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Abstract

Recently W. Kinzel [Phys. Bl. 51, 1190 {(1995)] has argued that even simple
quantum systems can exhibit surprising phenomena. As an example he pre-
sented the formation of canals and ridges in the time dependent probability
density of a particle caught in a square well with infinitely high walls. We
show how these structures emerge from the wavefunction and present a simple

derivation of their location in the space-timme continuum.



Prominent structures in the probability density of quantum stafes have attracted much
attention. They are known as scars for time independent problems where certain eigenétates
have regions of high amplitude along periodic orbits of the classical dynamics for the same
system [1]. This phenomenon has helped to understand the links between classical and
quantum mechanics in more detail [2]. In the time domain the reconstruction or partial
reconstruction of the initial spatial probability distribution is known as revivals and has
played an important role in the understanding of wavepacket dynamics [3]. The combination
of spatial and temporal structures in a probability density has only recently entered the
focus of attention. Kinzel {4] has studied numerically the time-evolution of a particle in an
infinitely high potential well. He used a Gaussian initial wavepacket centered close to the
left wall and furnished with a momentum pointing towards the right. In a three dimensional
plot of the absolute square of the wavefunction over position and time. regular structures
in the shape of valleys and hills appear. Clearly, such structures must be an interference
phenomenon. However, their origin is not as obvious as one might expect for such a simple
system and has not been given in [4]. Berry and Klein have found similar patterns in
the Talbot effect and Berry has also studied fractal probability densities in the space-time
continuum for multi-dimensional box potentials [5]. In the latter case he has used a special
initial state with equal probability amplitude at each point in the box. Stifter et al. [6],
using Gaussian initial wavefunctions, have shown that the structures in the probability
distribution can be viewed as a consequence of the interference term in the Wigner function.
In this letter we will use an initial state which is composed of the first V eigenfunctions with
equal weights. This allows us to study the emerging pattern in space-time as a function of V.
It will turn out that the structures in the amplitude distribution arise from a cancellation of
terms in the wavefunction and that the parameter N controls the resolution of the pattern.
Our analysis borrows a mathematical technique which is familiar in the context of Jacobi’s
theta functions. We will also discuss briefly possible generalizations of the phenomenon to
other systems.

Any initial wavefunction ¥p(z) in the box extending from r = 0 to x = L may be
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expanded in the basis of eigenfunctions

Pn(z) = \/gsin (ELEJ:) (1}

with coeflicients

L
dn =/; _d:cc;S,,(:l:)\Ilg(:z:). (2)
The corresponding eigenenergies
AT
_ g2 = (AT 2psT
E"_RQm(L) A )

with n = 1,2, 3, ... determine the so-called revival time T = 4mL?/(wh) of the wavepacket
in the box [7].

To keep the argument transparent we now discuss an initial wavefunction \Iig consisting of
N equally contributing eigenfunctions, i.e. a, =1,forn=1,...,N and a, =0 for n > N.

In dimensionless variables £ = /L and 7 = t/T for position and time the normalized

~

wavefunction reads

v, 7)= \/% i sin(nm€) exp(—2mu. 7). (4)

Figure 1 displays the wavefunctions at 7 = 0 made up ci 20, 50 and 100 eigenfunctions,
respectively. We note that increasing NV shifts the center of the initial state towards the left
and leads to sharper localization in position. Figure 2 shows a density plot of the position
and time dependent probability amplitude in the (£, 7) plane represented by the absclute
value of a wavefunction consisting of 20 eigenfunctions. We observe characteristic rays where
' (€. 7)| assumes low (darkness) and high (brightness) values. These rays emerge either from
the left corner (€ = 0,7 = 0) or from the right corner (§ = 1,7 = 0) of the space-time strip.
Moreover. there is a characteristic asymmetry between the two types of rays: Along the ones
from the left corner the wavefunction shows low probability, that is canals. In contrast some
of the rays originating from the right corner have high probability, that is ridges. However,

canals constantly cut through these ridges creating a chopped structure as seen in the line
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connecting the upper left corner with the lower right corner in Figure 2. We also recognize
that additional rays enter the space-time strip from its sides.

An educated guess for the rays is
=1+ 2kt (3)

where [ and k are integers. Indeed for [ = 0 and k > 0, Eq. (5) describes the rays emerging
from the left corner, whereas for [ = 1 and k < 0 we find the rays whose origin is the right
corner. The other values of / such as! < Qandk > 0or! > 1and k < 0 give the ravs
entering the strip at nonzero values of 7.

We gain deeper insight into the t'unctioﬁal form Eq. (5) of these rays when we recall that
according to M. Born [8] the time evolution of a particle with wavefunction ¥, in the box
is identical to that of a free particle prepared initially in a periodic array

e r=00= 3 ¥;(€+2m) (6)

of antisymmetric wavefunctions
Uy (§) = Wo(€) — Wo(~¢). (7)

The period of this array is twice the length of the box. Hence in Eq. (5) even values of
{ = 2m correspond to the positions of the left wall and its mirror images. In contrast odd
values { = 2m + 1 represent the positions of the right wall and its mirror images. Therefore
the rays Eq. (5) are the space-time trajectories of a free particle starting at time 7 = 0 at
the right or left wall and their mirror images. Note that according to Eq. (5) the particle
propagates with the dimensionless velocity vy = %F; = 2k. Since k is integer v;, assumes only
discrete values. This quantization of velocity is a consequence of the periodicity of the array.

We emphasize that this discussion of the free propagation of the array also throws some
light on the difference in behavior of ¥(¢, 7) along the rays emerging from the two corners
(£ =2m.7 =0) and (£ = 2m + 1,7 = 0) corresponding either to the left or the right wall

of the box and their mirror images. Indeed these walls are different: Whereas the left wall
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marks the beginning of the periodicity interval of period 2 the right wall is inserted at { = 1
as to retain from all periodic functions the antisymmetric ones, only. This procedure is
necessary since only the latter vanish at the walls at £ = 0 and £ = 1 and hence satisfy the
required boundary conditions.

In order to fathom the mathematical reason for the suppression of the wavefunction
along some of the rays, Eq. (5), in the (£, 7) plane, we now write the sine function in the

wavefunction, Eq. (4), in terms of exponentials,

W(ET) = | 5 (96,7) = 96,7}, ®

where we have introduced the finite theta sum
N
e, )= gvem™, | (9)
n=1

with ¢ = exp(—2xi7) [9]. The behavior of the wavefunction along the rays § = + 2k7
follows from

. N
9[€ = £(1 + 2k7), 7} = S (-1 exp {—2m’r(n2 ¥ nk)}. (10)
n=1
When we complete the square in the exponent we find

" N
I = (L + 2kr), 7} = ¢~/ T (= 1) gk (11)

n=1

and hence the wavefunction along the rays Eq. (5) reads

2 1 » & :
U =1+ 2kr,7) = [ mmg WD S (-1 [qin=h/27 — gintk/2F] (12)

n=1

We note that each term contributing to this sum is the difference of the two terms g */ i
and q("*/2°_ Since the powers (n — k/2)? and (n + k/2)? are shifted by the number &
determining the steepness of the ray, we expect a partial cancellation of these terms provided
the number V of terms is much larger than k. Here the prefactor (—1)™ plays a crucial role.
Indeed when [ is even this factor is unity and cancellation takes place. However, when { is

odd the situation is more complicated. Now cancellation only occurs when £ is even. Before

we show this we note from Eq. (12) the symmetry relation
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V(€ =1—-2k7,7) = —U(€ = | + 27, 7) (13)

which allows us to confine our discussion to positive values of k only.

