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LIGHT LOCALIZATION AND QUANTUM
OPTICS
IN A PHOTONIC BAND GAP

Tran Quang, University of Toronto

Lecture 1: Fundamental Phenomena

o Concepts of a photonic band gap

e Localization of spontaneous emission
and photon-atom bound state

¢ Coherence control of spontaneous emission:
a single atom optical memory device

e Band edge superradiance

Lecture 2: Nonlinear Effects
o Optical switching and optical transistor
¢ Inversion without fluctuation
¢ Quantum optical “spin-glass” state

¢ Anomalous nonlinear atomic resonant response

The Photonic Bandgap

Photonic band gap concept
E. Yablonovitch, P.R.L. 58, 2059 (1987)
S. John, P.R.L. 58, 2486 (1987)

[llustrative example: one-dimensional PBG (d=1)
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Largest gap occurs when single scattering
(microscopic) resonance and Bragg resonance
conditions coincide.

Bragg: w/c=7/L.
“Mie™: A\/4 = 2a = w/c = 7/2n(2a),
n - refractive index.
The largest gap condition: f =a/L =1 /2n.
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Two-Dimensional Photonic Crystal

Gruning et.al. Appl. Phys. Lett., 1996 )
( g pp v / Three-Dimensional Photonic Crystal

(Yablonovich et.al. P.R.L. 1991)
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Localization of Spontaneous Emission and Spontaneous Emission
Photon-Atom Bound State

S. John and T. Quang, P.R.A. 50, 1764, (1994) The time-dependent Schrodinger equation:

d

(w} fhady - b 1 —iA,\t’
plw dt Q(t) >}9A 1‘,\( )6
Impurity Atom d ’
2p —bl’)\(t) = g)\bg(i)el“\\f.
b dt
ReTTPTN The solution of the second equation
Wy We w bl!)\(t) — g/\ jﬂf bZ(tf)eiAAt’dtf'
Using this solution we find
Two-level atom formalism: d
t ! f
. Zho{t) = — [ G{t — t)balt'),
H= %h&,\aim + 1?‘1%9;(&1012 — o21a)), dtbg( ) b &1 )ba(t)
where where )
Gt-t)=— 2pmidy(t=t0dt’
A, = wy — w, — detuning of radiation mode from ( ) %g)\
atomic resonance; In free space, the dispersion relation has the form
oi; = |9)(j|, ,j = 1,2 — atomic operators. o = ck
Wave function: '
() = ba()]2) + 5 br AL, A2 fo yieids:
= 09 5 1A y AJE . G(t—t’)f\a%é(t—t’)
Initial condition: bx(0) =1. and the excited atom displays an exponential decay to

its ground state.
bg(t) = e“%r.



Photon-Atom Bound State

Dispersion relation in an isotropic PBG:
o= arocos dncos (kL) + (1 — n)?
*~ 4na © (1+n)? '
Near the edge k = ko = 7:
Wi = We + A(k - kg)2,
where A ~ w./kZ and w, is the band edge frequency.
The Green’s function G(t —t') can be found as

G(t - t) = ple T~ /\[x(t = 1)),

where /3% = wé{zdgl/(ﬁmghca) and 8, = w, — we.
bo(t) can be found using Laplace transform method:

2 . 2
by(t) = ge"jt + ge(""‘/g)mﬂ + (branch cut),

where the branch cut term has the form of an error

function and tends to zero at the long time limit.

¢ Vacuum Rabi splitting into two dressed states: in-

side and outside of the gap

¢ Localization of spontaneous emission forms
a photon-atom bound state

e Oscillatory behavior of spontaneous emission dy-

namics

Dynamics of Spontaneous Emission
(6./8 = —10, -4, -1, 0, 1, 10)
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Coherence Control of Spontaneous Emission
(Quang, Woldeyohannes, John, and Agarwal,

PRL 1997)
3>
| %n 2>
m]l
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The Hamiltonian of the system for wr = w2t

H= iﬁQ(emCUzg - e_i‘p;UgQ) + %hAAaIa,\

+ih }E g,\(aiaw — 0318)),

where o;; = [iXj] (4,7 = 1,2,3); Ay = wy—wsp; O and
é. are the amplitude and phase of the control laser
field.

