent of satellite data which was initially exclusively

F, it became urgent to find a way of solving the F equations. After some

false sfarts, the solutions proved quite simple, When the equations were
differentiated they became linear in AgZ; Ahz, which denotes small corrections
to gz, hz. Thus, one specifies an initial set of gg, hz and solves for the
corrections to the true velues. In principle, the solution should be iterative,
but the rate of convergence is so rapid that only one iteration is needed, even

when the initial model is poor.

The numerical techniques for s¢lving large numbers of equationa in many unknowns
have been greatly modified over the years, particulerly since the introduction
of electronic computers. The early solutions were vig normal equations using
Gaussian eliminaticn., This was replaced by matrix inversion methods, though
still viq normal equations {see Appendix). There are meny ways of inverting
mstrices, but the best is probably that of Gauss and Jordan, with pivotal
searching. The most recent methods of solving simultaneous equations completely
by-pess the normal equations stage, and operate directly on the equaticn of
condition matrix. These 'QR decomposition' methods are much more stable and

not much slower then matrix inversion.

pis

Results

The spherical harmonic coefficients are themselves a summary of a vast body of
geomagnetic data, so it is difficult to sumrarize them further. However, some

of the low order coefficients lend themselves to physical interpretation.

The g? term corresponds to a dipole at the centre of the Earth with its axis
pointing north. This azial dipole is the first epproximation to the geomagnetic
field. The next approximation is the sentre dipole, in which the axis is

allowed to peint in the optimum direction {towards north Greenland at present ).
Its movement, M, is given by MR3 = [(g?)2 * (g1)2 + (k:)2 i_ The next
epproximation, the eceentrie dipole, requires higher order coefficients for its
specification. There are several ways of defining the eccentric dipole, depending
on the number of ccefficients one tekes into account, but they all end up by
specifying the position of the dipole {3 parsmeters), the direction of its axis
{2 peremetera) and its moment {1 parameter). The simplest version is deduced
directly from the first 6 spheriecal harmonic coefficients: g?, g:, h;, gg, g;,
Y

One can go no further with a dipole; better approximations require more dipoles
or alternatively, centred multipolea. Centred multipoles are mere simply related
to spherieal harmonic coefficients, since there is one for each #n. The dipole

is specified by the 3 m = 1 terms, the quadrupcle by the 5 n = 2 terms, the
octupole by » = 3, and so on. Going backwards, the single term gg correspongs

to & moncpole at the centre of the Earth. In the few analyses where go, has

been sought, it has never been found to differ significantly from zero.
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SECULAR VARTATICHN
Dizcovery

The discovery of secular variation was & fine example of teamwork, starting with
an accurate measure of declination in Iondon in 1580 by William Borough, who
had served under Drake. In 1622 Edmmnd Gunter (professor of astronomy and
inventor of the surveyor's chain and the slide ruie) made a new measurement at
the same place, and found a velue of declination 5 degrees less than that of
Borough. Being a cautious man, he did not leap to any conclusions in case the
esrlier cbservaticn was wrong. It was left to his suceessor, Henry Gellibrand,
to find that the declination had decressed by a further 2 degrees by 1634 and
-thus show that the Earth's magnetic field really does change with time.

The secular variation is of particular geophysical importance since it originates
in the Earth's core and is one of the very few clues to dynamiecal processes
deep within the Earth. It also gives information on the conductivity of the

mantle, through which it has to pass before being ovserved at the surface.

Data

By far the most reliable sources of secular varistion (sv) dats are observatory

anhual means, but we have a&lready noted the unsétisfactory geographical distri-
bution of these.

Other sv data come from repeat statfons. These are marked sites (the mark is
commonly a buried tile or a brass stud, which can be found with the aid of a
'tressure map' held by the observer) at which a set of absolute, or near absclute,
observations are made at intervals of a few years. Provided the observations

are good and the site has not been poluted by magnetic materiel in the interval
between cbservations, the change in field should be & reasonable measure of
secular variation. In practice, it is surprising how seldom the provisos are
satisfied. However, repeat stations do give some additional sv information

which can be of velue in regicns remote from observatories.
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Another source of sv data, though still less relisble, is the difference
between successive surveys of the same region. Unless the survey points are
the same on both occasions {ie repest stations), the comparison must be made

pig maps, or some other form of local model.