We start our analysis of this cancellation effect in Eq. (12) by introducing the summation

index j = n — k in the summation of the first term which yields

2 1 . N-k L N )
(€ =1+ 2%r,7) = 1/ﬁﬁq'(k/2)z{(——l)“ 3o (—L)gUHH LS (pyrlgr kY (1)
F=1—k n=1
When we recall the relations
N—k 0 N—k k N—k
dj = Z dj + dj = Z dn—k + dj (15)
Jj=l—k j=1-k j=1 n=] j=1
and
N N—k N N—k k
Z dp = Z dn + Z dp = Z d, + Z dj—k+N (16)
n=1 n=1 n=N-k+1 n=1 i=1

valid for arbitrary coefficients d; the wavefunction ¥ along the rays £ = [ + 2kt takes the

form
- 21 —({k/2)* ki
Y(E=1+2%7,7) =55 {[(—1) — 1] Seu(N.7)
+ i(_l)nl [q(‘n—k/Z)2 _ (_l)(N—k)lq(n—k/2+N)ﬂ } (17)
n=1 !
where
N—k _
Sea(N 1) = 3 (1) exp—2mi(j + k/2)*7]. (18)
j=1 .

From Eq. (17) we recognize that for even values of [ or & the prefactor of the first sum
Sk vanishes. Moreover, each term of the remaining sum is of the order of unity since
lq] = | exp(—27iT)| = 1. Hence we can estimate this sum consisting of & differences of order

2 by 2|kl. This provides us with the upper bound

| (€ =2m+ 2k7, 7)| < \/%Uc[ {19)

for the absolute value of the wave function along the rays £ = 2m + 2k starting from the
left wall and its mirror images. Similarly we find along the even rays £ = 2m + 1 + 4k7

emerging from the right wall and its mirror images
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1B(€ = 2m + 1 + 4kr, 7)| < \/%m. (20)

When we confine ourselves to rays of large slope that is small values of |&|, that is |k| < N,

we find the inequalities

| (€ =2m+ 2kr, 7)| € 1 (21)

and

[¥(E=2m+1+4kr,7)| < 1. (22)

We recall that the modulus |¥(€,7)| of any normalized wavefunction in the box of unit
length is unity on average. Hence the inequalities Egs. (21,22) predict that along these rays
the modulus {¥] falls far below the average value and canals form along these rays. We also
note from Egs. (19,20) that for increasing |k|, that is decreasing steepness of the rays the
cancellation of terms in the sum Eq. (12) becomes less perfect and the canals become less
pronounced in complete agreement with Figure 2.

Our treatment brings out most clearly that the formation of the canals is indeed a
consequence of quantum interference in the wavefunction: The inequalities (21) and (22)
follow from the cancellation in Eq. (17) which we can trace back to the fact that any
wavefunction in the box is a superposition of a right and a left running wave. These waves
have a fixed phase difference 7, which translates itself into the difference of ¥ sums in Eq. (8).
The difference reftects the fact that the energy eigenfunctions have to satisfy the boundary
conditions at the walls. This picture is in complete agreement with Ref. [6] which used the
Wigner representation to identify these canals as a consequence of the Wigner interference
term between the two waves moving against each other.

Let us now briefly discuss the case of odd values of [ and k when the prefactor of S,
in Eq. (17) does not vanish. Hence when we now estimate |¥| along these rays we have to
take into account the sum Sg;. In particular we have to study its dependence on time 7.

Since the sum is similar to the one discussed in the context of curlicues [10] or fractional
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revivals [5,11] we can simply borrow the results of these studies. We find [12] times T, that
is certain rational values of the revival time T for which partial cancellation in Sy, takes
place. For these times the wave function ¥ falls, as in the case of the canals, far below its
average value of unity. However, there also exist times  where the individual terms in Skt
superpose constructively. In this case the sum Sy, and not the second sum in Eq. (17,
is the dominant contribution to ¥ giving rise to distinct maxima along these rays. From
Figure 2 we see that indeed every second ray propagating from (£ = 1,7 = 0) to the left
displays a complicated chopped structure, where for most of the ray, a ridge like behavior is
seen. Again this phenomenon stands out most clearly for steep rays, i. e. small values of k.

Let us mention that this behavior depends sensitively on the total number of eigenfunc-
tions N. The pattern becomes richer for larger values of N. This fact can be interpreted in
the way that an initial state with a large number N of eigenstates resolves the features of
the dynamics in the box to a much higher degice than for N small. Qur derivation in terms
of the eigenfunction expansion directly shows for all cases, [ even or odd and k even or odd,
that the number of ﬁrays |k which are visible depends on the number of eigenfunctions N
contained in the wavefunction. Since the eigenfunctions of a box represent a Fourier basis.
by Fourier analyzing wavepackets in other potentials one could make use of the methods
given here.

We conclude by briefly discussing generalizations of these space-time structures. Ac-
cording to M. Born [8] and Eqs. (6,7) the boundary conditions of the box impose the anti-
symmetry of two waves moving against each other. Mimicing this symmetry in a molecular
type of potential Stifter et al. [6] were able to produce similar effects. Moreover, in another
formulation of the probability density in the energy representation Stifter at al. [13] have
identified the characteristic space-time lines and have given a relativistic extension. We also
recall that the quantum mechanical problem of a particle on a ring can be mapped onto the
box problem, if the same boundary conditions are fulfilled. This can be achieved by sub-
tracting opposite angular momentum eigenstates from each other. Let us finally mention

that the corresponding problem in classical wave mechanics, i. e. a vibrating string clamped
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at £ = 0 and £ = 1, shows a much simpler structure in the (£, 7) plane because its spectrum
is linear in n.

In summary we have shown that the space-time structures in the quantum mechani-
cal probability amplitude for a particle in a square well result from a cancellation in the
eigenfunction expansion, Eq. {4). By using the wavefunction’s Jacobi theta function-like
properties represented in Eq. (11) we were able to explain the canals and also the chopped
ridges along the rays, Eq. (5), in (£, 7) space. The details of these space-time patterns are
indeed a property of the wavefunction itself. How much of these details is revealed depends
sensitively on the initial wavefunction.

Financial support by the Deutsche Forschungsgemeinschaft through Sonderforschungs-
bereich 276 and the Gerhard-Hess-Programm, as well as valuable discussions with Gernot
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FIGURES

Fig. 1: Initial wavefunctions ¥y(€, 7 = 0) resulting from superpositions of N = 20 (solid
line), N = 50 (long dash) and N =100 (short dash) equally weighted eigenfunctions of the
box potential. For increasing number N of contributing eigenstates the initial wavepacket

gets narrower and its center approaches the left wall of the box.

Fig. 2: Density plot of the absolute value [¥(£, )| of a wavefunction in the (£, 7) space-
time strip. Darkness displays a low and brightness a high functional value. We note that
canals of different steepness emerge from the lower right or left corners of the strip. Moreover
canals enter from the sides. For this example we have considered a wavefunction consisting

of 20 eigenfunctions.
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Many transient signals from quantum systems result from beats among a large number of levels whose
energies depend nonlinearly on the quantum number. Typical examples range from time-resolved faser
femtochemistry to quantum optics of single atoms in cavities. Starting from rather general assumptions
on the nature of the system, we derive approximate closed-form expressions, which describe such
signals in the semiclassical limit. Our approach brings out in a most natural way the phenomenon of
fractional revivals and full revivals and explains the oscillatory structures observed in recent experiments

on atomic wave packets [Phys. Rev. Lett. 72, 3783 (1994)].