The wave function:

[(t)) = b3()[3) + ba(2)[2) + E)\ch,,\(t)ll, Aye o,

Initial condition:
b3(0) = cos @, by(0) = sinfe'®, b1,(0) = 0.

A Single-Atom Optical Memory Device
Analytical solution:
by(t) = et + aze''?t + (branch cut),
where
a; = 2v,(i2e'® sin §+7 cos 9) /(v —va2)(v1—v3)(m1—v4)l.
ay = 20,{i02e'® sin f+v3 cos 9)/[(’0‘2—-171)(Ug—vg)(vg—t’4)].
vis = Vi/2 £ [(u/4+ Q)2 - w4

v = v = —vaj2 - [/ + @)+ w4
Here ¢ = ¢, — ¢ 18 the relative phase and u > 0.

1

1/2

e Photon-atom bound state without decay at w, — v

o Steady state is dependent on initial conditions

For a strong field:
Nas = Mg, = [1 — sin (26) sin ®)/4.

nes and ny, are dependent on the relative phase ¢.
It may be relevant for a single-atom (phase-sensitive)
optical memory device.



Level Splitting Atomic Population as a Function of Time
(§=n/4 ¢=0,7/2, ~7/[2)
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Anomalous Collective Scale Factor
S. John and T. Quang, P.R.A. 50, 1764, (1994)

H= §h/_\m1a,\ +ihE gr(al ol T2 = Inay),
where v
Jy= 1Okl (1,5 =1.2).
Initial state: Single atomic excitation in Dicke state
[w(0)) = |J.M =1-1J)

where |J, M} is the elgenstate of J3 and JZ.
In ordinary vacuum:

bg(t) ~ G_Nwtﬂ.
Near the edge of an isotropic PBG:
ba(t) =

2 2 . V2
3 t\ “if + 36( ,_.\/E)‘\ /3.13;!/2 + (bT‘anCh cut)

In an anisotropic PBG, the collective time scale factor
-1 = N?¢  Anomalous exponent ¢ is determined by

the band edge singularity:

¢ = 2/3 for d = 1 or isotropic PBG,

¢ =1or2for d=2 or d=3, respectively.
Application: optical devices with fast modulation.

Band Edge Superradiance
John and Quang, P.R.L., T4, 3419 (1995)

System Hamiltonian:
H= %hﬂxaiax + ih%\:gz\( TJ12 ~ Jnay),

where
Ay = wy — wa,

Jij = kgl ,Z)k k(]‘a (1’13 = 112)

Superradiance in ordinary vacuum
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Superradiance: Analytical Solution

The equations of motion:

iUﬁW = [y G(t — t)(Ja(t)Jna(t')}at',
c(lit(']?’( = _2/0t G(t — ') {Jar(t) J12(t))dt' + c.c.
Here

(J3(t)) = (Jn2(2)} — (Jui(2)),
Git-t) = zgie_m*(t“t')
X
is the delay Green’s function. The analytical solution
in the Markovian approximation:

(J5(t)) = —Ntanh {B[(t/7)*"*/* - 1]},
where B is a constant; 77! ~ N® and ¢ = 2/(4 — d).
It yields:
e Collective decay rate ~ N?
o Intensity ~ —%5 ~ N1*¢

For d = 3 we have I ~ N3. It means a band edge
superradiant laser would be stronger and with a faster
speed of modulation than it is in the ordinary vacuum.

Localization of Superradiance

Markovian approximation cancels out memory effects
and localization of superradiance. Numerical simula-
tion (non-Markovian mean field approach) gives:

o Steady-state population inversion (J3(t))/N is not
equal to —1: a fraction of superradiance remains

localized in the vicinity of the atoms

e The atomic polarization evolves from its infinitesi-
mal initial value to a steady-state macroscopic value:
evidence of spontaneous breaking of symmetry

o The evolution of {J3(t)}, [{Ji2)| displays collective
self-induced ‘oscillation instead of a simple decay as

it is in free space.

