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Chapter 1

Squeezed radiation

1.1 P-representation and nonclassical light

Most of the mathematical development of quantum optics to date ha been carried
out through the use of a particular set of coherent quantum states for the field

where o is a generally complex parameter which corresponds in the classical limit to
the comlex amplitude of a monochromatic field. Although they are not orthogonal
to one another , the coherent states form a complete set. These states, which reduce
the field correlation functions to factorized forms, offer a convenient basis for the
description of fields of all type, as orginally recognized by Roy Glauber(1}[2]. In
1963 [3] and Sudarshan(4][5] exhibited a particular form for the density operator
p which makes it possible to carry out many quantum-mechanical calculations by
methods resembling those of classical theory,

psz(a) la >< ald®a

where d2a = d (R (a)) ¢ (S (@)) . So doing the field is fully described by the so-called
P-representation P{a). In fact, it has been shown that any quantum state of the
field may be expanded in terms of functions P (a) in a unique way.

The photon number distribution P, can be easily derived from P (a) by means
of the integral expression

P, = /P(a} i < nla > |2d2a

S Wl (_1a|2)[P(a) la*"d*a

nl
Example 1 Coherent state:

P{a) = 8% (a— ao)

Po) = ;17_; exp (—-'—%E)

Example 2 Chaotic state
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4 CHAPTER 1. SQUEEZED RADIATION

1.2 Correlation function and QND measurements

It is customary in quantum mechanics to characterize the spread of the measurement
of a generic observable A by means of the veriance defined by

V(A) = (AAY =< A% > — < A2

More detailed information about he evolution of such measurements is provided
by the correlation function

<A A() >

at two times ¢ and #/. For a statistical system described by the density matrix p the
correlation function is expressed by the trace of the product pA (£) A (¢

<A ALY >=><Tr{pAL) At} >

In general the variance of an observable is a function of time. This fact has
strong implications on the repeated meaurement of an observable. In fact, in several
case in order to smear out the effects of some noisy sources of errors we measure
an observable for a sufficiently long period and finally we average the evolution of
these measurements. Now it may happen that the averaging process is in confict
with the initial preparation of the system in a state which minimizes the quantum
dispersion of the observable.

An important case occurs when we try to measure the position of a mass. I'rom a
quantum mechanical point of vieww we are led to prepare at time ¢t = 0 the massive
system in the eigenstate of the position . This, in turn implies that the momentum
variance V' (p) is infinite. Thus, when we repeat the measurement of the position
after a time interval ¢, the error in the measurement of z(t) = z(0) + pt becomes
infinite, thus vanifying the benefits of a repeated measurement.Such a difficulty
arise in the detection of very weak mass displacements produced by gravitational
waves.

The above qualitative considerations can be reformulated in a more rigorous
way by analizing quantum mechanically the evolution of a generic observable A(t)
in the interaction picture. There are situations in which we cannot assume that
the act of measurement itself does not degrade the predictability of subsequent
measurements. This requirement is satisfied if an observable A (¢) in the interaction
picture commutes with itself at different times,

[AT(t). AT ()] =0

This condition ensures that if the system is an eigenstate of A’ (t) it remains in
this eigenstatefor all subsequent times although the eigenvalues may change. Such
observables are called QNI observables

Example 3 free particle
for a free particle of mass m energy and momentum are QND observables while
the position is not. In fact

-
Tt =zx{l -—
r( +7) I()+pm

s0 that
hr
t () = —1—
o e+ 72 (0] = —i

Example 4 harmonic oscillator
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For a harmonic oscillator

z(t) = z(0)coswi+ msinwt
mw
p(t) = p{0)coswt —mwz (0)sinwt

so that
mw [z (t) , z (0)]
[z (t),p (0)]

Now, if we introduce the quadrature phase operators

X = @ [a,- (t) cos wt — %r%sinwt]
B L st 20 e

1 -
— [p(t),p(0)] = —ihsinwi
[p(8),r (0)] = thcoswt

~
il

we see that

%‘; (X (). X(0) = [m (2) cos (wt) — % sin (wt) , x (0)]
= cos (@) le® 2 0] - 2 1) 2 0)

= 0

In conclusion, the harmonic oscillator admits as QND observables the guadrature
phase operators X and Y. This means that the variances of these two operators
are time independent

vixml = v{IXo
VIY (9] V(Y (o))

il

1.3 Correlation functions

Let us consider a single mode wave of frequency w and wave vector k , confined to
a volume V

E(rt) = i 2’;“;0 [aexp i (wt — % -1)] — a’ expli (wt — k- 1)]]

hAw .
= %[Xsm(wt—k-r)—Ycos(wt—k-r)]

= EM@H + EY(rp)
N e’ e —

annihilation field creation field

where
X+ 1Y

a =
2
In particular. if we indicate by I (r,t) the product

I{rt)=E) (e ) E* (ryt)

itcan be shown that the photocurrent provided by a photodector with unity quan-
tum efficiency is proportional to[3]

i{t) o<I(rt)>

photocurrent

quadrature
phase operators
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Figure 1.1: Second-order correlation function showing bunching and antibunching

while the correlations among the photocurrents detected at several times are pro-
portional to

< it} {ta) - i{ty) >oce: T (I‘,tl)f (rt2) - I(rit,) >
= B () B (f) e B (1) B (b) - B (1) B (1) 5

wheref; < 1y--- <t,. In the following we will indicate by <: - -- :> the expectation
valite of a time and normal ordered sequence of creation and annihilation operators,

In general for a field represented by the density operator p the nth-order corre-
lation function is defined as

Hrt+l Han

Gg:). fiam L1 Ton) = Tr{pELT) {(z1}-- Ef;) (x,) £ .. E("')}

x; standing for the set of variables t and r
Important informations about the arrival of photons on a detector are contained
in the intensity correlation function (seel'ig. (1.1)

G < I(r)I(r0) > _ Tr {pE) () EL) (0) BV (0) B (1))

g2 (t) = 7= 3 2
(G ()] < d (r,0) > [Tr {pE-) (0) E® @1]

In particular for t = 0 ¢'%) (¢) reduces to

<17 >
gy =
g0 < I>2
<IP>— < ]2
< I»?

V)

= 1 -

tise

bunching For classical light the variance of the photocurrent must be positive. However there

are situations in which the variance becomes negative , as for example in resonance
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fluorescence experiments . When V' > 0 tend to arrive in pairs , so that this

situation is referred to as photen bunching. On the opposite for V < 0 the field

exhibit antibunching on some time scale: in other words, the arrival of a photon

prevents the arrival of a second one within a time interval depending on the time

dependence of gt2 (¢). The anti-bunching is a typical nonclassical phenomenon .
For example in a n-photon state we have

1
@ o) =1- L
g (0) -
The particular form (?7) exhibited for the density operator makes it possible to

carry out many quantum mechanical calculations by methods resembling those of
classical theory. For example, the second-order correlation function is given by

¢®© _,, JP@][el-<la|>*]'¢a

2 (0) = =
( [cw ()] [f P(a) |af2d2al’

while the variances of X and Y are expressed by

o
s
I

1+/P(a)[a+a'—<a>-—<a'>}2d2a
V(YY) = 1_[P(a)[a—a"—<a>+<a*>]2d2a

When < a >= 0 { vacuum squeezed radiation ) the variances reduce to

i

V(X) 1+/P(a)(a+a’)2d2a

!

V(Y) 1— fP(a) (a— a*)? d*a

For obtaining AX < 1 P () must take on negative values on the complex a-plane.

1.4 Photo-electron current fluctuations

Let us now discuss a simple model of photodection . If we call T the counting

interval o
1€
7 Ttee (T:1)

i(T:t) =

where G is the gain , e the electron charge and np. the total number of photon
detection events over the counting interval.
The probability P,(f’ﬂ)(t; T) for npe counts in the interval t to ¢ + T is given by

. 1 - n -
P8 T) = ] MIT (t.1)]" exp [—0TT (t,T)]
where 7 is the quantum efficiency and

_ 1 T+t 1 T+t
I(t,T):-j;[ I@Ydt' = Tft < ECT(EYEBW () o> dt!

is the mean intensity during the counting interval. Then

_ Ge T+t
i(t) = T e (T:t) = nGe/ < ECYEYET () > dtf
t

n-photon state

second-
order correlation
function
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For obtaining the photocurrent spectrum it is necessary to compute the two-time
correlation function

2
i (T:0)i (T;1) = (—(-;,E) Npe (T'50) nye (T51)

For ¢t > T the probability for n,. (7:0) and n,. (T;¢) in the two not-overlapping

intervals is equal to the product of probabilities P? e {(t; 7). On the other hand when
the two intervals overlap partially the joint emission probability does not factorize
any more. This problem has ben discussed by Carmichel[6] who has obtained the
following result

i(0)i(t) = (nGe)® < I(T;00 T (T:t) > +0 (T —t) <: T(t - T;0) >

where 6 () is the unit step function. In particular, letting 7 — 0 we have

i0)i(t) = (nGex)® <al(0)a(0)>?
+1x (Ge)® < a! (0) a(0) > 5(t) + (nGe)’ <: 1(0),1(t) >
shot noiac:ntributzon h intensity mduatio'ns i
where
A
AT hw

A being the area of the photodetector and ¢, the fre-space impedance.

1.5 Characteristic function formalism

The density cerator is uniquellydetemined by its characteristic function

x () = Tr { pere =77}

Introducing now the normallyordered characteristic function
) =1 fpr v}
we can easily show that
ST
x(m) = v (nye 2

x~ (n) can be expressed by means of the P representation

xw ()= [ TP ()

Then x v (1} is the Fourier transfom of the P representation

1.5.1 Wigner phase-space density

The Wigner function may be defined as the Fourirer transform of the ordered char-
acteristic function y (n)
1

W) = — [emmx(man

= %/EM_WE‘ 25 n () dPn
2 —
- —f‘b(v)E‘z'“""‘zd‘*'}-

™
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Example 5 Coherent state
For a coherent state )

X +1Y S
2

la >=|

we have

(X - X2+ (Y - Y')z)
2

W{X.Y") = ;zr-exp (——

Example 6 Squeezed stale

For a squeezed state we have

: — X" e _ynZer
W(X”Yr):%exp(_(x X)e 2+(Y Yie )

1.6 Phase-operator

Is it possible to measure the phase distribution of a single mode field? It goes
without saying that in many cases the phase is the most critical parameter of a
field. For example, for discussing the sensitivity of an heterodyne detection scheme
it is essential to introduce some sort of measure of the phase. This question was
initially addressed by by Dirac without getting to acceptable conclusions. Later ,
Susskind and Glower {7introduced the phase operator for a harmonic oscillator
o _ L
Eoe ma

We immediately observe that such an operator shares the properties of the annihi-
lation operator, whose eigenstates are the coherent states and the number operator.
We will see soon, that in analogy with the coherent states, the eigenstates of e:'gd’G ,
although they are not orthogonal one to another, can be used for forming projectors
operators |e >< e's-|dw which provide a resolution of the identity.

Now, it is easy to show that e?a has the number state expansion

(s
i, = ln><n+1]

n=0

and eigenstates like

e o]
ei¢|eg"’c >= ei‘”lei;‘é; = Z e"Vin >

n=0

But
. s\
[€:s¢g= (eg?c) ] = |0 >< 0| = nol Hermitian

These states provide a resolution of the identity
f et >< el |dy =2
The phase distribution over the window —7 < ¢ < 7 for any state is defined by

i 2
< oW >
Psc (o) = ——""—| qulr l

Susskind-Glover
phase operator

number state ex-
pansion

phase distribu-
tion function
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Shapiro [8] has shown that Psc () provides a correct distribution for optimal phase
measureiments.

Pegg and Barnett [9]have constructed a family of Hermitian operators, the mea-
surement statistics of which converge, in an appropriate limit, the the phase distri-
bution Psa (¢). They have considered in a finite subspace of the oscillator Hilbert
space the state

1 .
ldg == § e >
s+1 =

with eigenvalue ¢y.