PACS numbers: 42.50.Md

Time-dependent signals originating from a large num-
ber of simultaneously excited quantum levels appear in
the physics of wave packets in atoms [1], molecules [2],
and cavity QED [3]). Wave packets explore the corre-
spondence principle at the quantum-classical border [4].
Moreover, this field is closely related to laser femto-
chemistry [5], which studies molecular dynamics and
chemical reactions “in real time.” Despite the different
physical nature of these systems and the studied signals,
there is a surprising similarity {6] in the overall structure
of their temporal behavior, as exemplified by Fig. 1 for
the case of an atomic wave packet. In addition to the
universal feature of fractional revivals and full revivals
[7-11] in such transient signals, there is also a certain
universality in their fine structure as can be seen from
Fig. 1(b).

In the present Letter we introduce for the first time
an analytical approach towards this universal behavior
of beat signals. Our analysis describes not only the
shapes of individual peaks, but also reproduces properly
the behavior of groups of peaks over a wide time range.
We emphasize that the long-time limit of such multilevel
quantum beats has only recently become experimentally
accessible [8].

For time intervals, in which relaxation is negligible,
transient signals such as the one of Fig. 1 are generally
of the form [10]

S(e) =D Ppelet = giofigy, (1)
with
SW) = > Piim
X ex [ZWi(Lm - —t—m2 + Lm3 + )]
PN ™ T T3 '
(2)

Here we assume that the distribution of weight factors P,
is normalizable, has a dominant maximum at the integer
7 and the width An >> 1. The characteristic times T; =
j12m /|0 V@) follow from the derivatives w'? of the

0031 -9007/96/_77(19)/3999(4)$10.00

[S0031-9007(96)01607-9]

frequencies w(n) of the underlying quantum system with
respect to n. Note that for definiteness we have chosen
the signs of the second and third derivative of w as in
the Coulombic case, where the spectrum reads E(n) =
—Ry/n* with the Rydberg constant R, = 13.6 eV. In
the semiclassical limit the natural time scales 7; are well
separated and build up a hierarchy T, < Ty « T3 << ---.

The temporal behavior of the experimental signal
shown in Fig. 1 is not obvious from the form of S(¢) in
Eq. (2). Nevertheless, we can extract the characteristic
features by performing an exact transformation of this
sum. The key idea of our approach is a decomposition
into a number of subsums, each of which contains only
terms whose phases are close to each other. We achieve
this by combining each rth term of the original sum to
one subsurn. The particular choice of r depends on the
time interval of interest,

Consider, for example, the behavior of S(r} in the
neighborhood of the time ¢ = q/r T» where fractional
revivals appear [11]. Here ¢ and r are mutually prime
integers. It is advantageous to shift the origin of time
into the region of ¢/r T, and choose it to be an integer
multiple i of T, that is

¢ =Ty + At = ir’—rz + T+ AL, (3)

where the remainder |e,/,| = 1/2. Hence the sum
S(At) = 8(t = q/rTy + €4, T) + At) reads

S(An = D yIwa(Ar, 4)
where
yi = exp(—2m‘ % mz) (5
and
Wo(Al) = Prapm exp{Zwi[?,—:m - (eq/, + %)%mz

AT, :”
+(I+T1)T3m + . {6)

© 1996 The American Physical Society 3999
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FIG. 1. Experimental data [7] of the autocorrelation function
C(t) = | {g(1)| y(0)}| of an atomic wave packet. From (a)
we recognize that in the early stage C(¢) is almost periodic
with a period T, = 15.3 ps cormresponding to the typical
energy separation between neighboring eigenstates. However,
for larger times this periodicity disappears and new features
emerge: At fractions of another characteristic time T; 3 T\
the system is again periodic, a phenomenon referred to as
fractional revivals. The period is now a fraction of Ty. In the
immediate vicinity of the time T3 = 474 ps the signal would
even restore almost completely its initial shape giving rise to
full revivals. However, the same periodicity occurs near the
time point T2/2 = 237 ps as shown in (b), but in this region
the signal pattern is shifted by T)/2 with respect to the initial
one. These fractional revivals show an asymmetric shape with
a fast decay on one side and a slow oscillatory fall down on the
other.

Here we have used that according to Eq. (3)
exp(2mimit/T)) = exp(2mimAt/T)). Note that this
representation of the sum S depends on the choice of the
origin of time and thus on the fraction ¢/r. Hence for
every different time region under consideration we adopt
a different representation of the sum §.

We proceed by noting that the function yg), Ec% (5),
. N . . . ry A
is periodic in m with period r, that is Ym+, = ym'. In
order to make use of this periodicity we rearrange the
summation with the help of the relation

r—1 =
Z am = Z Z Ap+kr - N

m=—w P=0 k=—0c

This technique combines those terms to subsums whose

phases are close to each other [12]. Since y:,rl -y

we find

4000

r=1 o
S(AN =3 ¥0 D Wy (an. @®
p=0 k=~

We now apply the Poisson summation formula [13]

S fi= 2. f dk f(k)exp(—2mikm) (9)
k=—o m=-0c & —%

to the subsums over k in Eq. (8). This allows us to rep-
resent the discrete superposition of many harmonics as
a sequence of time dependent signals numbered by the
index m and arriving one after another. The applica-
tion of this formula leads to a significant simplification
when the width of each signal in time is shorter than
the separation between two signals. Indeed we arrive
at

oor=1
san =3 v 2.

p=0  m=—c
X f dk W(p + kr,At)exp(—2mikm),
(10)
where W(x,At) is the continuous version of W, (A1),
Eq. (6). When we introduce the new integration variable
x = p + kr, the integral over x is independent of p, that
is

=]

r—1
S(Ar} = % Z 'y},’) Z exp(Zwi—f-m)

=0 m=—0
xf de(x,At)exp(—Zwi%x). (D

The interchange of the two summations allows one to
write the sum § now in the form

s@an = > WA,

(12)
where
S oelet -7 2)]
(r) - — - me 2_
W, " ;;Zm:o exp[2m P P (13)
and
I,(n'}(At) = f dx P{n + x) exp{Zm’[(% — %Hx
o |
_ Mo (10 2, )
(fq/r + Tl)sz + [ + TI T3x + )
(14)

The exact representation of the sum § in Eq. (12} is the
central result of the paper. It reveals in the most obvious
way the revival structure of the signal §, because each
fractional revival corresponds fo a single term in the sum

Eq. (12). Before we illustrate this feature by discussing
the functions W and 4 )(At) in more detail, we note
that our method also allows one to investigate the full

revivals by settingg = r = 1.
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The function Wi is independent of the distribution At / "]:‘1
P, and the time Ar. Thus it acts in the sum Eq. (12) as -2 1 0 1 9 3

a weighting factor. Because of the properties of W
discussed in Ref. [11], only every second term in the
sum Eq. (12) has a nonvanishing value when r is even,
whereas for r odd this is true for every value of m.

