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Abstract

We review the physics of Free Electron Lasers, and the collective FEL
instability that characterizes this system. We show that the instability
can be described with a single parameter, the FEL parameter, that de-
termines the instability growth rate {or FEL gain}, and the saturation
length and power. We also discuss the physics and technology issues rel-
evant for the operation of an FEL at a wavelength of about 0.1nm, and
the expected peak power, average power, and brightness of such a source.
We show that based on our present understanding of FEL physics, and
using existing technology, we can build a 0.1nm FEL with peak power of
about 10 GWatt, pulse duration of about 0.1 ps, and bandwidth of about
0.1%.

1 INTRODUCTION

Free Electron Lasers (FELs) are powerful sources of coherent electromagnetic
radiation, operating in the microwave to UV region of the spectrum. Recent
progress in the FEL physics and technology makes now possible to extend their
wavelength into the Soft X-ray and X-ray region, with peak power and brightness
many orders of magnitude larger than that obtainable from other sources.

In this paper we review the basic properties of FELs, starting from the FEL
collective instability [1], and relate the FEL growth rate to the electron beam
phase-space density. We then discuss the development of FELs as a high power,
coherent source of Soft X-ray and X-ray radiation. This development is made
possible by the recent progress in the production of high brightness electron
beams. and by the use of the Self Amplified Spontaneous Emission (SASE)
mode of operation of the FEL (1), (2], [3].

In the SASE mode lasing is produced in a single pass of a high phase-space
density electron beam through a long undulator, eliminating the need for optical
cavities, difficult to build in the Soft X-ray or X-ray spectral region. However
in the SASE approach the requirements on the electron beam peak current,



emittance, and energy spread are very stringent 5}, [4] and until recently difficult
to satisfy. This situation has been changed by the recent development of high-
brightness radio frequency photocathode electron guns [6], and the progress
in accelerating and compressing these beams without spoiling their brightness
resulting from the work on linear colliders [7],(8], [9],[10}, [11]. As a result there
is now the possibility to make a major extension of FEL operation, from the
shortest wavelength yet achieved -240 nm- to 0.1 nm [12], [13], [14], [15], [16],
(17).

In this paper we will first review the spontaneous emission of radiation from
an electron crossing an undulator magnet, the basic element of FEL physics. We
will then discuss the production of coherent undulator radiation, and its con-
nection to FELs. The next section will be a review of the 1-dimensional model
of the FEL, with a discussion of the FEL collective instability, the derivation of
the exponential gain, and of the effect of the beam energy spread on the gain.

2 Principle of operation

2.1 Undulator radiation from one electron

The FEL is based on the emission of radiation from relativistic electrons moving
in an undulator magnetic field (undulator radiation). We will first review the
basic characteristics of the undulator radiation from a single electron; we will
then discuss how the undulator radiation intensity is increased in an FEL, using
high brightness electron beams. We assume for simplicity the undulator to have
a helical magnetic field, of amplitude B,, and period A,. A more detailed
discussion, including the case of planar undulators, can be found in reference
18], to which we refer the reader. If z is the undulator axis, and z,y, the two
perpendicular directions, the undulator field, near to the axis, is approximately
B = By cos(2r—), B, = B, sin(21—-). (1)
Ay Ay
One relativistic electron of energy ¥ = mec?y, and momentum Pz > Pz, Py,
traversing the undulator, executes a helical trajectory, with constant velocity
V.. and transverse velocity

u . Vi
Yz _ 24 in(2n2), 2k = Ov cos(2—), ()
¢ ¥ A’ € ¥ Ay
where B
e
— ]
u 27Tm62’ ( )

is called the undulator parameter, and is the undulator vector potential nor-
malized to the electron rest energy. The helix radius is

Qg Ay

R = 2y 22cn, (4)
¥



For a relativistic beam the periodic magnetic field of the undulator appears
approximately, using the Weiszacker-Williams approximation, as & circularly
polarized plane wave, of wavelength A = Au/7., Where v, = v/\/1+a2 is
the relativistic factor for the Lorentz transformation to the frame where the
longitudinal momentum of the electron is zero. Some of the photons in this
plane wave can be backscattered by the electrons, and in the laboratory frame
they will appear as spontaneous radiation, emitted in & narrow line centered at

the wavelength
A
A= #(1 +a2). (5)