2 s
| >=exp(i8:_m1a a) o > m=0,1,...,8

with eigenvalues
_ 2rm
D = G0 + S+l
It is easy to show that the s+1 are mutually orthogonal and form a complete set
on the truncated (s+1)-dimensiona Hilbert space.
Pegg-Burnett Pegg and Barnett[9] have introduced the Hermitian phase-operator
phase operators s
B?B = Z q)m’@m >l @m‘
m=0
For states restricted to the truncated Hilbert space the measurement statistics of
the phase is given by the discrete distribution

Pr=| < ¢m|¥ >

As an example let us consider the phase distribution over the window —r < ¢ < 7r

for (a) a coherent state , and (b) for a vacuum squeezed state. To this end we

have to calculate the projection of the coherent state | > over the eigenstate
2 ing

Zn:O € ln >

—m.qﬁan

w' > ( |ﬂ|2) — €
€l >=exp | ——~ E —_—
2 — !
n

>0 an [s o] o
Z cosngr + 1 Z sin n@]
vn! = Vn!

A

i
2
o
/"l-"\
N
[.~]
S
||
-
g

Then ( see Fig.?7?)

exp {—|al? = an : . an 2
PS(;(f;b):L(?%Ji) (Zomcosnc)) +(Z \(/lasinn@)

n=x()

For a vacuum squeezed field we have
< eglS@P =Y e <oniS(o)jo >

n=0

_ 1 [i (tanhr)" V(2n)! cos 200 + i i (tanh-r)" Efrn)‘ <in 2n¢]

Vcoshr 2 n! 2

so that (see Fig.. 1.2)

2 2
1 o~ (tanhr\" \/{2n)! , o~ (tanhr\" /(2n)!
Py () = —— (Z( r; ) (2n) cos?n(f)) -+ (Z( l; r) i sin chp)

n=0 n=0

" 2w coshr n! !

n=0 =0
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Figure 1.2: Phase distribution for vacuum squeezed states with different values of
the squeezing parameter r

1.7 Minimum-uncertainty states

Measurements of quantities by means of light beams are limited by the presence of
shot noise. Such anoise limits the resolution of interferometric measurements. In
recent years great attention has been paid to the problem of achieving quantum
noise reduction beyond the ”standard shot noise limit” by using non classical light.
In particular, new phase-sensitive detection schemes have been analyzed in the hope
of pushing forwardthe sensitivity of gravitational interferometric antennas.

An interferometer is essentially a device for measuring the quadrature phases
X,Y of a radiation field,

X +iY
a =
2

Since
(X,Y]=2ih

the corresponding uncertainty principle imphes
AXAY = h

All quantum mechanics requires is that the product be bounded from below. In
principle one can squeeze AX at the expense of stretching AY, or vice versa.

The variances of the quadrature phases depend on the state of the field. For
example for a coherent field we have

I3 . hw
Aqgoh = 2_“) ) Apioh = T

so that the uncertainty product is a minimum

h
(Aqu) coh = 5
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1.7.1 Squeezed states

A classical monochromatic field can be represented on the qadrature plane by a
vector rotating around the center at the field frequency w, the vector modulus
giving a measure of the field amplitude. Moving to the quantum domain the classical
monochromatic field becomes a coherent state |«) of complex amplitude e = || €*%.
The coherent state is a minimum uncertainty state and in the phase-space it is
represented by a round circle centered in o having diameter equal to the square
root of the single component variance

AX =AY =1
There is a whole family of minimum uncertainty states defined by
AXAY =1

the coherent state being a special case with AX = AY.

In 1970 Stoler[10][11] demonstrated that in a state of minimum uncertainty
product the quadrature phase operators are uncorrelated. This is because a cor-
relation between X and Y would serve as a constraint on the minimization of the
uncertianty productand prevent it from attaining its lowest value,

In additon Stoler proved that all the minimum uncertainty packets are unitarily
equivalent to the coherent states and that coherence is in fact stationary minimality.

In conclusion, minimum uncertianty states may be generated from coherent
states by using the unitary squeeze operator

where

The squeeze operator obeys the relations
§1(5) =571 (s) = §(—3)

and has the following transformation properties

5'(c)aS(s) = a coshr —a’'e “Psinhr
$()a’S(5) = a' coshr —ae®?sinhr
SOM+iY2)8(«) = Yiem +iYae (1.1)

where

X;+iY = (X +iV)e

is a rotated complex amplitude. The squeeze operator attenuates one component of
the rotated complex amplitude, and it amplifies the other component. The degree
of attenuation and amplification is determined by r = |¢|, which will be called the
squeeze factor

Applying the unitary squeeze operator with complex parameter ¢ = r €'?% to
the coherent state |a) we get the squeezed state relative to the complex amplitude
cx. The variances of the new field are no more symmetrically distributed between
the quadrature components. Indeed, in the case of real squeezing parameter r, the
variance are:

AX = Sexp(~r) , AY = Jexp(r)

In the phase-space the circle centered in @ become an ellipse with minor axis
along X and major in the orthogonal component. The case of complex squeezing
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parameter ¢ corresponds to a transformation of the canonical variables that give
compression and expansion along the directions forming the angles ¢ and ¢ + 7/2
with the real axis respectively, being 2¢ the phase of <.

For ¢ # 0 the variances are given by

(AX): = i {exp (—2r) cos” (¢) + exp (2r) sin® ()}
(AY)2 = :11 {exp(—2r) sin? (¢} + exp (2r) cos® (9)}

The uncertainty product

AXAY = y/cosh? (2r) sin? (2¢) + cos? (2¢) 2 1

is minimum only for ¢ = 0,7. These two minimum uncertainty states correspond
to real (positive or negative). They are known as " Quadrature squeezed state” and
" Phase squeezed state” (from Phase-space) respectively.

it is worth noting that the variances are independent of the complex amplitude
a , so it is possible to look at the squeezed state as a "vacuum squeezed” state of
complex amplitude o

lae,s) = D (a}10) = D () S (<) [0}

where displacement
D{a) = exp (aa! — o’a) operator

is the usual displacernent operator.

Another way of looking at the squeezing come from looking at the field in the
space of the photon number and phase operator. The so called " Amplitude Squeezed
state” or " number-phase minimum uncertainty state’ features reduced amplitude
noise under the Standard Quantum Limit (SQL). The mean photon number in a
quadrature squeezed state is

la, = (ala) = la|? +sinh®r
while the relative photon noise reads
V (n) = |a|? [cosh (2r) — sinh (2r) cos (26)] + 2 sinh? r cosh?r

For & = 0 , that is the squeezing is in phase withthe complex amplitude o, the

variance reduces to
V) =|affe ¥+ 2sinh? r cosh? r

The minimum value of V() occurs for %" = 4|al? and Viuin = 0.94|a|4/3.

Now, we note that

_ 2 4. .
vV (TQH o, _ ja|® — 2sinhr cosh gr sinhr

Mo 2 (|a]2 + sinh® r)

For |a12 ~ 2sinh rcosh 2r the amplitude squeezed state exhibits a sub-Poissonian
photon statistics.

Remark 1 The squeezed state |o, > is obtained by first squeezing the vacuum and
then displacing il
¢ >= D () S(s) |0 >
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Figure 1.3: Phase-space representation of different squeezed states

1.7.2 Two-photon coherent states

Squeezed states have been defined in an alternative way [?]. Let us introduce a
unitary operator which transforms the operator a as

Uali’ =pa+va =b (1.2)
by maintaining the commutation relation
[b, b'] =h
Then g and v must satisfv the relation
2=t =1
The eigenstaes of b have been called two-photon coherent states.[?)
If we indicate by |a >, an eigenstate of a , we can express an eigenstate |J >,

of b as

b3 4= 5|3 >p= 8Ua >,
13 >= Dy (3){0 >

where
Dy (8) = exp (80" — 8°b)
and
|0 >p= IO >a
5 {s)aS(s) = a coshr— a e " sinhr
5T() a S {¢) = o' coshr — ae*® sinh r

S ) (Y1 +iY2) S{s) = Yie " +iYae” (1.3)
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/. -

X

+j-j-a>

Figure 1.4: Phase-space plots of the uncertainties of even-odd coherent states

It is immediate to prove that the squeeze operator S(c) satisfies Eq. (77)

S§t(g)aS() = a coshr —a'e ?®sinhr
= patva =b
with
4 = coshr
v = —e Psinhr

1.7.3 Even and odd coherent states

Another class of states reduced uncertainties is obtained by combining linearly two
coherent states with opposite complex amplitudes {see Figs. 1.4and 77)

b > =la.8: >
= Ni(D(a)+D(—a))|0e>
= Ne(la>%|—a>)

el 2n
= plal?i2 e
nz;‘; V(2nl)

where + and - signs correspond to »even” and "odd” coherent states, respectively,
and their normalization constants are

2n >

elal?/2 )

T

N = N =
T 9, Jeosh |al? 2,/sinh |a|?

1.8 Photon number distribution

It can be shown [2] that the squeezed stae ja, ¢ > has the photon number ditribution

1 " Yo
P(n)= - ('%) 5, (_,\/%) 2 exp (—iBF + %32 + 5':73 2)
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P{n)

o N

0 2 4 §& 8 10 12 4 16 18 2

Figure 1.5: Photon number plot for even/odd coherent states

where
g = coshr,
v = €e*®sinhr,
3 = po+wva® =coshr (l + e'2@=%a) taph T‘) |exf

In particutar for ¢ — ¢, = 0,7 (see Figs. 77 and ?7

P(n) = exp [— (1 + tanhr) |of?] 1 (tanhr " \H 1 + tanhr o
o coshr n! 2 " \/2tanh'r|a' |

while ¢ — ¢, = +7/2

P(n) = exp [— (1 — tanhr) {a|2] L tanhr\" H 1_1—__1::5:1_19_[}&1 |.2
- cosh ! 2 "\ V2tanhr

In particular, for r — co

a1 1 .
P (n) = exp [~2la*] — = |Ho (V2Ial)

The photon distribution exhibits several oscillations which have been interpreted as
interference effects in phase-space[12]

For a vacuum squeezed state the photon number distribution reduces to (see
Fig. 77)

Pn+1) = 0

1 1 (tanhr\*" i tanhr\>" (2n)!
P2 == 2 =
(2n) coshr (2n)! ( 2 ) Han (0)] coshr ( 2 ) (nt)?

It is wort noting the absence of odd photon numbers. This is due to the fact that
the squeeze operator contain two-photen operators.
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Figure 1.6: Photon number envelope for squeczed states with r=0.5,0,-0.5 and

alfa=3,

f VAV

Figure 1.7: Photon number distribution for a squeezed state for r very large and

alfa =3
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Y ¥ Y

coherent r=05 r=_06

Figure 1.8: Phase-space plots of the uncertainties in a (a) a coherent state, and
{b)(c) sqyueezed states with r=0.5 and phase equal to 0 and 90 degrees.

Figure 1.%: Pholon number distribution for vacuum squeezed states
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1.9. ELECTRIC FIELD VARIANCE 19

Ef

Figure 1.10: Uncertainty in phase and amplitude for squeezed state with reduced
phase fluctuations

1.9 Electric field variance

E(rt) = ”-24%[Xsin(wt—k-r)—Ycos(wt—k-r)l

The variance of the elecric field is given by

2hw

%{V(X)Sinz (wt—k-r)+V(Y)c062(th—k-r) —V(X,Y)sinf2{wt —k-1)]}

V(E(rt) =

where

< (XY)+(YX) >
2

—<X><Y >

V(X,Y)=

1.10 Multimode squeezed states

Caves and Schumaker[13]have introduced two-mode ( labelled b + and -) squeezed
states defined by
los.a. >= D(a.}D{a-) S ()0 >

where D () stands for the displacement operator and 52} () is a two-mode squeeze
operator

5@ () = exp (¢*a~a- —(alal )

where

(= rei2®

The annihilation operators a.. are transformed acording to

2

@ (¢) ar S®1(() = ax coshr — al e*?sinhr
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E{

Figure 1.11: Uncertainty in phase and amplitude for a squeezed state with reduced
amplitude fluctuations

E®

Figure 1.12: Uncertainty in phase and amplitude for a coherent state
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1.11. A SIMPLE CLASSICAL MODEL FOR SQUEEZED HARMONIC OSCILLATOR STATE!

thus giving the following epectation values

a4y >= 4
Ly >= at"’

+ _ 2 .2
a,asr >= |ax|* +sinh”r

1P >=a'
a,ar =0, O

NOAN AN

aray >= ara: —e?sinhrcoshr
The quadrature operator X can be generalized in the two-mode case to

_ar+al +a-+al

x= 7

and the relative mean and variance are given by

< X >=2R(a. +a_)
ViX) = e cos? ¢ + €7 sin’ ¢

1.11 A simple classical model for squeezed har-
monic oscillator states

Before discussing the quantum mechanical properties of vacuum squeezed radiation
we prefer to introduce a simple classical system made of a mass suspended to a wire
of length modulated sinuosoidally. Common life experience tells us that by modu-
lating the length at a frequency twice the natural frequency the system oscillates
macroscopically even though it is initially at rest. In addition these oscillations
have a well defined phase relation with the length variation .