Now we turn to the discussion of lr(nr )(At) and its time
dependence. To be specific, we use the example of the
Coulombic spectrum together with a Gaussian distribution
for P,. In order to be consistent with the experimental
data presented in Fig. 1 we choose for the center 7 and
the variance An of the Gaussian the numerical values
7 =46 and An = 2. Hence the times T} and T; take on
the values T, = 14.8 ps and T, = 2rT,/3 = 30.67T, =
460 ps. In Fig. 2(a) we show by a dashed curve the
behavmr of the modulus of the sum Eq. (1) in the vncxmty
oft = 2T2, where the fractional revivals of order 5 3 OCCUr.
Here we have evaluated Eq. (1) numencally We note
that this signal shows very smular features as in Fig. 1(b).

We proceed by evaluating % for the Coulombic case.
We first note that for times ¢ of the order of T» we can
neglect the quartic term and all higher order terms in the
expansion in Eq. (14). In this case we can evaluate the
integral Ig)(At) analytically as shown in Ref. [14], which
yields

V(A = & P"BIGANF(ADAI[zm(AD].  (15)
Here the functions G{At) and F,,(Ar) are defined by

2 s
T (16)

Fu(Ar) = exv[u(%’ - %)] (17)

G(Ar) = Aexp[—ma'(eq/r +

and

and Ai(z) denotes the Airy function of complex argument.
The quantities ®,,(Ar), A, o, and p are real whereas
Zm(At) is complex. For the explicit expressions of these
quantities we refer to Ref. [14].

We are now in the position to understand the loca-.

tion, shape, and fine structure of each fractional revival
shown in Fig. 2(a). For the time region ¢t ~ T5/2 =
15.337), Eq. (3) immediately gives the parameters g =

1, r =2, =15, and hence €, = —0.33. Hence the
weight factor Wa' takes on the values Wl =0
and | W, ~ Zkﬂl = 1. Moreover, we find according to

Ref. [14]A = 1.98, ¢ = 0.15, and p = 2.94.

In Fig. 2(a) we show by a solid line the analyti-
cal result, Eq. (12}, using Egs. (15)-(17). We find an
excellent agreement between the direct numerical evalu-
ation of the sum S, Eq. (1), and the anatytical approxi-
mation. In Fig. 2(b) we show by a selid curve the
single term II,[,?LI(AI)I in the sum Eq. (12), together with
the Gaussian G(Ar)/A, the exponential F,,. {A?), and

S (t)

0.5 %

0.5 4

t/T,

FIG. 2. Fractional revivals of the generic signal |5(r)| for

the Coulombic spectrum. In (a) we show by a dashed curve

the exact signal Eq. (1) in the ncughborhood of t = —Tl

15.337,. The solid line shows the signal using the ana]ynca[
result Eq. (12). We indicate on the top of the figure the
relative time At introduced in Eq. (3). In (b) we show by

a solid line the term |15~ (A1)], Eq. (15), of the sum Eq. (12).
The Gaussian G(Ar)/A, Eq. (16), the exponential F,,(A¢),
Eqg. (17), and the absolute value |Ai(z,,= {A?))| of the complex-
valued Airy function are depicted by the dashed, dotted, and
broken lines, respectively,

|Ai(zn-1 (&) | 7
tions, which yields the pronounced peak of |1,[,,"}=,(At)l
centered at At = 0.5T;. The Gaussian, which is inde-
pendent of the index m and centered at At = —¢, 2T =
0.337, just influences the height of the peak, since this
function varies very slowly compared to the other two
functions. Note that the fine structure of the peak, that
is the oscillating structure on its left wing, results exclu-
sively from the Airy function. Figure 2(b} clearly shows

that the term Ilf,,zil(Ar)I reproduces the fractional revival
centered at + = 15.57, that is at Ar = 0.5T,. Hence
there is a one-to-one correspondence between this signal
peak and a single term in the sum Eq. (12) [15]. Mare-
over, the detailed analysis of Ref. [14] shows that a larger
value of |m| results in a broader fractional revival centered
at Az,, = m/r T| with less pronounced oscillations. This
is consistent both with the numerical example of Fig. 2(x)
and the experimental data of Fig. I{a).

It is the product of the latter two func-
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When two functions Ir(:: )(At) and I,(,',:)(At) overlap con-
siderably, interferences between these terms in Eq. (12)
arise. Then the function exp[i®n(Ar)] and the phase
of the complex Airy function start to play an impor-
tant role. Consequently, the sum § exhibits a more
complicated pattern at the edges of the time window
shown in Figs. 1(b) and 2(a). In this regime there is no
simple one-to-one correspondence between individual
terms in the sum S and the pattern. Nevertheless, Eq. (12)
still gives a complete description of the signal S in
the vicinity of At,, by taking into account only a few
terms.

We conclude by noting that the asymmetric oscillations
apparent in Fig. 2(b) are a universal feature of transient
signals in the long-time limit. They originate from the
Airy function which emerges in the most natural way from
our theory. The small “forerunner” preceding the main
wave packet observed experimentally and explained only
numerically in Ref. [7] stems from this Airy function. We
can therefore consider this forerunner as a manifestation
of “rainbow scattering in the time domain” [16).

In summary, we have presented analytical expres-
sions which describe the generic structure of signals
originating from a large number of simultanecusly ex-
cited quantum levels. A new representation of the un-
derlying sum allowed us for the first time to treat
analytically the influence of higher order dispersion ef-
fects on quantum beats. The influence of the third
order term has already been observed in Ref. [7] in
atomic wave packets. The experimental tools in this
field have become so refined that even higher order
corrections included in our treatment will soon be ob-
served. Moreover, the recent experimental realization of
the Jaynes-Cummings model [9] describing the motion of
an ion in a Paul trap provides another arena for prob-
ing generic structures in the long-time limit of quantum
beats. :
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We reconstruct the density operator of the center-of-mass motion of an ion stored in a Paul trap by
mapping the dynamics of the motion onto the internal dynamics of the ion. Qur technique takes into
account the explicit time dependence of the trap potential, operates outside the Lamb-Dicke }limit, and
is not restricted to pure states. We demonstrate the feasibility of this method using the example of a

damped Schrodinger cat state.
PACS numbers: 32.80.Pj, 03.65.Bz, 42.50.Vk

The recent experimental generation [1,2] of nonclassi-
cal states of the motion of an ion in a Paul trap [3] has
propelled the field of quantum state preparation [4.5] into
a new era. But how can we prove that the ion is indeed
in a Fock, a squeezed, or a Schridinger cat state? How
can we measure a motional state which, due to the ex-
plicit time dependence of the binding force of the Paul
trap, displays [6] a complicated time dependence? In this
Letter we present the first method {7] that measures a vi-
bratory state of an ion taking into account the complete
time dependence of the Paul trap. Moreover, our tech-
nique operates outside the Lamb-Dicke regime [8] and is
not limited to pure states only.

The central idea of our approach is to map the dynamics
of the center-of-mass motion onto the internal degrees of
the ion. The dynamics of the latter we can read out using
quantum jumps [9]. Three techniques make this approach
possible: (i) the well-known Floquet solution [10} of
the harmonic oscillator with time-dependent frequency,
(ii) the rotating wave approximation [11] resulting in a
time independent s-phonon Jaynes-Cummings interaction
Hamiltonian between the center-of-mass motion and the
internal states of the ion [12], and (iii) the application of
gquantum state endoscopy [13,14] originally devised for
the measurement of a field state to the problem at hand.
We demonstrate the feasibility of Paul trap endoscopy
using the example of a damped Schrodinger cat state.

We start from the Hamiltonian

ﬁ(‘) = F]a + ﬁcm(r) + ﬁim(’) (1)
of a single two-level ion moving along one direction in
a Paul trap and interacting with a classical laser field,
where H, = %Hwa &, describes the two internal states
with transition frequency w, and &, is the Pauli matrix.