The additional factor -, in (5) appears when transforming again to the Labo-
ratory system

The spontaneous radiation is emitted in a narrow cone of aperture 1/v
around the axis. The width of the radiation line (bandwidth) is related to
the number of undulator periods Ny [18] by

Aw 1
- (6)

The undulator is an extended linear source, but it can be approximately de-
scribed as an equivalent source at the undulator center, with angular aperture

A
==\ (7}

and an effective source radius ( diffraction limited)
0=/, (8)
T Arm ui
Notice that the product
A
af = H’ (9)

gives the minimum phase space for a diffraction limited photon beam.
The intensity of the radiation emitted on axis, and at the wavelength (5) is
(18]

dzI 282 9 (.12
—_= —_—y et 10
dwdf2 2N ) (1+a2)? (10)

The coherent intensity is obtained by multiplying (10) by the solid angle corre-

sponding to (7) and the bandwidth (6). Dividing this intensity by the energy

of a photon with the wavelength {5) we can also rewrite the coherent intensity

as the number of photons per electron within the solid angle corresponding to
(7) and bandwidth (6) as )
a

Nph = TI'(]TTH'G"—?‘, (11)



where ¢ is the fine structure constant. For a typical value a, =2 1 one obtains
Npn 22 1072, showing that the undulator radiation process is rather ineflicient,.

The number of photons per electron is the basic number determining the
brightness of an undulator source. In fact assuming that the electron beam
transverse radius and angular divergence are smaller than that of the effective
radiation source defined previously, the brightness is given by

By = 4t e lon (12)

where N is the number of electrons per second, proportional to the average
electron current. In the opposite case, which can be characterized by the con-
dition that the beam emittance ¢, the product of the electron beam transverse
radins and angular divergence, is larger than the corresponding quantity for the
radiation beam, A/4m, the brightness becomes

By = —LN:iV iy (13)
The conventional definition of brightness considers also the frequency spread of
the radiation, assuming a 0.1% spread as the reference. The previous definition
then becomes ‘
Ne Npp 1073
By="—"-B 14
A € Aw/w (14)

The transverse electron beam brightness is defined in a similar way as

N.
Be,T =€ 62 . (15)

In defining the brightness it is important to distinguish between the peak bright-
ness and the average brightness, depending on wether we use the peak or average
value of N . For instance the peak electron beam current is what determines
the FEL gain and performance. Similarly the peak photon brightness is im-
portant for X-ray imaging, while the average brightness might be important for
other applications.

2.2 FEL radiation

To increase the peak brightness for a given wavelength we can either increase the
electron current or increase the number of photons produced per electrons. An
FEL achieves the second goal, by increasing the number of photons per electron
by about seven orders of magnitude.

How do we increase the number of photons emitted per electron? 1f we have
many electrons, say N, , and they are all grouped within a small fraction of
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a wavelength, the total intensity would be the single particle intensity times
N., and the number of photons per electron would be increased by a factor Ne.
In practical cases the electrons are in 8 bunch much longer than the radiation
wavelength, and their position distribution on a scale of ) is completely random.
As & result the radiation fields emitted by different electrons have a random
relative phase, the total intensity is proportional to N, , and the number of
photons per electrons is still given by (12}.

However also in this case we can increase the number of photons emitted
per electron if we take advantage of a collective instability of the electron beam-
EM radiation field-undulator system [1]. This instability works as follows:

1. the electron beam interacts with the electric field of the radiation; the
electric field is perpendicular to the direction of propagation of the beam {the
undnlator axis), and is parallel to the wiggling (transverse) velocity (2) of the
electrons produced by the undulator magnet, of amplitude a,/; the interaction
produces an electron energy modulation, on the scale A;

2 the electron energy modulation modifies the electron trajectory in the un-
dulator, in a such a way to produce bunching of the electrons at the scale X;

3. electrons bunched within a wavelength emit radiation in phase, thus pro-
ducing a larger intensity; the larger intensity leads to more energy modulation
and more bunching, leading to exponential growth of the radiation; the intensity
can reach the limit J ~ N2 for the case of extreme bunching (superradiance)
[19]