Put differently this system responds to some external noise, which, in case the
frequency of variation of the length is exactly twice the natural one, is amplified .
The circumstance that the oscillation is in a well defined phase relation with the
length oscillation shows that the system acts as a phase-sensitive amplifier: the
components of the white-noise having the right phase are strongly amplified, while
the other components are not. Consequently the total amplified noise has a well
defined phase relation with the modulating signal.

The systems used in optics for generating squeezed radiaton are substantially
similar to the above one. The oscillating mass is replaced by an optical oscillator (i.e.
a Fabry-Perot cavity) with resonance frequency modulated by inserting a non-linear
crystal . Injecting a pump field the refractive index of the crystal is moduated. 1f
the frequency of the pump is twice the cavity one, we have the so-called degenerate
Optical Parametric Oscillator

1.11.1 May a parametric process modify the statistics of
white noise 7

Let us consider a suspended mass oscillating at frequency ) with a damping factor
~. If we modulate the length of the suspension wire at frequeny 282 the equation of
motion of the mass reads

d d
ok + 5% + [92 + 20k cos (262¢)] 8 = n (t) (1.4)
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where n(¢) representing a stationary random force (nose source) and & is a coefficient
measuring the modulation depth of the frequency. By Fourier transforming

sty = E]L;/i“g(w)exp(iwt)dw
n(t) = % O:C:V(u)exp(iwt)dw

with 5(w) = §*(—w) and N (w) = N*(—w) the transform of Eq. (1.4)reads in
proximity of the frequencies £{2

(=22 + i7) S (Q + 7) + £S" (Q—m):éN(Q+r) (15)

where z is a [requency much smaller than §2 . Now, solving with respect to S (Q + z)
and S (2 — x) yields

1 1
- e (2 +iMN (=
S5(0+x) QA @5 @ (—2r+iy) N(Q+2) + kN* (2 — 1)
1 1
S0—z) = ——=—— 20+ IN* (01—
(©@—2) AT G E T 2+ N @)+ kN (@4 2)]
with
Ay (x) = 2 +i(y LK)
thus confirming the above assumption that the spectrum of s(t) be concentrated
arcund 2
In particular

1N(Q+a) FiN' (Q-2)
Q AI (:C)

Xe(x)=8(Q+z) x5 (Q—x)=

Since the noise is a stationary random process we have for the correlation function
of N (w)

N{(WN(w)
N (W) N*(w)

i

IV (w) 26 (w + ")

IV (@) 26 (w - o)

where the bar indicates the ensembl average. In particular for white noise [V (w) |2 =
|N|? is a quantity independent of the frequency.
Consequently the correlation functions of 5 (€ + z) and 5* (2 + y} read

2 Petin]? 442
A (z) Al (@) ?
29k

S(Q+z)S (Q+y) 6(x—y)

S(Q+z)S(2+y) = iag;A+(x)A._ (x)|26($+y)
while for X_. () and X_ (x) we have
KXW = i} e+
X @X @) = il g onbaty)
X @G = At @-v)
X@XW = gty

Xi(@) X (y) = X (2)X*(y)=0 (1.6)



X

LAl

el

1.12. DEGENERATE OPTICAL PARAMETRIC OSCILLATOR 23

After these preliminary consideratons about the signal tranform correlations we
introduce the low fequency part of the product cos (S + 8) s (t)

< cos(Q+0)s(t) >iy= falt)

= R [GXD (—16) f:: S (2 + x) exp (izt) dsr:]

[m Fy(z)exp (ixt) dx

with Fp (z) = Fj (—x). We can express £y (x) as a suitable combination of functions
X, (z) and X_ (x)

Fo (@) = & X (2) (xp (=i6) = i exp (i) + X (&) (exp (=i8) + iexp (i9)]

In view of Eqgs. (1.6)

FORG = s0+me) X @X 6 +; (- @x ©
o (21‘)2 + &2 + ~% + sin (20) 28y
= PR @A we ¢ Y
In particular for § = +/4
_— 1
Frs@Fr ) = 2"3W‘5 (z—y)
Fooa() F* o y) = QUiE;t—x)Ffs(??*y)

This in turn implies the spectrum depends critically on the phase §. When the
coupling coefficient & is very close to the damping coefficient, the spectrum of fr 4 (t)
is almost vanishing with respect to that relative to fonpa (t) . On the other hand

we also have

vileid

T2 (f) = 20° o dr = —
=2 | mmEt =

In conclusion, if we plot the standard devation of fp ( radius ) versus # (angular
anomaly) we obtain the ellipse shown in Fig. (1.13). The closer & is to v the more
squeezed is the ellipse.

i 1

1.12 Degenerate Optical Parametric Oscillator

The parametric optical amplifier and oscillator (see Fig.1.14) has a long history in
quantum optics. The first quantum-mechanical model of this device was proposed
by Louisell, Yariv and Siegman {14] in 1961. Later Glauber and Mollow([15][16] used
the Glauber P-representation for describing the signal and idler modes.

In recent years this simple dissipative quantum system has been studied by sev-
eral authors in view of the squeezed-state characteristics of the radiation emitted by
a degenerate OPO . Many studies have centered around the calculation of the spec-
trum of squeezing [17],(18],[19],(20}. Intracavity field statistics have been discussed
by Drummond, McNeil and Walls [21] by using the Glauber P-representation, and
by Wolinsky and Carmichael [22] by means of the Wigner function. Vyas and Singh
have obtained exact analytical expressions [23] for the photon-counting statistics of
a degenerate OPO while Kinsler, Fernée and Drummond [24] have investigated the
time evolution of squeezingin the signal mode of an undamped parametric amplifier..
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Figure 1.13: Polar plot of the standard deviation of f versus the phase theta.

In most of the above works the input laser pump has been treated as a con-
stant amplitude and phase field. On the other hand it is well proved that finite
input laser bandwidths alter the output quantum statistics of an intracavity para-
metric oscillators and amplifiers. In 1972 Crosignani et al studied the effects of
pump coherence on frequency conversion and parametric amplification [25] by us-
ing a master equation for the P-representation [26]. Some properties of the signal
mode in an OPO with time-dependent pump amplitude and phase were studied
by Raiford [27] in 1974, without including the stochastic character of the pump
field. Woédkiewicz and Zubairy [28] in 1983 have considered the effect of phase and
amplitude fluctuations of the pump mode on the quantum-statistical properties of
the signal mode in a parametric amplifier by treating classically the pump field and
neglecting the pump depletion and the effects of external noise. Drummond and
Reid {29] have considered a parametric oscillator above threshold by assuming a
classical phase-Auctuating input laser field and treating quantum mechanically the
inside pump- and signal-modes . Hillerv, Yu and Bergou [30] have considered the
consequences of having the pump mode in something other than a coherent state ,
while Plimak and Walls {31] have analyzed the dynamical restriction to squeezing
in a degenerae OPO by using quantiim-statistical diagram techniques.

The degenerate parametric oscillator OP( is excited by the classical pump beam
Eyp . . .

E‘p (t) — Epoefﬂnltwta ~y E(QJEE——QQEI‘- fex (] 7)

ohtained by duplicating the laser beam
Eq (t) = Eqpe 4t

with 77 a real proportionality coefficient.
. The dynamics of the signal mode inside the cavity is ruled in the parametric
oscillator approximation by the Hamiltonian

. 1 . .
H = R, + 15K Epo [aZe 2 - al?er?”] (1.8
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-
(in)
— N.L.C. —_
Gy als
e
a

Figure 1.14: OPO cavity. a) N.L.C. — non linear crystal b) &, — pump beam c)
@, — signal beam d) @i, — noise ¢) & — signal output

é and @' are field operators transformed to the laser field rotating frame,

iﬂgta , a‘T — e*iﬂgi&? (19)

a—¢€
% represents the coupling of the pump field wih the OPO. & depends critically on
the phase-matching conditions inside the OPO crystal {32] and on the coupling
efficiency of the pump with the cavity.
Integrating the equation of motion of @, relative to the Hamiltonian 1.11 we
obtain
s (t) = &, () cosh 3 + &} (0)sinh B

If we introduce the two quadrature phase amplitudes

X,.=e "+ ecal | Y, = —je teq +ie%a!
we have
%Xa = xXa
%Ya = —xY,
where
X = kikp,

This demonstrates that the parametric amplifier is a phase-sensitive amplifier which
amplifies one quadrature and attenuates the other

Xo(t) = 1%, (0)
Ya(t) = eixtYa(O)

The variances satisfy the relations

V(Xait) = eXV(X,,0)
V(Yayt) = € XV(Ya,0)

For initial coherent states

V(Xayt) = et
V(Ya,t) = e



26 CHAPTER 1. SQUEEZED RADIATION

1.12.1 Correlation functions

The intensity correlation is equal to

< al(t)a, (t)a, (t) as () >
< a4 (t) d, (t) >2

g#(01) =

In particular for an an initial vacuum state we have

cosh 2t

@) () =
geot)=1+
® sinh? xt

This indicates that the squeezed light exhibits photon bunching. This means that
a squeezed vacuum contains correlated pairs of photons,
For an initial coherent state ||ale¥ >

< @} (t) dq (t) >= |o* cosh 3+ asinh 3| + sinh?® 3
and
< @l (t)al(t)a, (t) dy (t) >= |a’ cosh 3 + asinh 3[*
+2sinh Fja|? |sinh 3 (2 cosh 23 + cosh 3) + cos 2¢ (sinh 3sinh 28 + cosh 23))]
+sinh? 3cosh 28

where 3 = xt . For |a] large compare with sinh? 3 an sinh 23 , so that the intensity
correlation function evolves as

< al(t)a] (£) e () a () >= " (j" + af* + 4|af* + 1)
<4, (1) d, (8) >= e?? (Ja” + af? +1)
ettt 4fe)f+1 1

(Jo* +aj2 + 1)° jo?

¢* (0;¢)

1.13 Open system approach to degenerate OPO

According to the above model the quadrature component of the OPQ signal exhibit
opposite exponential growths which would in a very short time to an explosive
behavuior. What is unphysical in the above model is the asumption of a lossless
signal oscillator.

In addition to the presence of dissipative effects in he OPO eavity the pump
field fluctuates as a result of the duplication of a finite linewidth laser beam

Ei(t) = Eee™ 0070 = (B, 4 8B, (1)) ¢ o (010!

8F (t) and ¢ (t) are zero average normal processes. [28]The amplitude fluctuation
§F¢ (¢} can be described by the Ornstein-Uhlenbeck stochastic process

§F¢ t)
e ]. N ! ) i
BEe (1) 8E (1) = Wamufﬂen'**”;Ejgsge*“-'m“*”

0

with Y Neo /2 = Ef@g the variance and -, the laser linewidth due to amplitude
fluctuations.

The random phase noise ¢ (f) is associated to the instantaneous frequency de-
viation bwe = doe(t)/dt from the laser frequency £2¢, which is in turn described by
the process

dug (t) = 0
Swe (1) duwy (1)) = el — 1)
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with g, measuring the phase-induced bandwith.