<d4(t)>/N; D{R)/N




Collective Switching in Confined
Photonic Systems
( John and Quang, P.R.L. in press)

Master equation in free space:

dp _ dp

e Al
where %/, 1s taken for the case when H.p = 0. It does
not work for the confined photonic systems where the
photonic mode density exhibits rapid variation with
frequency.
New approach: Take into account of the differences in
the density of modes at different dressed-state transi-
tion frequencies.
Collective resonance fluorescence: H = Hy+ Hy +

H. dephase

1[Hcoh1p

1
Hy = §hAJ3 + he(Ji2 + Jo1)} + %hé,\aim,

(apt) (d e
d ph{lS

where J;; = £i, [ (e (1§ =1,2); A = wo —wi;
(5)\ = Wy — Wr.

= (v,/2)(2J3pJs — J3p — pJ3),

Dressed-State Master Equation

Schwinger (boson) representation:
Jij = ajaj (i,j =1,2), where [a,—,a;-[] =&,
Canonical transformation:
a; = €os ¢g; + sin oga,
a; = — sin ¢q; + cos Pga.
Hy= hQRs + 5 héyalas.

Dressed state master equa.tion:
dp _

1
i S Ao[R3p Ry — R3p) to La [Ro1pRiz — RiaRa1p)]

+§A+[R12PR21 — R21R12p] + h.c.

Ag = ~vosin® ¢ cos’ ¢ + ypcos” (29),
A_=~v_sin*¢ + Yp sin® (2¢),
A, = vy cos'¢ +ypsin’ (2¢).
Yo = 27w £3 gi6(wa — wi);
v =275 g36(ws — wi + 2Q);
and 7 = 27 %) gib(we — wr — 282}
In vacuum: v = 7v- = ¥+ = 7-



Optical Switching and Optical Transistor
Steady-state solution of the master equation:
= Pﬂ}ggn‘n)(nls

where £ = A_/A;; Py = (€ - 1)/(¢¥*' - 1); and
|n) = |N — n,n) stands for a N-atom state in which n

atoms are in the upper dressed state |2). In the limit
of N >>1:

1, if £€>1

1/2, if £€=1 (1)
0, iff<1

costo, if £>1
(Jn) /N = l 1/2, if £€=1 (2)
sin?g, if £<1
Photonic material switches from an absorptive medium
to a gain medium as a function of the control laser
field. It may be relevant for an optical transistor. The
optical switching is almost robust against to the de-
phasing caused by phonons in PBG materials.

(RQQ /N

<d >N

}

Steady-State Atomic Population

(N = 10, 500, 5000)

0.8

08

04

02+

—_

[X]

0.0

0.2 04 Q08 PR} 1.0
wal

Steady-State Atomic Population
(N = 5000; v_/v+=03,0.4,0.5)

0.70

060 -

050

040

030 | .-

29 a0 4.0
eftal



Inversion without Fluctuations

Mandel g-parameters
Qa = ({R%,) — (R2)*)/{Ra2),
Qv = ((J3) — (J22)*)/ (Ja2).

Qa4 < 1 means sub-Poissonian distribution of atoms
on the upper dressed state.

Qs < 1 means sub-Poissonian distribution of atoms on
the upper bared state.

In the limit of N >> 1:

1/N, if €>1
Qa = N/12, if £€=1 (3)
1/(1"5)3 'i.f£<1

Q= { (N +2)/6, if€=1 (4

cos? ¢(§ + 1)/(1 - £),
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Optical Spin-glass state
John and Quang, P.R.L 76, 1320 (1996)
and P.R.A. 52, 4083 (1995)

Far inside the gap of a PBG:

e Suppression of spontaneous emission: Spontaneous
emission remains localized in the vicinity of the

atom

¢ Resonant dipole-dipole interaction (RDDI) remains
strong: New regime of strong coupling limit be-
tween atoms

e New coherent propagation effects without damping

o Fxcited atom i can transfer localized photon
to atom J

Wave zone: A < 1,; < lioe by tunneling
Near zone: 7;; << A by high energy virtual photons
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Photon Hopping Conduction
John and Quang, P.R.A. 52, 4083 (1995)

ho; .