The FEL instability will be discussed in detail in the following section, in
the simple case of a one dimensional theory. Here we will summarize some of
the most. important results for the FEL physics. For the collective instability
to ocenr there are some conditions that must be satisfied . These conditions
depend on the FEL parameter {1},

au $2p.2/3
= (=— 16
and on the beam emittance, € [4], [5]. The quantities in (16) are: wy = 2wc/ Au
is the frequency associated to the undulator periodicity,
471'7'802“& )1/2

v

is the heam plasma frequency, 1. is the electron density, and 7. is the classical
electron radius. The FEL parameter characterizes the instability, giving the
instability growth rate, or gain length,

Q= ( (17)

Au

2\/§1rp

The amplitude of the radiation field grows exponentially along the undulator

LG ~ (18)

- axis 2, as A = Ag exp(2/L¢). The conditions are:



a. beam emittance smaller than the wavelength:

A
E<‘E (19)

b. beam energy spread smaller than the FEL parameter:
o <p (20)
c. undulator length larger than the gain length:
N >> Lg (21)
d. the gain length must be shorter than the radiation Raleigh range:
Lg < Lg, (22)

where the Raleigh range is defined in terms of the radiation beam radius, wy,
and the wavelength by mw? = ALg.

Condition a says that for the instability to occur the electron beam must
match the angular and transverse space characteristics of the radiation emitted
by one electron in traversing the undulator, equations (7, 8, 9). This is also
the condition to obtain from the electron beam diffraction limited spontaneous
radiation. Notice that for nanometer wavelength this condition cannot he met
at present by storage ring based synchrotron radiation sources, but it can be
satisfied by electron beams produced by a Radio Frequency laser driven electron
guns (photoinjectors), as we will discuss in the following sections.

Condition b limits the beam energy spread to a value such that the width
of the spontaneous radiation line is not increased. Conditions ¢ introduces
a requirement on the minimum undulator length for this process to become
significant. Condition d requires that more radiation is produced by the beam
than what is lost through diffraction out of the finite radius beam. Conditions
a and d both depend on the beam radius and the radiation wavelength |, and
are not independent. If they are satisfied diffraction and 3-dimensional effects
are not important, and we can use with good approximation the 1-dimensional
model.

If these conditions are satisfied the radiation field emitted by the beam will
grow exponentially along the undulator length, with a growth rate given by
(18). The field will saturate after an undulator length ( saturation length, } of
the order of ten gain length. At saturation the radiation power is given by 1)

Pogr = Plocam Ebeam (23)

where lpeqm is the beam current, and Epeq,, the beam energy, and the number
of photons per electron is
E

Nsa{. = p_-é‘_h
P

(24)



If we consider a case of interest to us for a Soft X-ray FEL, with Epp, = 250eV,
E =2 3CeV, p = 1073, we obtain Npp = 10, i.e. an increase of almost 6 orders
of magnitude in the number of photons produced per electron. This increase is
reflected in & much larger brightness.

3 The 1-dimensional FEL theory

AS we discussed in the previous section the system consisting of an electron
heam, an electromagnetic field and an undulator, is-an unstable system if the
beam has a longitudinally uniform distribution. The system will evolve toward
a state in which the electrons are bunched at the radiation wavelength, i.e. they
are cqually spaced in the longitudinal direction and separated by a distance
equal to A. To see how this transition from the initial to the final state can take
place we have to study the Maxwell equations for the electromagnetic field, in
comhination with the equation of motion for the electrons in the combined field
of the undulator magnet and of the radiation field. we will follow closely the
work of references [1], [18]. Let us look at the equation describing the electron
energy change in an E-M field of amplitude 4 and phase v,

ch‘f—‘;’ = eAﬁ':—;i sin(® + ) (25)
where the phase is
1 1
¢ = 2W(X + )\—u)ﬁz —w. (26)

If 2 = B.ct + 2 , and the distribution of 2 is uniform, as is nsually the
case for an electron beam produced in an accelerator, then the phase covers all
values between 0 and 27, and some particles will gain energy, while some will
loose energy. The change in energy will result in a change of velocity, which will
produce a change in phase. Hence the system will evolve.

An equilibrinm state for the system exists, and corresponds to electrons being
at the phase nw, which gives zero energy change, and also which corresponds to
all electrons having the resonant energy. Hence if we start from the initial state
with a uniform distribution in phase and in longitudinal electron distribution,
the system will evolve toward the "bunched” equilibrium state. The speed at
which the system will evolve will define the gain length.