The one-dimensional center-of-mass motion of an ion

with mass m in a harmonic potential with time-dependent
steepness

0(1) = 3 wia + 2g cos(egt)] (2)
follows from the Hamiltonian
Hon(t) = 5= P2 + 3 mo*(1)3%. (3)

The dimensionless parameters a and ¢ are proportional
[3] to the dc and ac voltages applied to the trap,

2198 0031-9007/96/77(11)/2198(4)$10.00
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respectively, and w.s = 27 /T is the frequency of the ac
voltage.

In the rotating wave approximation we model the
interaction of the classical laser field with the two levels
of the ion by the Hamiltonian {15]

Hint) = Aglo™ exp[—i(wpt — k%)] + Hel, @)

where g and k denote the interaction strength and the
wave vector of the light field with frequency w,, respec-
tively. The Pauli matrix &7 is the raising operator for the
internal levels of the ion, Hence the laser field couples
the center-of-mass motion to the internal states. .

_In order to solve the Schrédinger equation if|¥) =
H(1)|¥) for the state vector | (r)) describing both the in-
ternal states and the center-of-mass motion it is convenient
to work in the interaction picture. We recall the relation
{16]

A
2mw,

.%(f) = U:m(t)if]cm([) =

[e* (Db + e(nb™],

| )
where Ucm(t) = Texp[— 7 fo dt'Hem(t')] is the propaga-
tor of the center-of-mass motion, 7 is the time-ordering
operator, and operators with a tilde are in the interaction
picture. We denote the annihilation and creation opera-
tors of a time independent reference harmonic oscillator
[10,17] with frequency e, by b and 5'. Note that the ref-
erence frequency w, is an arbitrary real parameter, which
we choose later in a convenient way., The complex func-
tion €(r) satisfies the classical Mathieu differential equa-
tion

N+ @* (e =0 (6)

with the initial conditions €(0} = 1 and €{0) = { w,.

To bring out most clearly that the laser field in-
duces transitions between the energy eigenstates |n) of
the time-independent reference oscillator we express the
center-of-mass motion part of the interaction Hamilton-
ian equation (4) in these states. Indeed the interaction
Hamiltonian

o

Hu) =Y > 8QO™90)g*|n)(n + s| + He.
n=0 s=-—n
(N

© 1996 The American Physical Society
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in the interaction picture involves all possible
s-phonon transitions [12]. The time-dependent fre-
quencies Q) = ge 3 n|Dla()]ln + s) follow
from Eq. (4) with the help of Eq. (5). They involve the
matrix elements of the displacement operator D(a) =
explabt — a*h) at the complex valued time-
dependent displacement a(r) = ine(r), where = k[#/
(2mw,)]'/? denotes the Lamb-Dicke parameter. Here
A = w; — w, is the detuning between the laser fre-
quency and the atomic transition frequency. When we
evaluate [18] the matrix element (n|D[a(f)]ln + s} the
frequencies Q" *5)(t) read for s = 0

n!

12
m} exp(—iAn)[ine" ()]

Q(n.n+s}(t) — 8[

2
X exp[—%—le(r)lz]L;(nzle(r)lz) . (8)

Here L} denotes the generalized Laguerre polynomial.
Similar relations hold for s < 0.

We note that the time dependence of Qmr+s) (1} results
from the detuning A and the complex valued function
€(t). In order to simplify this time dependence and hence
the interaction Hamiltonian equation (7) we focus on the
so-called Floquet solution

ePr) = explipt)p(r). 9)

Here the characteristic exponent x4 and the periodic
function

()=t +T) = > cpexplinwgt)  (10)
n=—xw

are determined [10] by the trap parameters ¢ and gq.
In the stable region of the Mathieu equation [19] the
expansion coefficients ¢, and the characteristic exponent
w are purely real. Then the frequency u gives the secular
frequency of the motion of the ion. Note that it is the
specific choice [10]

o) = p + 0 D ne, (11)

of the reference frequency w, as the initial condition
€(0) = iw!"), which enforces the quasiperiodic solution
Eq. (9) of the differential equation (6).

We substitute the Floquet solution €'F)(r), Eq. (9), into
the time-dependent frequencies Eq. (8) and arrive at

Qs gy = Z w}"‘"ﬂ) expli(l we — sp — A)t],

===

where the coefficients

{n.n+s) — n!

W) = g[m]l/z(in)‘

T/2
% [ dt [* (1) e TIeWF/2
-tz T

X Ly (n?|g(0)F)e™ (12)

follow by expanding the part of Q""**) in Fourier series,
which is periodic in T = 27 /w. When we now use this

expression for (12 +3) the interaction Hamiltonian in the
interaction picture reads

Hu® = Z S et

n=0 s=—n [=—c

X expli(lews — sp — A)t]
X &F|n){n + s| + He. (13)

We emphasize that this representation is exact. It shows

that the time dependence of Hin (1) is governed by the
specific combination lw¢ — su — A of all harmonics of
the frequency w,s and of the secular frequency u, and
the detuning A. This feature allows us to perform a time

average [11] of Hin(f) in order to obtain an so-phonon
Hamiltonian as we show now.

So far we have not yet specified the detuning A. We
choose it in such a way that one of the terms in the
sums in Eq. (13) is slowly varying, whereas all the others
are rapidly oscillating. This happens when sou + A =
lows. Note that this condition leads to an interesting
number theoretical problem. In order to achieve a large
coupling to the field we choose A such that only the term

with the largest coefficient cuf: ") Survives the time
averaging for sp fixed. Hence we choose A = lpwyr —
sppu provided that A + s is not a multiple integer of
the frequency ewer for all s # so. With the help of the
rotating wave approximation we therefore arrive at the

time averaged Hamiltonian

B =S o™ 6" In)n + sol + He.,  (19)
n=0

which is the so-phonon Jaynes-Cummings Hamiltonian.

Since we face the Jaynes-Cummings Hamiltonian, we
can use the method of quantum state endoscopy [13,14]
and reconstruct the initial vibrational density operator
p(0) of the ion from the measured time evolution of its
internal state. For the application of this method we use
the coherent superposition |¥,) = (le) + '?|g))/ V2 of
the excited and the ground state as initial internal state.
We then can extract from the probability

P(t: ¢) = Tremlele ™ Fmt/F[5(0) @ W) (W, [Jefin/Fle)

5

a—1
=1 -3 Z Pnn
n—

2 4
0
1 - (n.n+5)
+3 Y cosQauy " ) (Prn = Prtsontso)
n=0
- '12' Z sin(2w§:'n+s°)l‘)lm[(_i)‘"Pn.nﬂot’_iw]
n=0

of finding the ion in the excited state |e) the matrix ele-
ments pna+s, = (nlp(0)ln + so) of the density operator
of the center-of-mass motion. Following Ref. [14], we
measure the internal dynamics, that is, P.(r; ¢), for two
different phases ¢, N interaction times, and sy, detun-
ings. Here N and sq,x denote the dimensions over which

2199
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the density matrix has significant elements. The algorithm
of Ref. {14] then allows us to reconstruct from these data
the full density matrix,

We demonstrate the feasibility of the reconstruction
scheme using as the initial center-of-mass density operator
p(0) a damped Schrédinger cat state

ﬁ(O) = pﬁincoh(a’) + {1l - P)ijca[(a). (15)

Here p is a weight factor,

Bincon(@) = 3 [lay(al + | — a)}(~al]

is a incoherent superposition of two coherent states, and

= B ey - | - a)IKal = (~al]

is a Schrodinger cat state with normalization constant N,
Note that we have chosen the coherent state {a) with
respect to the time-independent reference oscillator with

frequency . We emphasize that Ref. [2] reported the
birth of Schridinger cats of this kind. '

For the numerical simulation of Paul trap endoscopy
we use the parameters p = 0.5 and @ = 1.5. Since in
this case the Schrodinger cat lies on the real axis, the
matrix elements p, ., are real. Moreover, we take the
trap parameters ¢ = 0, g = 0.4, and 7 = 1. In order to
simulate experimental uncertainties in a simple way and
to test the stability of the reconstruction procedure, we
round the calculated values of P,(¢: ¢) to the precision of
one-tenth.