Far above threshold amplitude and phase fluctuations are mutually independent.
Accordingly, the instantaneous deviation éwe(t) and 8F,(t) will be assumed to be
mutually independent stationary processes.

The degenerate parametric oscillator OPO is excited by the classical pump beam
E,, obtained by duplicating the laser beam

Ey (t) = [Epo + 6, (t)] e 20407 20730 o ) [E2) 4 26006 By (1)] g~ 12eelt)—iHNt—ia
(1.10)
with 7 a real proportionality coefficient.
The dynamics of the signal mode inside the cavity is ruled in the parametric
oscillator approximation by the Hamiltonian

H = R [ + bweaw (1)) &) &3+i%n (t) [Epo + 6 Ep (1)) [aie*"%t(”f"?“ - agze‘%f(”“h]
(1.11)

where 8weae () stands for the instantaneous deviation of the cavity resonance fre-
quency from {}¢. & and il are field operators transformed to the laser field rotating
frame,

it o

a . al — e
1

al (1.12)
% (t) represents the coupling of the pump field wih the OPO. « (t) depends criticaily
on the phase-matching conditions inside the QPO crystal {32] and on the coupling
efficiency of the pump with the cavity.

According to Eq. (?7?) the signal mode is treated as a randomly modulated
hamonic oscillator non-linearly coupled to a driving external field. Implicit in (1.11)
is the assumption that the quantities dweax (t) ,¢e(t) and & (t) vary slowly on the
time scale of T' = Qg_l.

The evolution of the vacuum-squeezed field @ has been derived for a classical
coherent pump in Ref. {17} in two steps by integrating first the equation of motion
for the signal @, inside the OPO cavity and, later, extending the equation of motion
to the external field do by means of the relation,

b2 = /2 Veavits (1.13)

a—€

representing the incoming field at the exit mirror and ve representing the cavity
damping rate, related to the free-spectral-range FSR and the finesse F (= 60) by
the relation Yeay = F'SR/F. The nonlinear crystal of the OPO amplifies, under the
action of the pump, the noise a;, entering from the input mirror. We will treat a;,
, as usual, as a stationary gaussian process with vanishing expectation value and
§-type correlation functions [33],

< al ()am(0) > = < @ (B)ain(0) >=0
< aim(B)al, (0) >= NinS()
with N;, a constant depending on the state number density alFor a degenerate OPO
operating below threshold é, satisfies the quantum Langevin equation of motion
dd, it ) W . N -
~d_ts =y, (£) €260 [i6weny () — Yeao) @ + v/ 278in (1.14)
Next,
7,() = K(E)|Bp (£) | = me(t)| Ee (£} |
7, (t) depends on the detuning and on the crystal temperature fluctuations and can
be assumed equal to[34]

§E STN?  ( bwean\”
‘Ys(t):’y‘;[1+2—fﬁ—(ﬁ) -(% )} (1.15)
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where AT ~ .1°C" stands for the temperature tuning interval ofthe degenerate QPO
We will see in Chapter 3 that the output of an interferometer used for detecting
gravitational waves can be expressed as

U =ag Ay + Apn) + (8ogw) + 805us) + 80(miry + 0(prey + 80 (rp ) A3y

OBawy, 8B(susyr D (miry: 8 (prey, 8O(rpy represent the dephasing of the two arms of
the interferometer due to a gravitational wave (6&(cw ), and the noises introduced
by the mirror suspensions (8¢ (sus)), the mirror vibrations (6¢(mir)), the fluctuation
of the pressure inside the pipes containing the interferometer arms (§d,,.;) and.
finally, the fluctuations due to the radiation pressure effects on the terminal mirrors

(8d(rpy)
The operators A ), A(pn) and A(z) are defined by
Ag = a;[aﬁwa;ras
Apny = eiﬂajas +eii9a1a3
Ay = ajag—alas {1.18)

In particular,the term proportional to A, represents the photon-noise contribu-
tion.

In conclusion, the sensitivity of the (W antenna to the photon noise is described
by the function

< A(pn) (t) ?A(pn] (t’) >

o (|t =t = —— (1.17)
7 |ae|?
1.13.1 Integration of the equation of motion
Now, redifining the operators[34]
1
Eg{t) =———ex t + iPpan ()] aslt
t) 7 ply (t)] a.(t)
With ¢ean(t) = [* A(t')dt' and 3, = v, exp (12¢¢ + i20c40) yields
d? . ;
ey — T () G = 1.18
a2 (t)ea = [ (1) (1.18)

with

. , 6 §T \* Swean \°
w2 (t) = 7,2 {1+2né:—‘ (Er) —2(%) ] — 3 (bup — buwigay )’

i

and )
f (t) =V é(in)

In conclusion, the fluctuations of the temperature, cavity length and laser fre-
quency induce a reduction of the effective gain of the OPO.

Since Swy and §we,y Auctuate slowly with respect to the characteristic time 1/~;,
Eq. {1.18) can be integrated by the WKB method,

e -iZoelt) ﬂf_'l(* _ j:ﬂf‘_'lg efmmdjm)(t’)

L w(t’ LAty ., iy 5
1 [as(t)] -/ Zdovitids s l e o (®) }dt
a

~50 7s (8" = (1"}

(1.19)
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where
N nyy e 8) e () )
Ct,t) = exp[-v(E—t)] sth‘l’(tst )
S(t,t) = exp[-y(t—1t)] %—Eg—;-% sinh ¥(t,t") (1.20)

47
\I!(t+'r,t)=ﬁ-'r+f fw(t')dt' =@ -7+ 6C(t+ 7, t)
t
6U(t + 7,t) being a zero average stationary normal process and

Age = e (t) — de(t)

1.13.2 Autocorrelation of the sensitivity function

For calculating the average expression of hp, (7) we introduce the functions,

U(t) = exp(6¥(t,0))
W, \)U(t) exp (6¥(t,0) + 26W(0, )

so that,
hon (1) = N Zé—(lﬁ-sgae”‘”)U(T)

%Y. Wi 1 g~ eaw = ®)7

X[(Cosw+5)(w_ 7 1. = - =

Yeav Yeaw

G W' (T) 1 g~ (Yeav+@)T

8 —_
+(cosw w)(w+ 5 1+F) 1+%-?,

The function U (1) is defined by
U (7) = Ugan (1) U, (T) Uy (1) Ur (7)
When the cavity length is well stabilized and the time interval 7 is not extremely

long, Uzqae (T) can be approximated by

T 1 T 2
Ueanw (T) :expf 5T oq e dt' = 1+ 3 (/ 5wcm.dt') (1.21)
0 0

On the other hand it can be shown that

T 2 oC inl fwWT
5T eandt' ) =2 s (F) g, (w) dw
0 0 w? =

Since the power spectrum Sse.,, (w) of 8§40 (¢) is proportional to that of he in-
tensity output 7oy (t) « Ucav (T) can be derived from experimental measurement of
the power spectrum of the fluctuations of the laser beam transmitied through the
OPO cavity
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In conclusion

B 'T

U, (7)

12

exp [Zwef (
Ug, (1) = EXP[ 75 Ew]

2
sin” {¥7
[/rcm, ('T) = =14 / 2 ) ‘S'éwmu (w) dw
4]

1— —'TzaT/'?')jl

.;)2

Since the temperature fluctuations are very slow, we can approximate Uy (1) by

Analogous results can be obtained for W (7,£).
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Chapter 2

Detection and generation of
vacuum squeezed light by
means of a degenerate OPO

2.1 Squeezed state detection

2.1.1 Direct measurement

The squeezed state are characterized by two main properties: sub-Poissonian
photon number statistics and reduced noise in one of the two quadrature compo-
nents (phase-squeezing) or in the field amplitude {amplitude-squeezing). The
system used to detect these quantum states of light must be able to reveal these
characteristic features.

Let’s start looking at the simplest system able to detect photon statistic,
referred to as a direct detection (see Fig.2.1). In this scheme light having photon
number distribution P, goes directly to a photodetector of quantum efficiency 7.
The subsequent analysis of the resulting photocurrent provides g measurement
of the statistical distribution P, (T) of the m photon-electrons counted at the
detector in the time period T. This distribution is a measure of the light beam
statistics disturbed by the non unitary quantum efficiency 1. From the mean
value and variance of the measured statistic P, (I'} we can infer the photon
statistic,

The non unitary efficiency can be modelled by ascribing it to the loss at a
beam-splitter with transmittivity né <. 1. Behind the beam splitter there is an
ideal photodetector. The annihilation operator a; at the detector is thus

aq = \/na+ Vvi—rna,
R

vacuum field
contribution

where a, is the vacuum field, having the same frequency w of the light beam to
investigate, entering the other port of the beam splitter. Now we can assume
that this field is detected with unitary efficiency {i.e. 100% of the photons are

1
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Figure 2.1: Direct measurement scheme of squeezed light photon number dis-
tribution

counted). The expectation value of the photon number operator and its variance
read respectively {1}

my = (na) = (aLad> =n(a’a) =n{n)
(Aam)?) = o ((an)’) +n(1=n)@n)

the non unitary efficiency acts a simple decreasing factor for the respective
quantities.

1f the measurement period T is negligible compared to the time scale of the
fluctuations of the incoming light, as it is for a single mode laser beam, no
further distortions are introduced.

Let us imagine that the detected beam is described by |at,<) , obtained from
the vacuum state [0) through the action of the displacement operator D (&) and
the squeeze operator S (s) (for a more complete analysis of the photocurrent
distribution of direct detection of squeezed light see Ref.(2}).

In the case of large coherent contribution to squeezed state (ie. la| > 1)
the mean and the variance of the distribution are

m) = nial® | 2.1)

(am?) = nlo® L
shot nolse

+n ‘[exp(—Z'r) cos? (¢> - %9) + exp (2r) sin? (¢ - %9) - (i. )

e

squeezing

The unit positive term in the curly bracket gives the usual shot noise contribu-
tion of the coherent state |a). The terms in the square bracket, depending on
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Input
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Figure 2.2: Schematic of a homodyne detection scheme

0 and ¢, are directly connected to the squeezing properties of the light: their
sum (the contribution of the square bracket as a whole) is negative if the pho-
ton anti-bunching condition is satisfied (i.e. the light shows sub—Poissonian
statistic)

cos (2¢ — 0) > tanhr

where @ and ¢ respectively represent the phase of the two complex quantities «
and ¢ and r = Re (5). So that the antibunching condition for the photon in the
light beam leads to a reduction, under the shot noise level, of the variance of
the detected number of photons m.

It has to be remarked that the non-classical effect of sub—Poissonian photon
statistic is attenuated by the detector efficiency #.

In conclusion, the direct measurement of photon number is able to detect
sub-Poissonian statistics, but it is not specifically sensible to he squeezing prop-
erties. In alternative we have io consider phase sensitive detection schemes in
order to display all squeezing properties.

2.1.2 Homodyne detection

Arn homodyne detector is based on two equal detectors placed behind the two
output ports of a beam splitter. Such a detector can be used in two different
configurations depending on the transmission and reflection coefficient of the
beam splitter!. In particular we will refer respectively to ordinary homodyne
detection when

Ir < [2] (2.3)

and balanced homodyne detection if

=t =23 (2.4)

lordinary homodyne detection

anti-bunching condition

balanced homodyne detec-
tion
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With reference to Fig.2.2let us consider a lossless beam splitter. Under this
assumption the output fields of the beam splitter are obtained by applying a
unitary transformation to the input ones

agn r t ay,

= 5
)=l ]l @
where &, refer to the local oscillator beam, a to the light beam to detect; r and
¢ are the complex reflection and transmission coefficients for the beam splitter
satisfying the relations

{r|2+§t}2 =1 and t'r+rt=0

The second condition is satisfied by imposing

r— t=—
ar ar =

For complete quantum mechanical treatment of the homodyne detection scheme
see Ref.{3][4][5].