It is snticipated that really good sv data will come from a comperison of the
MAGSAT results with those from a subsequent, similar satellite, that has yet to
be lammched. While this is undoubtedly true, this will only give the mean sv
between the dates of the 2 satellites, and observatory dets will still be reguired
for the higher temporal resolution required to reveel such important features

as jerks (see below).

Morphology

Charts of sv have been produced since about 1858 for use in correcting world
chart data. They are still used for this purpose, but are now also used for
geophysical research, The greastest rates of change occur in Z, the isolines

of which shows 3 deep foci, one positive in Antarctica and two negative, one

in the Atlantic and the other in the Indisn ocean. In the first 2 foci, the
rate of change exceeds 140 nT yr-1. The X and Y charts both show zero contours
passing through these foci. Those for X pass through frem E to W, these for

Y from K to 5, as would be expected from potential theory. Sphericsel harmenic
analysis of the sv potential shows that it is less dominently dipelar than the
main field and that the convergence of the harmonic series is less rapid. The
slow convergence is an embarrassement. It suggests that & large number of terms
are required for an adequate description, but the inadequacy of the data prevents
this. It also suggests that the higher (undetermined) coefficients are of
great importsnce at the core-mantle interface, where the field originates,

and to which level we would wish to extrapolate it.

Higher Derivatives

The sv itself changes with time, and its rate of change is called the secular
goceleration. Tt has been shown that secular acceleration is sufficiently stable
and well-determined to be of value in extrapolating dats for the production of

navigation charts.
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The third time derivative in the main field is called the jerk, by analogy

with mechanics. It is usually nesarly zero, but a pulse occurred in about 1970
which was of surprisingly short duration. The pulse has been shown tc originate
within the Earth, snd it would be expected that such a short lived phenomencn

would be attentusted to insignificance when passing through the conducting mantle.

The fact that it is detectable at the surface of the Earth suggests that the
conductivity of the mantie is a lot less than had been previously suspected.

Other Implications

If the Earth's core is (to a good approximstion) a perfect conductor, the total
number of lines of force passing through its surface should be constant. This
proposition can be tested using spherical harmonic medels of the geomsgnetic
field and its sv. The departures of the flux from constency are within the
uncertainty of the models, The procedure can be reversed, and the constraint
of constant flux be applied when determining the coefficients, &nd this should

lead to better models.

There are other consequences of perfect core conductivity that suggest that more
complicated functionms of the main field and sv should be invariant. These are

being examined.

Again assuming constant core conductivity, the lines of force are 'frozen in'
to the core, soc movement of c¢ne implies the same movement of the other. We
cannot see lines of force, but the main field and sv tell us some of their
properties and movements, so we can obtain some (limited) information about

motions at the surface of the liquid core.
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Appendix

Least Square Solutions

Consider a set of equaticns of condition:

1101 12 2 13 3 mon 1
a x + a X + a L eaean + = e
21 1 22 2 23 3 n o n 2
7 ()
a x + a & + a x P + a x = @a
31 1 32 2 13 3 EICERG 3

+ X + x N T = e
aml x1 amz 2 ama 3 G Tn m

here m 2 n, the number of unknowns.

We wish to determine the values of 'Tj’ J = 11ton, that minimises the sum

of the squares of residusls, R , where

z 2
Ro= 3 ()
k=1
and
R O T R R (2)
For R to be a minimum,
R =0. But @B = (2a, . €.}, (3}
dm, ax - ki Tk
J. 4 k=1

80

m ’ ’
2 (aki‘“kj Tk By By ¥ GpGp Ty e G E T ck'akj) =
k=1 i

(&)

Since j tekes all values from 1 to #, this provides n such equations in n
wakeowns .