In Fig. 1{a) we show the relevant matrix elements p,
of the exact density operator Eq. (15). Note that the matrix
elements of the reconstructed density operator 5 become

Pear(ar)

FIG. I. Paul

trap endoscopy
Schridinger cat,
in energy representation of the cat to be reconstructed. All

illustrated by a damped
In (a) we show the matrix elements p,

matrix elements are real. In (b) and (c) we display the real
and imaginary parts of the reconstructed matrix elements p!") .
The tiny differences between the two density matrices in their
real and imaginary parts as shown in (d) and (c) demonstrate

the feasibility of Paul trap endoscopy.

2200

complex. In Figs. 1(b) and 1(c) we show the real part
and the imaginary part of its elements, respectively. We
emphasize that there is an excellent agreement between the
exact and reconstructed density matrix as is apparent from
Figs. 1(c) and 1(d) where we show the difference between
the exact and the reconstructed matrix elements in their
imaginary and real parts.

The present treatment takes into account the complete
time dependence of the trap potential. To bring out the
tmportance of this time dependence, we now compare our
exact treatment to the effective potential approximation
[15]. The latter describes the vibrational degree of
freedom in the limit a,4 — 0 by an effective, time-
independent harmonic oscillator with frequency . In this
case, Eq. (10) simplifies to ¢(s) = 1, and hence Eq. (9)
reduces to €F(r) = ¢'*. As a consequence, the Rabi
frequencies cu,("'"+5) Eq. (12) all vanish except for { = 0
which read [12]

na+s n! 172 . —p?
wg ™ =g[m] (in)'e” 2L (m%).  (i6)

In Fig. 2 we show the effective Rabi frequencies
a1} ..
w,(:?;" of the one-phonon transition by crosses and com-

pare it to the exact frequencies wfi'gﬂ} for the trap pa-
rameters a = 0 and the three different values ¢ = 0.01
(diamonds), ¢ = 0.2 (triangles), and g = 0.4 (squares).
These parameters are often used [1,2,20] in experiments.
For this figure we have chosen the Lamb-Dicke parameter
1 = 1. To guide the eye we have connected the discrete
values by continuous curves. Whereas for the small
value ¢ = 0.01 the frequencies almost coincide, we
find considerable differences for the values g =~ 0.2
and 0.4. In these cases the differences between the
exact and the effective Rabi frequencies are of the
same order as the differences between neighboring Rabi

FIG. 2. Comparison between the Rabi frequencies mi?f“”

within the effective potential approximation (crosses) and
the exact frequencies wy = ’ including the micromotion for
the trap parameters @ = 0 and three different values of g. Note
that according to Eqs. (12) and (16) these frequencies are purcly
imaginary. The diamonds carrespond lo g = 0.01, the trizngles
10 ¢ = 0.2, and the squares to g = 0.4, The inset shows the
squeezing parameler § for a = 0 as a function of g.
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frequencies. However, for reconstructing the density
operator, it is crucial to distinguish neighboring Rabi
frequencies. Hence the influence of the micromotion is
not negligible for these values of q.

Another consequence of the effective potential approxi-
mation is that the states |n) represent now the energy
eigenstates |n), of the static oscillator with frequency .
The two different sets of basis states corresponding to the

(F)

two oscillators with frequencies wr and p are connected
by the squeezing operation S(r) = exp[r(bt? — 5?)/2]
charactenzed by the parameter r. It is the ratio §=
n/ o) = exp(2r) which determines the magnitude of
squeezing. In the inset of Fig. 2 we show this ratio as
a function of g for a = 0. Again the diamond, triangle,
and square correspond to the value for ¢ = 0.01, 0.2, and
0.4, respectively.

We conclude by summarizing our main results. We
have presented a lechnique that allows us to measure
the quantum state of the center-of-mass motion of an
ion moving in a Paul trap. In contrast to related work
[7] our scheme takes the explicit time dependence of the
Paul trap into account. This time dependence might also
be relevant for the recent discussions on quantum gates
[21] and the quanturn computer [22] resulting from many
jons stored in a linear trap. We note that our method
operates outside of the Lamb-Dicke limit. Moreover, we
emphasize that the method is not limited to pure states
only. Using the example of a damped Schridinger cat we
have shown that it is possible to perform endoscopy in the
Paul trap.
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Note added.— After the completion of this work we
have learned that the Boulder group [23] has indeed
measured the quantum state of the motion of an ion in
a Paul trap.
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‘We propose a new measurement scheme to determine the complete state of a single mode of th~ quantized

electromagnetic field in a cavity.
PACS number(s): 42.50.-p, 03.65.Bz, 42.52.+x.

Endoscopy [1] in medicine allows to examine hollow
organs inside the body. Im quantum optics we face a
similar task: How to measure the internal structure of
a quantum state of the radiation field [2-—6] inside a res-
cnator? To couple the light out of the cavity is out of
the question, since this procedure would drastically alter
the quantum state. In the present paper we propose a
simple and efficient method to measure the field state in
a cavity — quantum state endoscopy.

Our probe is a beam of two-level atoms interacting
with the resonant quantized light field as shown in Fig. 1.
The atoms enter the cavity in a coherent superposition

At = 0 = 5 (1a) + 1) M)

of excited state |a) and ground state |b}. We measure the
number of atoms exiting the cavity in the excited state as
a function of the interaction time. We record this curve
for four distinct internal phases ¢ of the atom. From
these data we extract the initial field state

¥e(t = 0)) = 3 unln), (@)

that is the in general complex-valued photon number
probability amplitudes w,, by a simple mathematical al-
gorithm. We show using the parameters of current exper-
iments [7-9] that the proposed measurement technique
can be performed today. Our scheme neither needs a
complicated setup, nor do we have to perform a difficult
data analysis. )

We now calculate the probability P,(t, ) to find the
atom in the excited state after an interaction time ¢t when
initially the atom was in a superposition state, Eq. (1), of
phase difference . We deacribe the resonant interaction
of the two level atom and the single mode of a quantized
standing light field by the well known Jaynes-Cummings
model [10] and neglect spontaneous emission {11]. In ro-
tating wave approximation the Hamiltonian in the inter-
action picture reads

Hine = hg(6Ya+67a"), (3)

where g is the vacuum Rabi frequency. The operators ¢+
and ¢~ are the Pauli spin operators describing transitions
between the atomic states and &' and a are the creation
and annihilation operators of the quantized field. The
initial atate

ase(t=0)) = —= Y wn(Ja,m) +elbn)) ()

n=0

of the combined system of atom plus field is a direct
product of the atomic superposition state, Eq. (1), and
the field state, Eq. (2). Solving the Schrédinger equation
with the interaction Hamiltonian, Eq. (3), subject to the
initial condition, Eq. (4), the state of the combined sys-
tem after the interaction time ¢ reads [10]

o0

[Ware®) = 3 (Yo @®)lo,m) + brasa (Db, 0 + 1)

n=0
 +ee(2)(b,0) (5)
with the probability amplitudes
Yan(t) = % [cos (Qnt) we — isim (Qut) € tin s
and