2.1.3 Ordinary homodyne detection

In the case of ordinary homodyne detection (2.3) only local oscillator light will
reach the second detector so the detected signal is given by the number of
photo-electrons provided by the first detector

alytq1 = Iri?a)ar +tra’ar + rtala+ |t‘,]2 ala (2.6}

In homodyne measurements the field and the local oscillator modes have the
same frequency and the local oscillator is in a coherent state lar) . Then the
expectation value of a;1 aq1 will read

(i) = P low +21r el oz  (Bx) + il {a'a) (27)

where E, is the electric field operator with x phase term depending on the
detector properties

hw
E, = 1.‘ﬁsinkz [exp(z'x) al +exp(-—ix)a] (2.8)
oV
In the case of homodyne detection the phase X is
1
X=argr—argt+¢L=§Tr+¢)L (2.9)

In ordinary homodyne detection (2.3) a strong oscillator is used to satisfy
the condition
Irilec] = [t o (2.10)
with @ the complex amplitude of the incoming field. The two conditions {2.3)
and (2.10) allow us to simplify 2.7 as

2 2
(nar) = jrl"lacd + 2|7l |t leL] (Ex) (2.11)
S it N’
local oscillator coherent
contribution local vscillator

contribution
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Analogously, the photon number variance reads

( )

<(And1)2> =l oLl Ir|? + 4t (B2 (2.12)
Ny L
reflected transmitied
local oscillator field
\ contribution variance

The above two terms arise from the superposition of the reflected local oscil-
lator and the transmitted field variances respectively on to the coherent local
oscillator. The ordinary homodyne detection condition (2.3) ensures that the
local oscillator contribution is suppressed by the low reflectivity of the beam
splitter. While the mean value is dominated by the coherent contribution of the
local escillator field, the number of photon variance is mainly due to the noise
in the signal beam [7][6].

2.1.4 Detector efficiency effects

The above analysis of the ordinary homoedyne detection scheme doesn’t take
into account the finite detectors efficiency. Being 7 this efficiency the mean
photocount is

(mar) = 2nr|[t] lar| (Ex) = 2n|r[t| |ow| || cos (x — @)

where the contribution of the local oscillator is supposed to be constant and
known and so can be subtracted from the mean value in the (2.11).
The photocurrent variance will read

((ama)*y =07l Jo ] L P EEy -y @)

shot — noise
local oscillator

For a coherent field the term in the square bracket vanishes and the only
remaining term is the shot noise coming from the local oscillator. If the input
field is squeezed for the values of x that satisfv the condition

1
(B < 5 (2.19)

the detected noise is below the shot noise limit, and the field shows sub Poisso-
nian statistic.

By now the homodyne detector gave us the same level of informations of the
direct measurement scheme. Further information could be obtained from the
local oscillater phase dependence of the input field phase x (2.9).
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The squeezed field variance dependence upon this parameter is easily cal-
culated starting from three quantities: equation (2.8), the value of the mean
photon number for a squeezed state |a,<)

(M), = (ala) = |a|* + sinh? r
and the expectation value of a? in the same squeezed state
{a®) = a® — exp (if) sinhr coshr

It has the form
2 _ 1 2 1 Y i 1
(Ex*)y = 3 exp{—2r)cos® { x — 59 +exp (2r)sin® | x — 59 (2.15)
and the squeezing condition (2.14) is satisfied for

cos(2x — ) > tanhr

The final expression of the photocount variance, obtained substituting (2.15)
into (2.13), is not very dissimilar from the expression (2.2) obtained by direct
measurement of squeezed light with large coherent contribution. The beam
splitter in homodyne measurement scheme transforms the input squeezed state
in a different squeezed state with larger coherent contribution coming from the
local oscillator

la, ) — |rag + ta, i)

In the ordinary homodyne scheme this new squeezed state is then directly
detected. However the mean and the variance detected phase dependence can
be studied by varying the local oscillator phase through the relation (2.9). On
the contrary the direct detection cannot give any phase information on the
squeezing properties of the incoming field. Spanning the local oscillator angle
by 2 is possible to span the whole uncertainty ellipse of the squeezed state in
the phasespace being the variance value (at fix x) the projection of the ellipse
on to the local oscillator amplitude axis inclined at an angle x with respect to
the quadrature X axis.

In the case of vacuum squeezed state (e.g. coming out from a degenerate
OPO operating under oscillation threshold) the field variance in function of the
detection angle x describe a noise band that pulse as the local oscillator phase
is varied respect to 3. The variance will get values between § exp (2r) and
1 exp (—2sr).

Balanced homodyne detection

If the beam splitter parameters satisfy the balance condition {2.4) we are dealing
with a different measurement scheme known as balanced homodyne detector.
Keeping the same output mode as in (2.5) and the difference signal from the
two detector will be determined by the operator

T + —_ N
al ag1 — @yalaz =1 (aTaL - aLa)

Using Eqgs. (2.8) and (2.9) the mean photon number difference between the
two detectors will be

(2} = <a;1adl - a:‘ﬂad2> =2lap|{Ey) (2.16)
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Comparing this result with the expressions (2.11} and (2.7}, obtained con-
sidering ordinary homodyne detection we see that the balancing procedure has
removed the contribution of the local oscillator and the input field alone, keeping
only the cross-term. The variance of the detection operator (2.16), assuming
that the local oscillator intensity |aL|2is still much greater than the signal field
la)?, is

<(An12)2> = d]a® (AE?)

This expression must be compared with equation (2.12) referring to the same
quantity in the ordinary homodyne detection scheme. In balanced detection the
contribution of the local cscillator to the noise has been completely removed [6],
and this is the major advantage of the balanced scheme,

Moving to a non-ideal case we have to consider the detector efficiency 7, so
the mean photocount and its variance will read

(miz) = 2nlac](Ey)
((am2)*) = nloof {1+ (4(aE2) - 1))}

I

The above discussion about the photocount variance for ordinary homodyne
detection is still valid ; the difference consisting in the different weighting factor
of (AEZ) , that is 47 in the balanced case and 47 |t|? in the ordinary homodyne.

An experimental analysis of the local oscillator noise suppression in homo-
dyne and heterodyne detection has been carried out [7]by Machida and Ya-
mamoto, who have shown that local oscillator intensity noise can be suppressed
to the absolute quantum noise of the detector; the phocount carried on a ho-
modyne detector is not limited by the local oscillator intensity noise.

2.1.5 Heterodyne detection

The heterodyne scheme is ideally to analyze two—mode squeezed light. We
suppose that the field has to frequencies centered in wg, we indicate this two
frequencies as w, and w. . The experimental setup of this scheme is analogous
to the homodyne detection scheme (see Fig.2.2), in this case we choose the local
oscillator frequency wy = wp. The current fuctuations spectral component at
W= wy —wp = wp — +_ will depend upon the contribution of the two excited
squeezed modes.
Using a two mode expression for the field in {2.8} of the form

E, = % .+ |exp (ix) a), +exp(—ix) a_] + %SC,,, [exp (ix)a_ +exp(~ix)a-
The main problem in heterodyne detection arises from the spectral dependence
of the detector efficiency. Only if the two frequencies w_ and w.. are close we can
assume equal detection efficiency and the squeezing properties of the field will
not be degraded. In this case the measurement results of heterodyne detection
will be completely the same obtained for the balance homodyne. This scheme
allow to extent the squeezing detection possibility to mulii-mode squeezed fields.

The heterodyne scheme can be used also for simultaneous two—quadrature
measurements of a signal wave [8].
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crystal | dielectrictensor | A {(um) | dijk (3 x 107* MKS5)
LiNbO3 uniazial 1.06 day = —4.7

ne = 2.300 @G300° K dsz = =27

Ne = 2.208 @30001{ d22 =3.2

Table 2.1: Nonlinear optical coefficients of the littumniobate

2.2 Gain of a parametric oscillator

We have seen before that a degenerate OPO can generate vacuum squeezed light.
In this chapter we will settle for a basic description of parametric amplification
in a Fabry-Perot cavity containing a nonlinear crystal.

For field strengths far from the breakdown threshold, the crystal polarization
can be expressed in a Taylor series truncated to the third order

pi (t) = coxise; (1) +  2digke; (B ex(t)
crystal frequency doubling

anisotropy 3 — wave interactions
e.g. parametric process

+ dxijme (t) ex (B) e (E)

3rd harmonic
Raman — Brillouin
self — focusing
optical wave conjugation

where the convention of summing over repreated indices is adopted. The
second-order term is responsible for second-harmonic generation, for sum- and
difference-frequency generation and for parametric amplification and oscillation,

In the following we will refer uniquely to devices employing LiNbO3 . This
is a trigonal crystal of class 3m . It is accordingly characterized by a nonlinear
susceptitibility matrix of the form[9]

0 0] 0 0 diz —da2
dijg = | —daz d22 0 dis 0 0
d3i1 dan diz 0 O 0

Then we have

o= Eoﬂgel + 2dyse163 — 2doner€2
p2 = Eon362 - Edzgef + ane% + 2d15€9€3
py = conies+ 2dg €2 + 2dz €3 + 2d3ael

In Table 2.1 we have reported the nonlinear susceptibilities of he LiNbO3
reported in [9] and [10]

Parametric interactions are a particular case of nonlinear optical phenomenonsil
depending on the second order optical susceptibility: This class of phenomenons
includes also second harmonic generation and frequency mixing; they all involve
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Figure 2.3:

the interaction of three monochromatic fields. In the case of parametric ampli-
fication a strong pump field of frequency wy, a weak signal field of frequency
ws and a weak idler field of frequency w; = w, ~ w; interact in the nonlinear
medinm, thus giving rise under suitable conditions to amplification of signal and
idler.

The relation between the frequencies { Manley-Rowe relations) of the three
waves,

Wp =wi +w,

is imposed by the conservation of energy and is strictly satisfied when the
process is stationary.

To understand the basic features of parametric interaction we will consider
the simple case of three collinear plane waves evolving within the nonlinear
medium. Referring to {11] for the somewhat lengthy derivation of the equations
of evolution for the amplitude of linearly polarized plane waves within the non-
linear medium and we will discuss here only the physical implications of the
formula for the variations of the amplitudes of the signal and idler plane waves
within the medium as obtained in Ref.. [12].

Let us consider three linearly polarized plane waves propagating along the
z - azxis of a LiN®J; , with optic axis parallel to £ , of complex amplitudes

e, (z,t) = R {Ep (z)exp [wP (-n-p% - t)]}
e, (2,t) = iéR{Ea,i (z) exp [iws,i (ﬂs,ig - 3)]}

Using the conventional notation of calling "3 the optic axis, and ”1” and " 2"the
other two, we have that the pump has ouly the component E,3 while the signal
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(idler) has only the component Es 1. Accordingly, the complex amplitude of
the crystal polarization is given by
P = eoneEy s + 2d15 By Ep
P, = eoniE,+2dnEL; + 2d33 E2
Plugging these expressions of the polarizations in the Maxwell equations we
obtain

d Tg i

EE«s.i = -—EES.'E - iwa,tdlsE{,sEpe“kp"“*‘“é)z
d Tp ; —i{kp— ks~ ks
@EP = —EEP - 'lu)pdglEsEgE Wkp b

where ¢ represents the crystal losses.
Now, neglecting the pump depletion the variations AF, ; undergone hy the
signal+idler amplitudes at the crystal exit are given by

. Wsdlﬁ

in(AkEy /2
AE, ; = —i EpEi‘,sﬁ,:ﬂilfiA—i/—)

ns,ic‘gﬁ Al‘%g.ﬂj/2
where ¢,y is the length of the nonlinear medium, n, ; is the refractive index. In
particular

(2.17)

Aic:k,,—ks—k,-ﬂ'—'*wzmwﬁ—
thl grtl
describes the mismatch of the wave vectors kp i of the three fieds. The damping
factor ~ represents the attenuation due to the crystal absorption. Although the
signal and idler frequencies are roughly coincident it is worth keeping track of
a slight difference due to an imperfect degenerate operation f the
Recasting 2.17 in terms of the powers of the waves we have

AP.s,i=Awg,id15|EpEiEsWxtt|3 S_‘.I,‘(_ﬁ}k_eiﬂz_)ei(tpwm—%) |2 (2.18)
Akl /2

" A" representing the beam cross-section area.