Adopting the nctation

m
E (aki'akj) = [aiaj],
k=1

these normal equations may be written in the form

['a.lal] [azall I_-aaa1 chena anal] z (o a1]
[__alazl [azaz‘] [« N £ana2] T, |;c czz]
I_alaal [a2a3] r_a3a3 ceaes [an%] z = |le aa] (5]

f_al'an'_] [azan] Eaaan.] [anan] 2 (e a,ﬂ
In matrix form: AX = C. Hence X = A-1C, where A_1 is the inverse of A,

Having thus obtained the n values xJ., we 5till require their standard deviations,

8,, where
7

(W.R )25
5. = | -
J

m-=mn

and wj is the jth element of the leading diagomal of the inverse matrix. R may
be obtained rather laboriously by substituting the values of z§ into equations
(2) and surming ei for ¥ = 1 to m (though this method has the advantage of
permitting an exemination of the individual residuals, which freguently indicates

erronecus data). Alternatively, R may be obitained from:

m
(c;,c)2 _ 21 z [e aj] (6)
i=

ty
n
M

—
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The proof of (6) is as follows: from (2}

R = Z Ek'ek = :171 ;akl ek + xzz akz Ek + wg; akfi Ek AP
k

k
k

but from (3), all terms except the last are zerc when E is a minimum.
Thus

R = —ch Ek = —mlz ak1 ck - xzz akz e, - Isz aks ck...
X k k k
. 2
e T %Z“fm"k *Z tey)
k K

which is the same as (€).

Weighting 1If we give the kth equation of condition weight ¥y this means that
we consider its importance to be equivalent to Nk equations of unit weight. We
wish its contribution to the normal equations to be the same as that which would
be cbtained by entering the same equation Nk times with unit weight; that is,
we wish to replace aki'akj with Nkaki'akj' This is most simply done by
multiplying the wholedequation & by ,{.’Tk, and then proceding erxactly as in the
un-weighted case. (NB. Nk is not constrained to be an integer; m is not
affected by the weighting; no different treatment of the residuals is required

after the above-mentioned multiplication has been carried out).
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Appendix to Appendix

SOLUTION TO NORMAL EQUATTIONS

Gausgian Elimination

Probably the most basic method of solving n equstions in n unknowns. Multiples
of one equation, the pivotel equation, are subtracted from the other equations
to eliminate one of the variasbles from all of them. This process is repeated
until a trisngular system is obtained and sclution is by back substituticn.
This may be executed with or without 'pivotal searching’. Loss of significant
figures may result if an equation with a relatively small coefficient for

the varisble to be eliminated is chosen as the pivotal equation, It is usual
to take the variables in order and use the equation with the largest coefficient
at that stage for the elimination of a éiven varisble. TFull pivotal searching
invélves looking for the largest coefficient in the whole array and eliminating
the corresponding variable with that equation; however this may be counter-
productive by giving very small pivots in the later stages of elimination.

(The extra computing time is not worth the effort.)

An example is given below:

x + 1oy + z = -3 i Pivotal eq®for stage 1
1/2x + 3/2y + z = 6 ii
x + y + 3/2z = =) iii
s/Ay + 1l/2z = B8 1/2 ii -1/2 x i Pivotal eq*for stage 2
/2y + 1/2z = k4 idii -1 x i

3/10z = 3/5 iii  -2/9 x ii

z=2, y =6, x= =10

30

This may elso be written omitting the variable names:

1 1/2 1 -5
/2 3f2 [
1 1 3/2 [
s/ /2 8 1/2
1/2 1/2 L
3/10 | 3/5

The sum of squares of residusls must be calculated by substituting into the

equations of conditien,

Matrix Inversion

Start with the same set of normal equetions, which mey be written In matrix

form:

1.0 0.5 t1.0] |x| [ 0 0 -5.0 (1)
0.5 1.5  1.0| |¥ fal0 1 0 6.0 {(2)
1.0 1.5 1.0} [z lo 0 1 -1.0 (3}

The unit metrix on the right is not necessary, but will illustrate the method

which is a systemstic way of converting the left hand matrix to a wnit matrix

while the right hend matrix becomes the inverse.