Ysmpa(t) = .% [ = isin (at) wn + cos (@at) P un ],

where Q,, = v/n 4 1g. From Eq. (5) we immediately get
the probability

1 1
Pa(tv‘P) =5 Z !wolz

o~

+ %Zcos (22,1) (Iwn i2 — {wa1 Iz)

n=0
1 o -
-3 z sin (2Q,t) Im (wnw:.,,le—'w) (6)

n=0

to find the atom after the interaction time ¢ in the excited
state |a), independent of the final field state. But how to
extract the initial quantum atate of the field out of the
measured quantity P,(t,¢)? To answer this question we
have a closer look at the contributions to P,: there are (i)
two time independent terms, (ii) a contribution of cosine
and (iii) the sine of the Rabi frequencies {2,,. We note
that the cosine contribution contains only the absolute
values squares of the probability amplitudes. However,

"due to the presence of the atomic superposition, the sine

contribution brings in the relative phase between neigh-
boring photon number probability amplitudes. Hence in
order to reconstruct the phases of w, we have to dis-
till the complex valued product wnw} ,; out of Py(t, ).
This is best done by taking the probability P,(t,y) at
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FIG. 1. Quantum state endoscopy. Experimental setup
(top): An appropriate classical light field prepares a two
level atom in a coherent superposition 715 (ja) + **|b)}. The
so-prepared atom interacts with a single mode of the radiation
field which is in a pure quantum state described by photon
number probability amplitudes w,. A narrow salit fixes the
position. where the atom enters the quantized light field and
determines the vacuum Rabi frequency g. We probe the inter-
nal state of the atom leaving the cavity via state selective field
ionization and choose different interaction times by selecting
different atomic velocities. We record the atomic population
Pa(t, ) in the excited state |a) as a function of time for four
different phases . Data analysis (bottom): From these four
curves (a) we form appropriate linear combinations S and
C shown in (b) and extract from them the probability ampli-
tudes w, of the initial field state (a): For the sake of simplicity
we have chosen a Schrodinger cat with real amplitude o« = 2.5
and phase ¢ = 0.9. Here wy is real.

four different values of the phase . Indeed for the spe-

cial choice ¢ = —%,0,%,7 we can define the complex
function
S(t) = Pu(t, x/2) — Pa(t, —%/2) + i[ Pa(t, ) — Pu(t, 0}]
=3 sin (20nt) waw)yy M
n=0 :

only containing the cross terms w,wy,, ;. Similarly we
can use the same four measured probabilities to form the
real function

C(t) = Palt, —7/2) + Pa(t,0) + Pal(t, %/2) + Palt, ) — 2

= cos (20t) (jwal’ — lwnsal) ~ lwol”.  (8)

n=0

de dd Farddetind, doble Tdhe TT doby 0 oMeeSdie st an ] e im0 T E

Now we are left with the mathematical problem to first
invert Eqgs. (7) and (8), that is to calculate

Gn = Wi, 4y (9)
and
b = lwal? — lwagl*

(10)

from the measured functions S(¢) and C(t) and then to
obtain from the nonlinear Eqgs. (9) and (10) the complex
valued numbers w,,. Indeed by eliminating w, 43 or wy
from Eqgs. (9) and (10) we find a quadratic equation for
[wa|? of |tn41|?, respectively. The corresponding rele-
vant solutions {12] read

1
junf* = 3 (52 + VB2 +4lanl) (1)
and [wn4a|? = 1 (—ba + /B2 + 4[an]?) or equivalently

1 : A
jwal? = 3 (—b,,_1+ VB HlenF). (2

According to Egs. (9) and (10) a_; = 0 and b, =
~|wg|?, since w_; = 0 following from Eq. (2). Hence
we can find the absolute values of the probability ampli-
tudes w, from these equations, whereas the phases we
finally obtain by the recurrence relation

- (13)

.y
Wngl = an/wru

following from Eq. (9). Since the quantum state of the
light field is defined up to an overall phase factor, we
choose wg = |wp| to be real. _

Now we return to the problem of finding the coefhi-
cients a, and b,. In principle we have to determine an
infinite number of probability amplitudes w,, and hence
an infinite number of a,, and b,,. However, physical states
of the radiation field are normalized and consequently the
amplitudes |w,| have to decay to zero for n much larger
than the mean photon number i. Hence, when we want
to find wo, w1, . . ., Wn_., With nmax 3 fi we have to solve
Eqgs. (7) and (8) for nmax + 1 unknown complex valued
coefficients. Consequently it is enough to measure the -
functions S(t) and C(t) for at least npyax + 1 discrete in-
teraction times t, in order to invert [13] the two sets of
linear equations

S(ty) = ni:“sin {2Qnt,) an

(14)
and
Npaax—1
C(t,)= Y cos(20ts) bo. (15)
. oa==1

In summary we find from the set of measured data
{8(t1),C(t1); S(t3),C(t2);...} by inversion of the linear
equations (14) and (15) the coefficients a, and b, which
via Egs. (11) and {12) provide the absolute values of the
photon number probability amplitudes wy. Their phases



follow from the recurrence relation Eq. (13} using the
complex valued coeficients a,,.

) (a)
0.6
0 —
gt 2.5
0.6}
C(t) -
®. .
0.3}
2.5
0 .
| >
0.3

FIG. 2. Measured functions S(t) and C(t) for a Schradinger
cat state, Eq. (16), witk amplitude a = 2.5 and phase ¢ = 0.9.
The solid lines represent the analytic expressions, Eqs. (7) and
(8), whereas the bars indicate the corresponding values for 30

discrete interaction times ¢, in units of g~1.

4

0 x 4

FIG. 3. Reconstruction of a Schrodinger cat via quantum
state endoscopy. In (a) we display the field state to be mea-
sured by the contour lines of its Wigner function. Solid lines
indicate domains of phase space where the Wigner function
takes on positive values whereas dashed lines display domains
of negative values. In (b) and (c) we show the reconstructed
Wigner function for fmax = 18 and 25, respectively. The lat-
ter is an excellent reconstruction of the initial field state (a).
‘We have used the parameters, gt = 2.5 and Av/v = 1.5%, of
the experiment [7]. For the Schrodinger cat we have chosen
the amplitude o = 2.5 and the phase ¢ = 0.9.

Now we recognize that the function S alone would have
allowed us to get the probability amplitudes w,: we de-
termine the coefficients a,, by inverting Eq. (14) and find

_ wny41 by iteration using Eq. (13). Nevertheless the func-

tion C(t) defined in Eq. (8) is of central importance. De-
spite the fact that it is free of charge, that is it can be
constructed from the already existing data, it provides
two independent solutions, Eqs. (11) and {12), for each
|wn]. Moreover it is solely due to this function C' that we
have an explicit expression for [w,| rather than a recur-
rence relation. Consequently in the present scheme errors
in measured data are not transferred from one amplitude
|wn| to the others.