According to 2.17 the maximum interaction between the three fields occurs
when the quantity Ak is zero; this condition is referred to as perfect phase
maiching. where we have introduced explicitly the phases @y s of the complex
amplitudes Fp s -

At this stage we are ready to remove the initial assumption of treating the
fields as plane waves. In t case of Gaussian beams we must add to the phase
delay Aké,; a phase term W typical of the Gaussian beam, which is the outcome
of the departure from the propagation along the z-axis. In addition, the field
amplitudes undergo large variations in proximity o the waist, which is in or case
located at the center of the crystal.[13] These peculiarities bring in a dependence
of the power variation in the signal and idler beams by a focusing parameter

E:l:t.!

2b

where b is the confocal parameter of the beams (which in general is equal for
the three beams as they share the same cavity).
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In conclusion Eq. 2.18 is replaced by

w2 2 11'2
AP, = Fundis| By BBl |3 {H(a, c)e°(¢s+¢-—¢v>} k

where w,, is the pump beam spot size in the waist . Accordingly, switching from
plane waves to gassian beams is accounted for by replacing the function

sin(Ak€yy/2) 1 /1

70T dx

INTID: 2

1

with 0g = €,4Ak/2 ., by the Boyd and Kleinman [13] function H (e, )

1 e eia:r
Hio,¢) = 5%_[(: 1+i.’rdx

with )
o = —bAk

the phase-matching parameter.. .It is noteworthy that Ak is generally com- phase-matching parameter
plex as a consequence of the crystal absorption losses. However if we neglect the
absortion mechanisms, the function H(o, ¢} becomes real.

Until now we have only considered the case of a parametric amplifier without
resonating cavities to enhance the gain.

When the nonlinear medium is enclosed in a Fabry-Perot cavity resonating
at the three frequencies wy, w, and w; we obtain an optical amplifier or oscillator
according whether the parametric gain is less or greater than the cavity damp-
ing factor ~Yess. The dynamics of this system is described by the Hamiltonian
discussed in the last chapter. In particular the coupling coefficient & can be
shown to be related to the properties of the nonlinear crystal by the relation

9 mcth
|=|* = mENL
where Eyp is the so called nonlinear conversion efficiency (which has the di-
mensions of the inverse of a power)

gmidis

y— o,
23en2 A Ay =9(0C)

Enp =
Aps.i being the wavelengths of the three fields. In fig. 2.4it. is reported a plot
of the function

2 .
9(0:0) = T [S[H(@.0) expli (o~ 00 = 00} (2.19)

against o in absece of crystal losses and for different values of ¢. (see also Fig.
2.5
A more direct way of characyerizing the OPO is to introduce the pump pump threshold power
threshold input power (see [14]), that is the minimum pump power needed to
operate the OPO as an oscillator
. -2
P(,ln) — i
pump 4P?BpENL
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Figure 2.4: Plots of the gain function for different values of the ratio {crystal
length)/(cofocal parameter)

where F, is the finesses of the cavity at the 2Zsignal and idler frequencies, By is
the buildup factor at the pump frequency (see e.g. (11] for the definition of the
above quantities)

In order to achieve a maximum gain (and consequently minimum threshold
power) one has to optimize the two parameters ¢ and ¢. Once the length of the
nonlinear medium is chosen ¢ can be varied by changing the confocal parameter
of the cavity, i.e. by changing its length. To optimize o one has to change &K
exploiting the characteristics of the nonlinear medium. Being nonlinear optical
materials anisotropic, one can then exploit their birefringence and let the three
beams propagate through the crystal as ordinary or extraordinary beams. When
the pump is an extraordinary ray while signal and idler are ordinary ones, the
oscillator is called Type 1, in the opposite case one has a Type I oscillator. As
the ordinary and extraordinary indices of refraction change with temperature
with different rates one may find a temperature for which the phase matching
condition is exactly satisfied. For a LiN b3 - MgO crystal this temperature
ranges between 80 and 110 °C as a function of the concentration of MgO

2.3 Quantum fluctuations

The output field of the OPO is characterized by the amplitude correlation func-
tion of the quadrature amplitude

X, (t) =€ Xa(t) +eXa’ (1)

where the carets indicate that the operators are evaluated in the rotating frame
of the subharmonic field,

A 0) =<t X, (), Xx (¢ + 1) >

2ponlinear conversion efficiency

buildup factor

nonlinear
ciency

conversi
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Figure 2.5: 3D plot of the gain versus the detuning parameter and the ratio
(cavity length)/{confocal parameter)

If we use a spectrum analyzer for analyzing the squeczed radiation it worth
referring to the spectrum of squeezing S (w; 8) of the output field, which core- spectrum of squeezing
sponds to the Fourier transform f the autocorrelation

lo. a] = o]
S{wix)= 2'yf A(mi@ye “Tdr = 47[ A (75 8) coswrdT

Collett, Gardiner, Savage and Walls[15][16][17] have obtained

_ £, ep| (3 + w?)
['Yp {(vF kpl) + fes|2 - “‘)2]2 + w? (’Ys + |€p| +'7p)2

Se (w)

where ¢; = Ka;. The 4+ and - signs refer to conditions of optimum squeezing in
one quadrature-phase amplitude. For operation below threshold this equation

reduces to
4E,/ E;’”’

(w/%)? + (1 F Bp/Effr)’

S:t' (.,,d) =

2.4 Galn measurement

According to Eq. 2.19 the gain of a degenerate OPO operating as an amplifier
{below threshold) depends on the phase difference between the phase of the
pump and twice the phase of the signal. Then, once reached the condition of
degenerate operation the gain can be obtainded by measuring the amplification
undergone by a probe IR beam injected into the cavity (see Fig. 2.7) By dis-
placing slightly the folding mirrorr the relative phase laser-probe can be varied
thus producing a variation of the probe intensity at the exit of the cavity. In Fig.
2.8 it is plotted the probe intensity measured at the cavity exit as a function
of time when a sinusoidal voltage was applied to the PZT driving the folding
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Figure 2.6:

mirror and the condition for degenerate operation was achieved. The gain was
simpy obtained by measuring the ratio between the intensity excursion and the
intensity in absence of pump.

2.5 Control of the cavity length

In the design of a degenerate parametric oscillator particular attention has to be
paid to the cavity locking system in order to achieve simultaneous resonance of
the pump, signal and idler. The reader is referred to [12] and [18] for a complete
discussion of the constraints to be respected in order to obtain a stable operation
of an OPO. It is worth warning that in these references there is not a satisfactory
discussion of the (reported) stability of the degenerate OPO. For producing
squeezed radiation an additional care has to be paid to the residual fluctuations
of the cavity length as they can modify the spectrum of the radiation produced
by the OPO [19]. We will here focus on the techniques used to lock cavities
which, beyond their use in the OPQ, are of wide interest in experimental optics.

These techniques were originally developed to stabilize the frequency of dye
lasers using reference cavities , but they can be used as well to lock the length
of a cavity to the wavelength of a (stable) laser. These techniques are used
whenever one needs to keep a stable and high continuous power circulating
within a cavity as in two-photon spectroscopy or continuous second harmonic
generation in crystals. The core of a locking scheme is the system which extracts
the information relative to the resonance state of the laser within the cavity.
This system has to produce an error for the feedback control loop. In proximity
of the resonance peak the phase varies linearly with the detuning , thus providing
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OPTICAL LAYOUT OF THE SYSTEM USED FDR
MEASURING THE PHASE-DEPENDENT GAIN

{PZT driver,
v |l W i 10 Hz

Figure 2.7: Optical layout of the apparatus used for measuring the gain

Figure 2.8: Experimental record of the detected signal as a function of time,
when an oscillating signal is applied to the PZT controlling the position of the
folding mirror.
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a good error signal.

The locking schemes differ mainly in the way used to extract the error signal.
Initially the locking systems used to monitor the intensity transmitted by the
cavity to extract the error signal. A typica!l plot of the transmitted intensity
vs. cavity length showing the classical Airy pattern is reported in fig 77. A
common choice was to lock the cavity on the fringe side using as error signal
the output of a photodiode measuring the transmitted intensity . This system
cannot maximize the circulating power and moreover a perturbation as little
as one half of a fringe may carry the cavity out of lock. A more sophisticated
approach using the transmitted intensity uses a fast differentiation technique
[20].

In Fig 77it is shown the first derivative of the Airy function. As one can
see a signal proportional to this derivative would allow to lock the cavity on the
maximum of the transmitted intensity thus maximizing the circulating power.
The most used derivative technique is the so called mechanical modulation. By
means of a PZT the cavity length is modulated sinusoidally at frequency {1
Consequently the light incident on the photodiode is also modulated; filtering
the output one can obtain a sinusoidally modulated signal whose amplitude
is proportional to the cavity length.. This information may be recovered by
using a lock-in amplifier as shown in fig 77 where a schematic diagram of the
mechanical modulation is reported. The main fault of this scheme is that the
bandwidth of the control is limited by the value which is no more than a few
kHz (and often much less).

To overcome this limit one has to use a fully optical technique; we will here
resume two of such schemes which were both introduced by Pound for microwave
cavities and then exended to optical cavities by Hansch and Couillaud [21] and
by Drever and Hall [22].

The Hansch-Couillaud method is also called polarization spectroscopy scheme ]
Aschematic of the experimental setup is reported in fig 7?7 The laser, linearly
polarized, is injected in the cavity where is placed a polarizer with its trans-
mission axis forming an angle of 45° with the polarization of the laser. The
incoming light may be decomposed into two orthogonal linearly polarized com-
ponents: of these one is (almost) resonant within the cavity while the other
suffers serious losses and is just reflected by the entrance mirror of the cavity.
The resonant component is also retroreflected. We report in Fig 77 and 77 the
modulus and phase of the reflection coefficient vs. the cavity length and note
that the phase is almost linear near the perfect resonance. The polarization
spectroscopy technique extracts the information relative to this phase by anal-
izing the polarization of the retroreflected beam , which is a superposition of the
resonating and non resonating components. If the cavity is resonant the phase
delay between the two components is zero and the retroreflected beam is linearly
polarized. This causes balanced outputs of the two photodiodes and the error
signal is zero. In case of non-zero delay the retroreflected beam is elliptically
polarized; the outputs of the photodiodes are unbalanced and the error signal
is different from zero. A plot of the expected error signal vs. cavity length is in
fig 77. This scheme may hardly be used to lock a cavity to the laser wavelength
expecially if one wants to carry some sort of experiment within the cavity (as
in two photon spectroscopy or OPOs). Besides the only bandwidth limitation
in this scheme originates from the electronics involved in the detection.

The Drever-Hall technique uses a RF phase modulation of the injected laser
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Figure 2.9: Schematic of the Drever-Poundstabilization scheme

beam to extract information about the resonance state of the cavity. The layout
of the experimental setup is shown in Fig 77. The laser before passing through
a Faraday rotator is phase modulated by an electro-optical modulator {EOM).
Phase modulation at frequency §? adds to the spectrum of the laser a couple of
sidebands distant 4 and — by the optical carrier frequency w. If the carrier
is almost resonant with the cavity and the sidebands are well separated (that is
to say the frequency {2 is greater than the width of the cavity resonance peak)
they will suffer total reflection (see fig ??) and moreover their relative phase
will change. The retroreflected beam will then be amplitude modulated and
this modulation may be detected by a fast AC photodiode. The signal from the
photodiode is demodulated against the RF reference signal driving the EQM.
The demodulated signal shows the typical linear shape near the resonance point
and is plotted against the cavity length in fig 77. Once again the bandwidth is
limited to one half of the modulation frequency, this time however this can be
some tens of MHz or tmore. The Drever-Hall method is very similar to the FM
saturation spectroscopy technique used to stabilize gas lasers. In this technique
one uses a molecular resonator instead of the cavity. The use of saturation
spectroscopy allow to reach sub-Doppler width of molecular lines and the laser
may consequently be frequency stabilized with a precision of 1 part over 10°.