To describe this situation and this evolution we need to introduce the dynam-
ical variables describing the electron-electromagnetic field system. For simplicity
we consider only the case of a helical undulator.

We also make the following approximations:

1. we assume that the beam transverse size is much larger than the radiation -
wavelength, and use a l-dimensional picture, neglecting diffraction; the
F-M field is described as a plane wave and the beam transverse density
distribution is assumed constant;



2. We assume that the field is propagating in VACHUIT;

3. we assume that the E-M field, oscillating at the frequency w = 2mc/ A,
has an amplitude and a phase that change slowly, and simplify Maxwell
equations neglecting their second derivatives;

4. we neglect the slippage, S = N, A, between electrons and the FE-M field
due to the difference in velocity, assuming that it is smaller than the bunch
length, L¢, or S/L, << I;

3. We neglect the effects due to the beam emittance.

The E-M Field is described with the vector potential of the undulator and
of the radiation field,

A=A, + Ag . (27)

Using circularly polarized waves and a helical undulator we have

Xuz —%(eos(kuz) z +sin(k,z) 5), (28}

u

where &, = 2n/X, and

- Az, t)
A= =20 con(9a) F +sin(6n) V), (29)
where kg = 2x/X |
¢R = kR(z - ('t) +'(f)(£’,t), (30)
and A(z,1), and ¥(z,1) are the slowly varying amplitude and phase of the wave.

The ‘ayqtem Hamiltonian is
H=d(P ~= 4)2 + m?c?V2, (31)
¢
and does not depend on x and y. Hence the corresponding canonical momenta

are constants of the motion. From these constants we can obtain the electron
transverse velocity

P
= 32
.Bz mc2 ( u:c+ARa:)+ C“f ( )

and P

€ 0

_ ¥

ﬁy - _mcz’y(Au’y + AR,y) + mc},- (33)
Introducing the quantities
eB

=— 34
= (34)



a

LR

_ eA(z,t)

ar ks’ (35)
we also have . P
B, = =[au cos(ku2) — arcos(ér)] + =22, (36)
8 mey
8. = l[am sin(ky2) + arsin(ér)] + Fo (37)
v mey

Notice that for typical cases a, =~ 1,agp << 1.

In the approximation of neglecting emittance effects, we will assume for the
time bheing that the two initial values of the canonical momenta, Py o, Py0 can
be neglected.

We could now use the Hamiltonian to obtain the equations of motion for z,
and P, , but it is simpler to use instead the equivalent equations for the energy
change, and for the phase change

mcﬂ% = -‘&;ﬂa—“ sin{® + ¥(z,t)), (38)

% = (kg + ku)z — w, (39)

and obtain the longitudinal velocity from the energy, using the relationship
1
B, = (h;{;—ﬁi-ﬁi)“z. (10)

For relativistic velocities tlis can be approximated as

1 B2+ 1
3, = Iﬂw———z'—t = 1—W(aﬁ+aﬁ—2aua3cos(@+w). (41)
Next we need the equations for the field. We write Maxwell equations in the

form
1 8 - AT —

(V23— Saa) A=~ (42)
(V2 — C%;—Z)V = _4mp. (43)
The current and charge density are .
p=e3 67 —ni(0), (44)
T=ecS i 6(F — ri(t)). (45)

We consider first the effects of the transverse fields, and introduce the quan-
tities

3= Jr —tdy = ecZ&(? —ri(t))%[aue*‘k“z — age®a], (46)



A=A, —id, = if’-e**n(z—c”, with a{z,£) = —iA(z, t)e¥.  (47)
R

In our approximation of a plane wave the sum over particles can be rewritten
as

STHF - ri(t)) = o0e Yy 6(z — (1)), (48)

where g is the transverse beam density
With these definitions, and using the slowly varying amplitude and phase
approximation, the Maxwell equations for the complex amplitude o become

a iea

N
1 6 _ ]. . — iy,
Eyel 'dt)a = 27 E e Z&(z —z1(t)){aue ~ mcZin ). (49)

We write now the complete set of 1-D equations, using complex notations,
and introducing the "resonant longitudinal velocity” 3.r and the resonant en-
ergy vr such that
1 — 1+ a?