H=%¢ —j-o'j? + 3 Jijcr:raj + g}:(o}ra + aTo‘j),
72 i#] ]

where §; = w; — w, - detuning;

J;; - resonance dipole-dipole interaction between

atoms i** and j**. Single excitation:
N _
wit) = £ sl

) = =, — s by =y e =)
Initial condition: ¢1{0) =1, ¢;{(0) =0 for i # 1.
Jij and §; are Gaussian random numbers with zero

mean value and with variance J and 6.
Applications: Lossless energy transfer device.

«
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Spin Glass

e Collection of spins with random interactions

e Frozen disordered state with zero macroscopic mag-
netization while the local spontaneous magnetiza-
tion at a given site i'" is non-zero

e Motivation: neural network as a programmable
spin glass (Hopfield, 1982; Anderson, 1983)

Sherrington-Kirkpatrick {SK) model for spin glass
H=Y J;'ngSj,
i#j

where J;; is Gaussian random number with zero mean
value and with variance J:

P(J,‘j) = (27?.]‘2)_1/26“!]5/2']2.

Here S, is classical Ising spin.



Quantum Optical Spin Glass
(John and Quang P.R.L. 76, 1320 (1996))

H=% h;ﬁ T4+ Z JUchch + g}:(crfa + aTaJ)
szferences between two models:
o Localized defect mode
o Pauli spin operator
e hwy, > kT = Spin glass at room temperature
e Optical neural network

Edwards-Anderson order parameters:

iy
m—ﬁ!;{(a,nm me = [(a)le

1= 5 Slehiells g = [ah)a).

m = 0, g = 0 - paramagnetic state.
m # 0, g # 0 - ferromagnetic state.
m =0, ¢ #0 - spin-glass state.

me. =0, q- = 0 - incoherent state.
me # 0, g- # 0 - coherent state.

m, = 0, q. # 0 - Bose-glass state.

Optical Spin Glass: Analytical Solution

Low excitation: Holstein-Primakoff approximation:

of 2]

4
r Ui:bi:

where b; satisfies the boson commutation relation.
Using the canonical transformation

o= b, b= SN,
we find (for g = 0):
B =5 Jalo
The semicircular law for the case of N > 1:
o(J) = (2rJ2) g2 — g2,

The Edwards-Anderson order parameter is found as:

m(t) = "0 1 271),

q(t) = ¢(0)
o m(t) exhibits oscillatory behavior and tends to zero
at { — o0

e New collective state: an optical analogue to quan-
tumn spin-glass state
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Anomalous Resonant Nonlinear Dielectric
Response

(John and Quang, P.R.L. 76, 2487 (1996) )

Model: Two-level atoms +imperfect PBG + applied
field

§N . Nt N T
H=-530] - Q%00 +oi) + & Jy000),
i ! L)

where Q is the resonant Rabi frequency; § = wp —wa:
J;j = Jji stands for the RDDI between atoms i and J.
Optical Bloch equations:

2 (o7) = (~1/Ty + i6)(a7) = (2~ (o5
%(cr;) =—((e})+1)/Th +(2iﬂ(a}f) - 22’(0;[)1:} +c.c.).

-+
Here, F; = ry4j) Jjilo7); T and T are the relaxation
times of {¢°) and {0}, respectively. Atomic suscepti-
bility:
x = (1/27%w) {6 +4/Tp — [(6 + i/T3)* — 4w’ 7'},
where w = 412" — 1, J = W.].
In the weak coupling case of J < 1/T:

x = —(6 — i/To)/[6° + 1T + 41 Q% /Ty).



Linear Susceptibility in Free Space
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Optical Bistability
(John and Quang, P.R.A. 54, 4479 (1996))

SIGNAL
SOURCE P

e S S A e, S L

Optical bistable system: two output states for the same
value of input.
Applications of optical bistability:

e Optical logic elements
e Optical transistors and optical switching

Optical Bloch equations:

d

7
%(aj) = —({o}) + 1)/Ts + (2i0c]) 26 F + e,

where Jp = JyV and J is the mean value of J;;

(07) = (~1/Ty+ib) (o] Y+ido(ofNon) —i(Q-F;)loj),

o Intrinsic optical bistability (without a cavity)
e The threshold can be very low
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Atomic Population Inversion
(J/Jo =0, 04, 0.45)
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