At the end of this rapid survey of the locking techniques we would like to
point out the problem of the control networks. In fact once one has extracted
the error signal it is often necessary to further elaborate the signal before closing
the feedback loop in order to satisfy the stability conditions. Generally analog
feedback networks are used. There is however a growing interest in digital
networks. This approach is more Hexible than the analog one and is very useful
in systems with a large number of controlled variables.[20]. In Figs. 772?77 we
have reported some typical spectra measured on a digitally controlled apparatus.
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Figure
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Figure 2.10: Layout of the cavity length control system
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9.11: Spectrum of the cavity length fluctuations in the range 0-100 Hertz
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2.6 Optical Layout

The transfer optics of the laser beams @ 532 {green) and @1064 nm (IR) is
formed of a collimating lens Ly {see. Fig. 2.7) , followed by & Faraday insulator
and a couple operating as an anamorphic lens for correcting the beal ellipticity.
A dicroic mirror , placed in front of the cavity input plane, is used for overiapping
the IR beam , collimated by means of lens Lz. The two overlapped beams are
focused bthe lens Ly toward the cavity.

The optical system can be described in the paraxial approximation by a
sequence of ray matrices. We wiil indicatewith M the lens ray matrices , with
M p those relative to the prisms and with M, the input mirror matrix. Qz e Qy
indicate the complex curvature radii of the green light beam on the exit plane
of the laser source, which is also chosen as origin of the coordinate z.

For a time dependece factor exp (—iwt) and a propagation toward the pos-
itive z-axis, the complex curvatureradius of a gaussian beam withwaist in z,
and confocal parameter b (> 0) is given by

Q(z)=2— 2, —1b

Q) is related to the curvature radius R of the wavefront and to the spot size w

by the relation
1 1 1

e s == i
Q z—2zw—1ib R kw?
I fasci di ingresso al sistema sono caratterizzati dai seguenti parametri

(2.20)

wavelength @532 nm | @1064 nm
exit spot-size (1/€%) 0.7 mm | 0.3 mm
oxit boam divergence (1/€2) | 14 mrad | mrad

[ ellipticity 1.4:1 1.3:1

The far-field ellipticity is due to the different confocal parameters b, e by,

w? . {)l(z;m-}-z)z—t-bi_ﬁ

x
wy 2 bz

On the other-hand the divergence is connected with the b-parameter bythe

relation

+2)° + 82

bz

3
9:2%:2\/R=14x10*3 rad

Then
b

N = 6496 —— b = 3.456 wmm

D’altra parte, il fascio laser risﬁlta ben collimato quando si pone ad una distanza
di 80 mm una lente con f= 150 mm. Questo implica che il waist disti 70 mm

dal piano d’uscita.

[ wavelength [ @532 nm | @1064 nm
| waist position -70 mm -50 mm J
by 35 mm 18 mm
by 28 mm 16 mm
exit diameter (1/¢%) 0.7 mm | 0.3 mm
exit divergence (1/¢2) | 14 mrad | 7 mrad
Ellipticity 1.4:1 1.3:1

UEEZED LIGH1T
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In conclusion the green beam on the exit plane has two different curvature
complex radii respectively equal to

Qe =80 —i2.468 , Q, = 80 — i 4.838

The curvature radii relative to the wavefront on the inner face of the mirror
M; will be obtained by applying the ABCD law,

¢ AQr + By 0 = A,Qy+ By
! ¥

= 5a. 4D, YT T,0,7D,

whose elements will be obtained by multiplying the following matrices

A B. = M,;- Tm—p' Mp:c . Tp—t -M; T
C, D, ———

A, B,
Ty Dy
Any misalignment of the prisms introduces a beam tilting 8; = 6, and a dis-
placement X, with respect to the optic axiss. Analogous effects are introduced
by a mirror tilting.
Una volta calcolati i raggi di curvatura complessi Q. e Q, ed assumendo

una dipendenza dal tempo del tipoAssuming a time dependence of the form
exp(—iwt), the input beam on the inner face of the mirror is described by

I — X)2 _vi\2
u(r,y) = exp (ik {(—25‘:-—)—— +8.x+ %@z—) +6yy})

where X,Y e 8, , represent the displacementsand the tiltings introduced by
{a) focusing lens, (b) prisms, and {(c) input mirror.

prigma

M, - Thn_i-M;- T o

2.6.1 Offset and tilting of an optical component.

When the lens is displaced of the quantity éz and tilted by the angle #, the
input vector modifies into

o=1e Bl (el )+ )

Consequently, the output ray will be displaced and tilted by thequantities

' = —bh-(A-1)-6a-B
bo! = —b6h-C—ba (D-1)

Introducing the vectors
h | bR P 14

SV = — (M —1) -6V

we have
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Ray matrix of a biconvex matrix

For a biconvex lens with curvature radius R ad tickness A the ray matrix reads
—an-l &
M, = R om 12 m (2.21)
—2ngt e ORE 1-0g

Ray matrix of two prisms

For a couple of prisms oriented as in Fig.(?7}.

An anamorphic system used for correcting the asymmetry of the laser intensity distributio
the vector is modified as
el _[ A By Rl Xe
[a%ed 0 A, ' o g9,
The vanishing of the element C implies
2
Q= APQ + ApB,

so that the confocal parameter is unaffected by the prisms.
,For analyzing the prism effects it is worth introducingthe functions

sin(clt-b-d)] _3

refr{a,3.,n) = arcsin[ "

1 — tan {a'} tan (3)
1 — tan {@) tan {3)

gl{a, o', 8)

The exit ray forms with the z-axis an angle ¢” and has an height h” respec-
tively equal to

(13

ot = prism{a, 51,61, n)
h" (h — zp1)92 (e, By, 61) -+ Tp1

where

92(0‘:-316) = gl[refr(a,3,n),prism(a,,@,6,n),ﬁ—-6]gl[a,refr(a,5,n),5]
refr[refr(a,ﬁ,n),ﬁ—é,%]

1l

prism (o, 3,8,n)
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Figure 2.14: Geometry of a prism used in an anamorphic lens

Ray matrix of the input mirror

For the input plane-concave mirror of curvature radius R and tickness A the
ray matrix reads
M]_ -

n
n-1 n-1lA4
R 1+ n R

Note that f < 0

Cavity ray matrix

With reference to Fig. (2.15)we easily obtain for the vector V transformed by
the cavity

ch{ - §VI + Rl.Tls. {6v;’tai + T34-T‘42- {5V2 + R2'T24' (5mei + T43’T31 ' v:n)]]
MCELL' ) Vz'n + §ch,
where
~1 ,
Vi = 7(5\’;“11 = [ (BTgfoJ'Hwo) et ]
0 0
Ve = [202+5h2ﬁ2‘; ] Vi = [ 20, + 28 ]
In conclusion,
o fe o .
Moy = b= 2R 2‘eff(1——R-§
cav — [ fe ¢, A
Sk 1) (-2 (-2
and
—G (P25t + 0 6a2+5_hz}geff
8V oy =2 [ e ( rtat —p wo 7

)+
n— ‘.
[—%ﬁ- (Brrar =t 4 By0) + B0a + ‘%122] (1 _ 2_R.f_]f_) +8ay + %L
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2
M2
output
mirror
%2
5)’1 6y2

Figure 2.15: OPO cavity.. The tilting angles of the mirrors and crystal, indicated
in figure, are negative.

where

¢,
eeff_e1+ez+~ﬁ

Tilting and displacement of the cavity gaussian modes
Per round-trip we have

R = Aash+ Beawax+ bheav
a' = Ceoh+ D+ 8voan

The complex curvature radius will be given by

ca.v Acrw' :t ’l,\/;— (Ac:av + Dcm.!)2

2C('_(1'U
while
fopy €e £.
[5’*] _ 2 { il Ry i e 4
8 = % 7. fory b a. L( f_u) AT
@ Ba g b tptu | w1 EE Rz

{—%L (Grtai_“" +9u,o +6(I-2 + }eeff
{_’ R (e:rfai'— + gu,o) + bop + ﬂz’ (1 2-—Lf') + 8oy + F ﬁb—l

2.7 Resonance frequencies and parametric gain

Inside the crystal placed at the center of the cavity thegreen field will be given
by

‘ 1 4y
Ueaw (X3 2) X ___tai &) exp (mg (T) kgz +iny (T) kg 2011 (z))
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where w(z) is related to Q(z) byEq. (2.20). In particular, at the crystal center
Quui (2ou) = —ibzy

In general,
Qru(2) = 2 — 2ou — ibgy

Inside the cavity but outside the crystal

1 z? 4 y? )
————exp | ik,z + ik, ————
Qcav (z) P ( g ngcav (z)

£, 1 - =il 4 1h
Qcav (za:ti - %) = _tai (za:ti _)_) - 2 il
. Ng “
7).

Qcav (21) may be calculated by means of Eq. (

Ueqy (T,Y; 2)

beng

Therefore

: -
—tbyy = g (Q + &) + _—,;”-

Finally, the ratio between the fields on the two mirrors is given by

Ucan (X, Y} 22)

toms (%, 3 21) exp [ikg (64 + €2) + ikgngboy — 12V

where

20 = arg{Qca'v (22)} — arg {QCGU (21)}

For a symmetric cavity
Qeav (22) = ~Ql, (21) = 2¥ = ~2arg Qeaw (1) — 7
At the cavity resonances at 532 nm and 1064 nm we have
mgm = kg (€ +bag +ng (T) b)) — 20
migm = %kg O+ G +nun (1) Ln) — 29

2.8 Temperature and length constraints for de-
generate operation

In general the difference between the longitudinal modal indices of the green and
IR resonances is related to the cavity lenghts and to the temperature throughthe

relation
kot 2y
lg"2mIR:ky (629—6213)-{- g’:u ( g(T)—HIR(T))+*—
For a degenerate configurationf18] it must be degenerate configuration

boy = borp
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so that for achiving a degenerate configuration we must have
kolry 2¥
mg—‘zmIR: 'n‘” (ng(T)—n;R(T))+—7r-
The phase ¥ (< ©/2) is given by
2R

2
kqwy

T ™
I = -5 arg ) = -3 + arctan

Consequently
k ez‘t!

2 2R
(ng (T) —nir (T)) + o arctan Fu?

mg —2mr + 1=
For R = 150 mm and w, = 1 mm the condition for degenerate operation reais

kg a:ti 0. 15

mg—2mip+ 1= ng (T) — nr (T + —

On the other hand the OPO gain is proportional to

1 ) ) eio‘z
Z ‘¢9+1¢‘1R [ dr 2
g(o,s) < | [e e |

where
I
¢ = b” , 0 = kgbgut (g (T) —n1r (T))
zti
2R
k. 2
bet = —1gS(Q) = ngR——22—
1+ (25
kgwg

015

In particular, we can ignore the term %12 . In addition for ¢ =0

s [ ]
_ 1+ix

2
1
(‘n’ — 2arctan E) sin? (¢, + 201R)

g(0,5)

PR

2.9 Amplitudes of the modes excited in the cav-
ity

Clonsideriamo un fascio di ingresso alla cavita’ descritto sulla faccia interna dello

specchio M; dall'espressione

, __ 2 [z =X)? (y—Y)*
Win (T, ¥) = N exp (tk [—__2Qz +6,r + 50, +6,y

ed un modo in cavita’ della forma

2 . x_Xcauz y_ch2
Ueav (CC, y) = u'ﬁexp (?'k [(_"2—62—")_ + e(cav)z-r + (_‘E_a)— + e(cav)yy])
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litudes The amplitude of the mode TFE M,,, will be given by
o 1 1
T w1, 2t g
[z —AX)?  (y—AY)?  x?4y?
dr | d k - S, e
 fa faven (| 57+ 20, 20, A0 TA%w
£z Yy
2= ¥
o (V22) 1. (22)
where
AX = X"Xcavy AYz}"_}fcav

Aem = ex - e(cu,'u}z * Aey = eb’ - e(cmv)y

Putting

1 1 AX AX?
a = ik —— ] ,b=k| AD, — . ¢ = exp |ik
(Q;av Qm) ( QI ) P [ QQ-’: :I

we have
1 2-bw
f 4
2 -
where

1/4 2

. Qe Qtan (Qear — Qlan) (Qe — Q3) k|AXE Q.00 ( ax )

Co = xp | i5 —~ A8, — =
’ [Q;Qm Qe — Q1) } o ( 2 [ Qe 0 Qiy Q.