ﬁzR — /\u 5 ¥ (50)

JBzR 273

-Notice that to establish the relationship between the resonant, longitudinal
velocity and the resonant energy we assume that the electrons are ultrarela-
tivistic, and that the transverse velocity is determined only by the undulator
magnetic field and not by the radiation field. The set of equations is

A=Ay

d
E‘I’, = ky(1 - ﬁ) + o2 {au(zae —ec) — |al?}, (51)
d wk i
P %—;—"(ae 4 co), (52)
g .13 _ —iby teq
(a + )a 2moz 6(z mc%ﬂ). (53)

3.1 The small slippage regime

The field equations can be simplified in the small slippage regime. Due to the
difference in velocity between the electrons and the radiation field, the field will
advance in front of the electrons hy one wavelength per undulator period. We
call slippage the quantity

8= N,A, {54)

Ny, being the number of periods in the undulator. To characterize different FEL
regimes we use the ratio of the slippage to the electron bunch length L.

'T'he FEL regimes can be characterized according to wether this ratio is larger
or smaller than one. In this paper we will consider only the case in which the

10
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ratio is much less than one. For a discussion of the general case the reader is
referred to reference [19].

To consider the effect of the slippage we write the electromagnetic: field
amplitude as a function of t and z — V¢ , where V, is the group velocity

z— Vgt
L

In what follows we will assume to simplify our discussion that V, = c. The
dependence on z — ¢t is used to describe the shape of the wave packet, which
we assume to have a length L, on the order of the electron bunch length, L. ,
and the field amplitude can be written as

o = alt,

). (55)

aft,z— ) = Zan(t)e"z”"(‘_“)“. (56)

If we evaluate the argument z — ct, at the particle position z = 2ty =Vi+zo
we have, using (5,54),

z;—d__a(1~ﬂ2)+z_m_ N 20
L = L L "2y L

Y % + constant. (57)

If we are in the small slippage case, S/L << 1, the argument z — ¢t in (55) is
a constant, and we can approximate aft,z — ct) = a(t, constant) and the only
important component of the expansion in (56) is ao(2).

The field equation now becomes

Ne

s} _ €C0g ey _1_
= 0(t) = 2= {auNB(t) — = g =} (58)
where
1 o> i
B(t) =+ D et (59)

i=1
is the bunching factor, which plays a key role in the FEL physics.

3.2 The normalized FEL equation

We now put, the FEL equations in a form that facilitate their analysis, using
the notations introduced in ([1]).
We introduce the beam plasma frequency

47r.ctn,
Qp = (e )2, (60)
Y
the FEL parameter a
— (8u lpyos 61
p= (o b, (61)
11



and the detuning parameter
2
s=L 2k (62)
2075
where 7, g are the beam energy and the resonant energy. Notice that using the

relationship between energy and wavelength of the emitted radiation, equations
(5, 52}, the quantity § can also be written as

s A= )n

= 63
2, (63)

and represents the detuning of the FEL measured in units of the FEL parameter
P
We then introduce the scaled variables

2
Yr €t
= T 64
T 41rp’){2 ! (64)
=L, (65)
Ty

0
v, =&, — wu(l — _E)t’ (66)

¥
A ed,y, eiwuuf%g-)t. (67)

A= Ame2yE ky, p? o

With these notations the FEL equations are:
the phase equation

v, 1 1 ey (L+aZ), A o
—_— = (] = —— )+ —— W —~ 2pr—til \ 68
the energy exchange equation
dl | S
& = oAt e, (69)
the field equation
A .
dA e on oA 1462 1
F—_< T >4+16A-2iAp o2 <l">’ (70)

u

where <>= (1/N,) Z,N;l .
In most cases the FEL parameter is small and we can simplify the equations
as

al, 1 1
— = (]l = — 71
dr 2p( pgl—w?)} ( )

12



A i

dI‘[ 1 A 'WJ

_t - i 2

- o (Ae™ +ec), (72)
dA_ e ihs 73
ar =< T >+1 40, (73)

which we will use as the basic FEL equations.