AL}

A{ii)

Divide the first row by its first element, so that the first element
becomes 1.0. (In this example it is alresdy 1.0, so we merely

rewrite the line:

1.0 0.5 1.0 ] 0 0 {1a)

Reduce the Ffirst element of the second row to zerc by subtracting
& suitsble mitiple of {14) from it. In this case the mltiple is 0.5:

o 1.25 0.5 -0.5 1 0 (2a)
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Aliii) Reduce the first element of the third row to zero by subtracting a
_suitable multiple of {1A) from i%. In this case the multiple is
1.0;

o] 0.5 0.5 -1 0 1 (34)

Note that the first column of the matirix has become the first column of a

unit matrix. Now we operate on the second column.

B(1) Reduce the second element of the second row to 1.0 by dividing the
whele row by 1.25:

o 1 0.b -0.4 0.8 0 (2B)

B(ii) Reduce the second element of the first row to zero by subtracting
0.5 x (2B):

1 o 0.8 1.2 -0.4 0 (1B)

B(iii) Reduce the second element of the third row to zero by subtracting
0.5 x (28):

¥ 0 0.3 -0.8 -0.} 1 (3B)

Fause for a re-write and to note that the first 2 columns are those of a

unit matrix. One columm to go.

1 0 0.8 1.2 -0.4 ¢ {1B)

0 ] 0.4 0.k 0.8 © {zB)

0 0 0.3 -0.8 0.4 1 {38)
¢{1) Reduce the third element of the third row to unity by dividing by

c.3:

0 0 1 -8/3 -L/3 10/3 {3C)

3t

0{ii) Reduce the third element of the first row to zerc by subtracting
0.8 x (3C):

1 c 0 10/3 2/3 -8/3 S (1e)

0{iii) Reduce the third element of the second row to zero by adding
c.h x (3C):

0 1 0 2/3 4/3 =k/8 (2c)
Re-writing in full, we see that we have 50; there:

1 o} o] |x 10/3 2/3 -8/3 -5 {1c)

1o 1 ol Iy| =|2/3 u/3 -b/3 6 (20)
0 ¢ 1} |z 8/3 ~4/3 10/3 -1 (3¢)

The unknowns are obtained by multiplying out:

{10/3) (-5) + (2/3) (6) + (-8/3) (-1} = -10
(2/3) (-5} + (&/3) (6) + (-4/3) {-1)
(-8/3) (-5) + (~4/3}(6) + (10/3} (1)

]
(=2

©n
n
]
r

3 Matrix Inversion with Pivotal Searching

For an exsct sclution, such as that given shove, there are no problems with
rounding errors. However, they are usually important when inverting large
matrices on & computer. It is important to reduce rournding errors as far as
possible by using pivotal searching. The method iz essentially the same as
that given above, except that, instead of working through the rows in
sequenée reducing the diagonal element to unit, one selects the row with the
largest element. It can be shown that, for a normal equations matrix, this
pivotal element is invariably on the leading diagonal. In compressed form,

the procedure is as follows:

1 172 1 1 0 0 : {1)
1/2 3/2 1 0 1 0 (2)
1 1 32 o 0 3
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The largest element is the middle cne, sc we reduce this to 1 and the ones

above and below it to zerc:

{(1}-1/2(ca): 5/6 0 2/3 1 -1/3 0 {(14)
(2)#3/2: 1301 2/3 0 2/3 0 {2A)
(3)-(24): 2/3 0 5/6 0 -2/3 1 {34)

The largest element outaide row 2 (which has already been dene) is the first.

Here we go again:

(1A)$5/6: 1 0 b/s 6/5 -2/5 © (1B)
(2a)-1/3(1B): © 1 2/5 -2/5  L/s 0 (2EB)
(38)-2/3(13): 0 0 3/10 -hjs -2/5 1 (3B}

The largest diagonal element outside rows 1 and 2 is the last:

(1B)-h/5{3C): 1 G 0 10/3  2/3 -8/3 (1c)
(2B)-2/5(3C): © 1 0 2/3 L/3 -h/3 (ac)
(3B)<3/10: 0 o 1 -8/3  -4/3  10/3 (3C)

Whiech is the same as we had before. {Phew!)