For b = 0 we have

(—1)%2¢ (2¢ — 1)
ol °

Combining the contributions of the two axes

Cae =

Crot = J (e Qewy — Dy [9:Q0 () (Q— Q)

Qcms (Q:c - Q:m') (Qy - Q;av) V Q;Q;

. . 2 » . Ay 2
X exp (k [Xl _ 99 (AGI - AX) + AYE_ 90 ; (Aey A}) D

210, Qe -q Q. Q, 0,-Q T,

Ignoring tilting and misalignments

b2, ,b.by,

e

| Cor = 4 2 2 2 2
[(br + bccw) + (Zr - zc;mr) :| {(by + bcav) + (:'y - 3(:0.1:) }
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Chapter 3

Interferometric detection of
gravitational waves and
squeezed radiation

3.1 Introduction

In interferometric measurements the quantum noise is originated by the fluctuations
of the number of photons at the detector. Near the zeroth-order minimum of inter-
ference the noise is approximately independent of the amplitude and phase noise of
the input field (say a(,) at port Pj. Rather the noise is due to ARuctuations of the
component of the vacuum field (say a(z)) at port P2, which is 90° out of phase with
ag)- An additional component comes in when the intensity is so large to make the
fluctuating action of the radiation pressure on the mirrors no more negligible {1].
As a consequence of the opposite dependence on the intensity of the photon and
radiation pressure noises, the sensitivity of an ideal interferometer reaches its best
value for an optimal value of the intensity of the illuminating beam.

For a vacuum feld at the unused port P the optimal power of the input laser
comes out to be quite large and of no experimental interest. To reduce considerably
this value Caves [1] suggested to squeeze the vacuum field. In fact, the photon noise
can be reduced by squeezing the fluctuations in the 90° out of phase component of
a(z). As pointed out by Caves , Gea-Banacloche and Leuchs[2][3][4] the advantages
of such = brilliant solution are drastically reduced by the imperfections of the inter-
ferometer. Among these are non equal losses in both arms, wavefront distortions,
depolarization and imperfect overlap between the two beams, T

For what concerns the detection apparatus most antennas extract the GW signal
by manipulating in a suitable way the gpectral density of the output {(i.e. the Fourier
transform of the autocorrelation). Two methods have been proposed to optimize
the response of the interferometer: phase modulation technique {5} and the balanced
detection in which the difference between the detected photons at the output ports
is measured around a zero working point[6)[7](8][9].

3.2 Quantum input-output theory of a Michelson
interferometer

In the Michelson interferometer (Fig.1) we have two input fields entering through
ports P;, i=1,2, described by the operators (a;, a‘!) . To them correspond two

1
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Figure 3.1: Schematic of a Michelson interferometer with suspended Fabry-Perot
cavities in the two arms

fields at the mirrors Af; described by (&, b:{) and two output fields at P, described

by (g, CJL) - We simplify the Michelson interferometer as a device with two arms at
the end of wich two outer mirrors M, are attached to some strings, thus behaving
as two pendula, without considering Fabry-Perot cavities and beam delaying optics
into these arms. The position of the mirrors are controlled by the joint action of
the restoring forces and the radiation pressure (10]. We will suppose that in all
processes the dissipative and actjve effects are negligible so that conservation of
energy is ensured,
The Hamiltonian in 7* is taken to be

H® = h(plp, + ) (3.1)

with w the frequency and h the Planck's constant. Implicit here is the assumption
of equal frequencies for the mode 1 and 2. This can be achieved by introducing
some degree of interaction among the two modes, which anyhow can be ignored in
a first approximation, [?]. The operators are connected each other by 2x2 unitary
matrices, the elements of which depend on the physical and geometrical parameters
of the interferometer(11]

where

We conveniently write
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with

e 0
® = [ 0 e
o B ]
B o
In the above o; and 3; are the complex transmitivity and reflectivity parameters of

the beam splitter (BS) arbitrarily oriented for the i-th input field mode respectively.
¢, are the phase distance between BS and the mirror M;. Also

K

c=Ua ; o =aUl (3.2)

and

U =-KT®*K (3.3)

Thus all the information about influence of the optical elements of the inter-
ferometer on the light acting on the mirrors is contained in the unitary matrix V'
described in generic case by four independent parameters. The influence of the
interferometer elements (beam splitter, mirrors, etc.,) on the outgoing field is de-
scribed by the unitary matrix U which in the case under consideration is completely
determined by the matrix V.

If we consider a 50 — 50% BS, then the elements of the matrix K are

&

M

oy = Q2 =

S

[x]
=

Sh=58 = (3.4)

S

where & is the phase introduced by the BS which can be set to zero for an ideally
thin BS while g is the phase introduced by the BS between the reflected and
transmitted waves and for simplicity we take p= /2. Then

1 [ e et
V= [ e (3.5)
and 2ig 2ig ] 2ig
1 g2t _ bz jeiPL L et
U= ——J—é [ iedid1 4 je2idn _e2itr 4 g2ide ] (3-6)

In addition,
Viigy -V = —~02 (3.7)

with og the Pauli spin matrix and

. —cos¢ —sing
-t I 7 = .
o U-os-l [ —sing coso ] (3.8)
-
with ¢ = 2(¢2 — d1).
For the interferometer operating on a dark fringe (¢p=00p+(2n-+ 1)m/2) and
for small values of &¢
U'-o3-U=01+8¢p 03 (3.9)
- 8¢ is given by the sum of the GW signal d¢gw and the noise term S due to: (i)
' noise transmitted to the mirrors through the suspensions, (ii) vibration modes of
the mirrors, (iii) pressure fluctuations in the partially evacuated pipes forming the
interferometer arms, and (iv) radiation pressure noise,
——
-
e

o il

e o = T PR Y R IR
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M~
front ba_ck
tirror mirror

Figure 3.2: Schematic of the multiple pendula used for reducing the seismic noise
in the VIRGO GW antenna

3.3 Multimode Michelson interferometer

We can analyze the interferometer by exploiting a multimode representation of the
beams

EC ()

Z z)j )i (¥, 23 )
;
>

Accordingly, the beams will be represented by the two-dimension vector

“[2]
(2)

having for components the N-dimension vectors

Q=)0 Q(y)0
Ay, = : . Agy = ; (3.11)
Bmn-1e AyyN—1-

In case of misalignment and mismatching of these two beams with respect to the
modes of the interferometer A¢iny s transformed by the matrix Min), A= M{iny -
A(iﬂ)

The beams propagate toward the beam splitter BS where they are represented
by the vector A' = 77.4

The beams undergo some aberrations at the passage through the beamsplitter
as a consequence of (i) deviation from planarity of the surfaces. (i} inhomogeneities
and (iil} irreguiarities of the splitting muitilayer. We will describe these effects
by imagining the beam-splitter sandwitched among four transparencies on the four
faces represented by the unitary transformations (see Fig. (3.3)), .

ND SQUEEZED



int

3.3, MULTIMODE MICHELSON INTERFEROMETER 3

—
l G
'

B
[

[

|
\ 3)

(1{:C>(1) \

|

=
par’

2)

Figure 3.3: Schematic of the transparencies used for simulating the beam-splitter
aberrations
3.3.1 Cavity reflection

Now, we have to pay particular attention to the response of the cavities to the
different mode, described by the diagonal matrix

by 0
Towy = | T ] (3.12)
(cav) [ 0 Y
with ~
T'(,j)o 0 0
Yo=| 0 T O (3.13)

Fli)i describing the reflection of the j-th mode. For sake of simplicity we assume
that only the fundamental mode resonates with the cavities.

Fundamental mode

For obtaining the operators F;p we have to analyze the respone of the cavities to the
fundamental modes. Following Pace et al. [12] the dynamics of the TEMy mode
amplitude ¢ inside either one cavity by means of the quantum Langevin equation

Radiation pressure

Qince the mirrors are suspended to multiple pendula, Ay can be represented as
a superposition of normal modes,

Ay = 3 (dubm + ol (3.14)
m

with the annihilation operator by, of the m-th mode satisfying a quantum Langevin
equation,
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suspended
masses

back
mimror

Figure 3.4: Schematic of the super-attenuators used for reducing the seismic noise
transmitted to the cavity mirrors

Introducing the Green's function I'y, (t) = exp|—(if2,, + 3¥m)t], the integral of
the last equation can be written as

by = —ikmDm * ool + VImbinym (3.15)

with * representing the convolution operator.

3.3.2 OQutput fields

3.4 Interferometer output

We choose as interferometer output the difference I between the photocurrents de-
tected at ports 1 and 2 respectively . So that if we indicate by ; the quantum
efficiency of the i-th detector and put m =n+én 1 =n— én we have

[ = ng’)(r:t)E{ﬂ(r,t)drA B (e ) ES (x, L) dr
S Sy
= S (md! d, - mdld,) = D" 03 - DrbyD oy - D

i
In conclusion, the interferometer output will be represented by

I'= ao Ao + lipn)Apn) + (80cw) + 6D (sus) +ES(mir) +E@(prey + b(rp)) Az (3.16)

with A; =al - %4-a and Ay = €8 D(pn) Ai — 5N O(pny Ay - Ipm) atid iy, are defined
by the relations /.4 cos ¢pm) = cos ¢’ + ) and Liaby SN Py = sin g’ — g

In Fig. 3 we have plotted a typical sensitivity curve of a GW antenna. The low-
frequency part represents mostly the frequency response of the multiple pendula
suspensiont for the mirrors.
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Figure 3.5: Geometry of a superattenuator consisting of several suspended masses

3.5 Autocorrelation of the interferometer output

In GW antennas the signal is extracted from the frequency spectrum of the pho-
tocurrent, that is from the Fourier transform of the autocorrelation

Cit)

f ar' f 4 < B (500 2 (7 OBy (DB (130) >
5, Sy
v o [ < B 0B a0 DG, (T OE o (r'50) >
5 Js (out) (out) (out) (out)
» (-) . () . (+) ", (+) .
- /s] dr'L dr <E(wt)1(r',0)E(out)2(r )BT *t)E(oum(TJvO) >
2
- i [ e < B OEC) (i ES ) i E (113 0) >
s 5 (out)2% ? {out)1 : {out)l ' (out)2\’ *
2 1
= < I,I:> (3.17)

with : ... : indicating time- and normal-ordered sequences.
Next, using Eq. (3.16) yields

C(t) = [C(GW)(t) + (Y(sus)(t) + C(mir)(t) + C(pre) (t) + C(rp)(t)] < A31 A3 >
4 (Oto Ao-{-I(pn)A@(P",),(ao A0+I(pn)A¢,(pn)) >
(3.18)

Consequently the power spectrum of the interferometer output will be given by

j:(w) = [‘FGW(“)) +f(sua)(w) +f(mir)(“") +‘F(pre)(“") + |HM(W)|EF¢’(W)] *}_3("“’)
+ Fpmlw) (3.19)

having indicated by F(,n) (w) the Fourier transform of the autocorrelations of agAo+
Tipny A yn, and by Hyr the Fourier transform F,{Tx(t)} of the mirror suspension.
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This expression exhibits the typical features of the GW antenna sensitivity.
There is a contribution independent of the laser intensity, which is a function of
the suspension, mirror a pipe pressure fluctuations. Next there is the contribution
of the optical aberration which decreases with the laser intensity. Finally, we have
the terms depending on the photon noise and on the radiation pressure fluctua-
tions. While in absence of radiation pressure effects the photon noise contribution
decreases by increasing the intensity, the radiation pressure effect is an increasing
function of the laser intensity. Since the frequency response of the mirror suspension
system decays rapidly with the frequency, we can neglect the contribution of the
radiation pressure noise alone, by retaining only the mixed terms,

In order to estimate the sensitivity of the GW antenna we can assume as mini-
mum detectable signal the quantity

j:(;m}(“))
A3
(3.20)

h("“") = f(aua)(w) +F(mir)(u) + '7:{)31‘8) (“J) + |H~M("‘J)|2]:¢’ ("J)] * f;g(u)) +
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