3.3 Hamiltonian and conservation laws.

The FEL equations have two conserved quantities:

4l
E=|A]*+<T>, (74)
and

i

1 1 A . A 2
H = —{pI" —_—  — iy —- 2 _ 1
> g ln+ o)~ A e - AP

1+ail
a2 ﬁ)} (75)

"

The first quantity is the total energy, which can also be written as

E = mc*ngy + -ﬁ_—[/ﬂz = constant, (76)

telling us that the beam kinetic energy density plus the field energy density is
a constant;
The FEL equations of motion can be obtained from the Hamiltonian in the

A AT
standard form, considering T', ¥, A, A as conjugate variables.

3.4 The FEL collective instability

To determine the behavior of the FEL when the initial state is an electron beam
with a uniform longitudinal phase distribution, a given energy spread, and zero
initial field amplitude, we linearize the FEL equations, assuming

IT'=1+4+n71<<]l, (7N

and neglecting terms in the square of the field, to obtain

dly . N
a_m W _ 7
el +ip(Ae cc), (78)
an _ _ (1—~n)(?{ew'+cc) (79)
dr P ! '
dA

A .
=S =i A+ <(1-m)e > (80)

13



This equation can be obtained from the Hamiltonian
2 *
’rh ) A W A A
H= — —ip(l — t— -
E{ {2p ip(l —mi(Ae cc)}— 8 AA (81)

We characterize the beam by a distribution function f=f(v,n7), satis-
fying Vlasov equation

o 4w 9 dno..
Gt e taay =0 (82)

We assume the distribution function to be
1 , ,
f=5-holm+ fr{me ¥+, (83)

and use it to evaluate the current term in the field equation. We also assume
the ficld to be proportional to €'*7. We obtain

A 2mie

Tz [ fnn = man (51)

A
Notice that A= 0, f = fo is a solution of the Vlasov equation. Substituting the
expression for the field in the Vlasov equation we obtain the dispersion relation

(A-m? afy _
”_5+p/dnﬂ+(n/p) an = (89)

For a monochromatic beam,the dispersion relation becomes
3 =8+ 20u+1=0. (86)

The system is unstable when the dispersion relation has solutions with Im < 0.
For a monochromatic beam such solutions exist if § < 1.93. The Im it has a
maximum when 6 = 0. If p is small this maximum is given by the root of
i+ 1=0, and is \/5/2

To see the effect of a spread in energy of the electron beam we have evaluated
the dispersion relation for the case of a Lorentzian distribution

foln) = 77 v 7z (87

The results are shown in figure 1, where we show the imaginary part of the
eigenvalue, the growth rate, for three different values of the ratio of the energy
spread, A, to p.

14
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Growth rate vs detuning
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Figure 1.

The figure shows that the growth rate decreases when the energy spread
becomes of the order of the FEL parameter p. One can also notice that for a
small energy spread there is threshold for the instability at § = 2. This threshold
disappears for larger values of the energy spread. When the energy spread
becomes larger than p, the growth rate becomes proportional to the derivative
of the unperturbed distribution function, Im y = 8fo/6n [18]. The dependence
of the growth rate on the slope of the distribution function can be considered
analogous to the population inversion in quantum lasers.

One can see from this picture that for an energy spread small compared to p,
the growth rate, in terms of the normalized time 7, is of the order of one. Going
back to the laboratory time, and using (64) with the usual case v = yg,we have
an exponential growth rate that for psmall, and § =0is

Lo = (t)g = =2 (88)

2(/3mp

in agreement with (18).

The exponential growth described in the linear approximation, must saturate
at some field level. For small values of the FEL parameter p, and assuming the
field to be nearly constant, as is the case at saturation, the equations (81,82),
describing the electron motion in the energy-phase plane, are like a pendulum
equation. The FEL saturates when the growth rate becomes of the order of the
period of rotation of the electrons in the energy-phase plane. Evaluating this
condition we obtain that saturation occurs after about ten gain lengths.

N
At saturation the normalized field amplitude 4 is also of the order of one,

15



A
and the beam energy spread is of the order of g [1]. From the result A= 1, and
using (74) we also obtain eq. (23) for the saturation power.