Matfix Inversion with Pivotal Searching and Compact Storage

The next stage is to save some storage space. At all stages of the above
caleulation, half the columns are those of a unit matrix and need not be stored.
In the compact form of the solution these are cmitted, and the inverse matrix

overwrites the original:

Cpen

1/2

5/6
1/3
2/3

A further saving of space can be achieved by noting that both the normal

1/2 | 1
3/f2 11

1 3/2
0 2/3
1 2/3
0 5/6
o L/s
1 2/5
0 3/10
0 0

1 0

o] 1

6/5
-2/5
-h /5

10/3
2/3
-8/3

%

-1/3
2/3
-2/3

-2/5
b/s
-2/5

2/3
L/3
-L/3

-8/3
~4/3
10/3

Compact
1 1/2
1/2 3/z
i 1
5/6 |-1/3
/3 2/3
2/3 |-2/3
6/5 |-2/5
-2/5 | 4/5
-h/s o b-2/5
10/3 | 2/3
2/3 | 4/3
-8/3 |-L/3

3/2

2/3
2/3
5/6

L/s
2/s
3/

-8/3
-L/3
10/3

equations and its inverse are symmetrical, so the elements below the diagonal

are redundant.

of sign follow a systematic pattern that can be deduced.

The numb

ers

This is not true of the intermediaste stages, but the changes

(including those from the right hand side of the equations] are stored in

a linesr array, whose contents change as shown below:

Row 1

1 1/2
5/6 {-1/3
6/5  |-2/5
10/3 | 2/3

2/3
L/s
-8/3

RHS 1

Row

3/2
2/3
45
4/3

2

2/3
2f5
-4/3

RHS 2

Row 3| RES 3
3/2 =1
5/6 5
3/10 | 3/5
10/31 2

z

This is the method of Malin, Barraclough & Hodder, called ZAPP
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QR Decomposition
We require a least squares solution of the system
cx = 4d
where ¢ i the matrix of coefficients of the equations of condition, X is the
column vector of the unknowns (to be determined) and E is the column veector of

the right hand sides of the equaticns.

C has dimensions m x n where m * n; if m = n the solution is unique, provided

C is non-singular.

Suppose the lesst sguares sclution for the unknowns is ':E'; then C X' - 4 = ?

- .
where r is the eolumn vector of residuals.

We may write C = QR where QTQ = I, and R is upper triangular on top of zeros.

men |32 = |le® - 3|3
.
= e - 32 R e [OR
0 [w-n
v

Multiplying by QT does not change the length (since @ = T, effectively)
+)2 -+ 2
HZ = |iE - Q%
P
1
Put QTE= *+**| where d_ is n x 1, &
d2 1 2

squares of the residuals.

O
2 [9...;1 >, . 2
r = x -

c 4,

i - fa])f?

[dg
= || - [q] “2 * ”[dzma

is (m=-n) x 1, {;le = ra, the sum of

36

The second term is & constant. Condition for lesst squares solution is

Since R is upper triangular, we get the wnknowns by back substitution.
The problem has now been reduced to that of finding R and 51 » 32

Denote the columne of C by ¢., i=1,n, wh:ere'_c_i = fey;

The first stage of the trapsformation is equivalent to a 'reflection' in
n-dimensional space so thet the transformed €, has all elements after the first
zerc. Striking out the firet rew and column of € leaves anm - 1 xn = 1
matrix which can similarly be transformed so that its first column has zeros
below the leading diagonal. This is repeated until all the sub-diagonal
elements are zero and the resulting matrix is R above. he right-hand sides
are trénsformed in the same way at each stage, we obtain d1 . Back substitution
gives the least squares solution for X and ||(d2)" 2 is the swm of squares of

the residuals.

Let ¢, denote the position vector of P (c”, Chy c31,...cm1}, and c® the vector
(s” |9_1|, 0, 0, ..., 0). The required axis of reflection is B4 where 0 is the
origin and A has position vector & = ¢, +c* ife > 0,8 = g4~ c* if

ey 0

The reflection of P in this axis is Q, position vector c* (or -c%*). The reflection

of R (c1i’ Cpi Cqpr v cmi) in the axis is 3 where
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In the progrsmme, the 'reflection' of P is set as (—eljlcjl, 0, 0, 0;.., 0) and

the components of the other transformed vectors are caleulated ss
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This merely has the effect of multiplying the equations through by -1.