3.5 Small signal gain

While for long undulators, N, A, > L, only the eigenvalue of the disper-
sion relation with negative imaginary part is important, for short undulators,
NyAu < Lg, all three eigenvalues of the dispersion relation (87) are important
in determining the field amplitude, and in fact the interference between these
three waves determines the change in the field amplitude. In this case, which
is called the small signal regime case, the gain, defined as the change in field
intensity, I, over the intensity for one undulator crossing,

Al
Gasg = "I_v (89)
is given by ([20])
4 &1 .
Gang = 6—3(1 — cos(87) — - sin(6T)) {90)
where, using (65, 66)
5T = 4:'1'1\’,,-‘%'E (91)

The small signal gain vs § is shown in figure 2 for the case 7 = 1.

Notice that this curve is antisymmetric respect to 8, while the similar eurve
for the gain length in the high gain regime is not.

4 X-ray FELs

At the present time, the most intense sources of X-rays are undulators based on
synchrotron radiation sources. Let us take as an example a storage ring like the
ADS at Argonne, with a beam energy of 8 GeV, average beam current of about
100 mA, and peak current of about 500A, with a pulse length of 20 ps, and a
beam emittance of 2 x 10~ %mrad. Assume also that we use an undulator with
@ty = 1, M\, = L.6crn and N,, = 100 to produce radiation at A = 0.1nm. Notice
that since the emittance is larger than the wavelength the radiation production
is diffraction limited. Using (14) we obtain an average and a peak brightness
By ave = 100ph/mm2mrad®0.1%, By p = 10%ph/mm?mrad®0.1%.

An X-ray FEL can provide many order of magnitudes larger peak brightness,
because of the larger peak current and smaller emittance that we can obtain to-
day using a new generation of electron sources, and the techniques for emittance
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Figure 1:

preservation during acceleration developed for electron-positron linear colliders.
As an example of an X-ray FEL we consider a possible system based on the
SLAC linac; a list of beam and undulator parameters is given in Table 1.

Energy, and relalive energy spread 15 GeV,0.0002

Emittance, rins at 15 GeV 3x%10™ 'mrad

Peak current, and bunch length 5kA, 24,m(80fs)

Undulator period, and undulator parameter | 2.67cm, 2.91

Focusing wavelength in undulator 38m

I'F1, parameter 10-°

Gain length, Saturation length 4m, 42m

Peak brightness and Average brightness 10%2, and 10%*ph/imn®mrad®/0.1%
Peak power > 10GW

Table 1: X-ray FEL list of parameters.

The possibility of operating an FEL at such short wavelength follows from
the favourable scaling laws for this system. To obtain and discuss the FEL
scaling laws let us write the FEL parameter using two quantities, the emittance,

. £, and the longitudinal brightness, By, to characterize the electron beam. The
longitudinal brightness is defined as (77)

eN.

By =,
2ryoL0.,

(92)
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where 0. is the rms relative energy spread and oy, is the rms bunch length. The
quantity in the denominator of (92) is the beam longitudinal phase-space area.
Using the emittance and the longitudinal brightness the FEL parameter can be
written as

2% a2 B/
il (93)
where T4 is the Alfven current (= 17k A).

We also require that we satisfy the conditions for the validity of the 1-D
model, equations (17, 18, 20), and assume 0., = p/k;,& = k)\/4w. The condi-
tion, (20}, on the optical focusing can be shown to follow from the other two.
We also use additional focusing to produce through the undulator a betatron
oscillation wavelength of the order of the gain length, Ag =~ 27 L¢. Using these
concitions and rewriting the FEL parameter in terms of emittance and longitu-
dinal brightness, we obtain (77)

gL % Bo
k1ko 1+a3 IA.

(94)

Using typical values, k; = 4, and ko = 6 , we can see that to obtain a value
of p of the order of 10~3, the minimum compatible with a practical undulator,
we need a longitudinal brightness of the order of 5004, a value which has been
exceeded in photinjector electron sources. The scaling law (94) does not depend
directly on the radiation wavelength, but only indirectltly through the require-
ments (17). This weak dependence of the FEL scaling law on the radiation
wavelength is an important property, which can be used to develop an X-ray
FEL.

5 Conclusions

We have shown that the main properties of an FEL are determined by the
collective instability, and can be characterized by the FEL parameter p. The
properties of the FEL, combined with recent progress in the production of high
brightness electron beams, are such that this system promises to become a very
powerful source of coherent X-rays.
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