In order to illustrate this idea of state measurement
we reconstruct the Wigner function [14] of a Schrodinger
cat state {15]

e) = A {|ac’®) + |ae=*)) (16)

with the amplitude o« = 2.5 and the phase ¢ = 0.9. Here
N is the normalization constant. In Fig. 2 we show the
functions S and C calculated for this state via Eqgs. (7)
and (8) as a function of the interaction time and select
for the data analysis 30 discrete interaction times ¢, uni-
formly distributed over the same region. Here we have
chosen a time domain up to gt = 2.5, a parameter regime
accessible [7-9] by current experiments. With the help
of these discrete measurement dats we reconstruct the
quantum state of the light field |¥r). We show the con-
tour lines of the corresponding Wigner function of the
Schrodinger cat for two different cut off parameters nyax
in Fig. 3. Here we have taken into account a velocity dis-
tribution [16] of the atoms with a precision Av/v = 1.5%
already available in the experiment of Ref. [7]. We note
the excellent agreement between the reconstructed and
the initial Wigner function.

We conclude summarizing our main results: We have
presented a novel scheme to measure the internal struc-
ture of a quantum state of the radiation field in a cavity.
The simplicity of the data analysis — a matrix inversion,
the solution of a quadratic equation and an iteration —
speaks for itself. The state of the art of single atom ex-
periments in the microwave [7,8] and optical [9] domain
allows for the experimental realization of quantum state
endoscopy.
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ciates and the Human Capital and Mobility program.
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We give a recipe for how to create an arbitrary field state in a single-mode resonator.
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Nonclassical states of light are central to quantum op-
tics. But how can we create them? So far two approaches
(1] have been pursued: (i) Find the appropriate Hamilto-
nian which transforms via unitary time evolution a given
initial state to the desired final state. (ii) Make a mea-
surement on one of two entangied quantum systems and
obtain the state of the other system by the corresponding
state reduction. Mathematically we can always construct
the necessary Hamiltonians and entanglements. How-
ever, nature limits the possible Hamiltonians and entan-
glements, and therefore also the variety of states which
can be obtained in this way. In the present paper we give
a recipe for how to construct any desired quantum state
of the radiation field using a simple Hamiltonian.

We consider N two-level atoms interacting with a reso-
nant mode of the electromagnetic field in a cavity via the
Jaynes-Cummings Hamiltonian. Initially the cavity field
is in the vacuum state. We consecutively inject atoms
such that there is at most one atom in the cavity at a
time, We prepare each atom entering the cavity in a spe-
cific superposition of the excited state |a) and the ground
state |b). This superposition has to be chosen appropri-
ately [2) in order to drive the state of the cavity fieid
towards the desired state. The measurement of the in-
ternal state of the atom after it has passed through the
cavity leaves the quantum field in a pure state.

Let us consider one step of this process. Before the
injection of the kth atom the cavity field is in a state

) = T 6 Vin). M

The kth atom enters the cavity in the superposition state
|@}+igx|b) controlled by the complex number ¢, {3]. After
the interaction, when the atom has left the cavity, the
state of the combined atom-field system reads

88 =3 pk-1(CPn, a) ~ iSFn + 1,8)

+iexCF In, by + 6xSP In - L,0)}.  (2)

Here Cs.k) = cos(gTev/n + 1) and S,(‘k) = sin{gmevn + 1},
where T, is the interaction time of the kth atom with the
field and g is the atom-field coupling constant.

Now let us make a measurement on the kth atom. If
we detect the atom in the excited state our attempt to
create the desired field state by our proposed method has
failed and we go back to the vacuum state and start the

1816

procedure again. However, if we find the kth atom in the
ground state we continue the process. In this case the
new field state (3] reads

k) =" oPny, (3)

n

where, according to Eq. (2}, the new coefficients cps,k)

are given in terms of the old coefficients go,(f'” via the
recurrence relation
k) k-1 k -
o = S gDy

Each injected atom increases the number of Fock
states, building up the cavity field state by one. There-
fore, after N atoms have passed through the cavity, the
field state, which initially was the vacuum state |}, is
a linear combination of N + 1 number states. But how
do we get a desired combination

N
[ba) =D daln) ? (5)

n=0

For this purpose we have to find that combination

N-1
M=) = 3~ o n) (6)

n=0

of N number states which yields |¢4) after the Nth atom
prepared in an appropriate internal state |a} + i n|b) has
passed through the cavity and has been detected in the
ground state. We find the NV coefficients V=1 and the
parameter € by solving the set of N + 1 equations,

N)  (N-1
dn = Sp2y oY

dn = S0 QT - en O Y (7)

n—1
do = —en gy "

foilowing from Eq. (4). We express the unknown values
%=1 in terms of the known values d,, starting with

the first equation of the set (7), and obtain

(N=1) M) dave 1
n = Z H ™ T~y En - {8)
sMl s

v=1 H=n n+v—1

0031-9007/93/71(12}/1816(4)%06.00
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Substitution of the thus obtained coefficient waN-” into
the last equation of the set (7) yields
o [u=2 (N}
cl d
do - [Hgm]'svﬁfﬁo (©)
v=1 Lpu=0 i v—1

as the characteristic equation for £y.

We solve the characteristic equation numerically and
choose one value £y from the N roots of Eq. (9). Equa-
tion (8) immediately gives us the corresponding coefli-
cients o' Y of the state jp!V 1)), We take 1otV -1} as
a new desired state which we have to obtain by sending
N -1 atoms through the cavity. For the state [¢!Y ~1)) we
du the same calculations as for the state |t)g) and obtain
the parameter 1 and state [ =) with N — 1 coef-
ficients (pS.N'”. We repeat the calculations until we end
up with the vacuum state. A string of complex numbers
€1, €2, ..., En defines the internal states of a sequence
of N atoms we have to inject into the cavity in order to
obtain the desired state {1/4) from the vacuum state.

We illustrate this method by creating the truncated

phase state

1 7
o) = 2= Y Im).

n=0

(10)

In Table I we give the values £1,€2,...,&7 calculated for
identical interaction parameters gry = /5. In order
to give an impression about the individual steps of the
evolution of the field state from the vacuum state to the
truncated phase state, Eq. (10), we plot in Fig. 1 the
contour lines of the Q function for the field state |*))
after the kth atom has passed through the cavity and has
been detected in the ground state.

But what is the probability to create the state; that
is, what is the probability P to find all atoms in the
ground state after they have passed through the cavity?
So far we have used unnormalized states for the atoms

TABLE L. Internal state |a) + ilexl e*%%|b) of the kth atom
needed to obtain the truncated phase state, Eq. (10}, for a
fixed interaction parameter gr = /5. The right column
gives the probability P{*’, Eq. (14), to find the kth atom
in state |b) after its interaction with the cavity field provided
all earlier atoms have been detected in the state |b). The
probability Pr, Eq. (16), to find all atoms in the ground state
is Pr = PP ... p{" = 0.01388.

P

k el Bu/x P®

1 0.5412 —0.5075 0.4938
2 0.5730 0.5102 0.3616
3 0.6951 —0.7585 0.6477
1 0.8283 -0.9977 0.8106
5 1.0562 0.7783 0.7368
6 1.3334 0.5141 0.4918
7 1.5002 -0.5389 0.4086

and the field because it was convenient for calculating &;

and gast”. However, when we need probabilities we have
to use normalized field states

k
lp®) =Y 9{In) (11)
N

and atomic field states (|a) + i€x|b)} /v/1 + lex 2.
For the coefficients w&.") we obtain equations similar to
Egs. (7) which read

(k k k—
wk ) = Nk Sa_)1 lb(g_ll)

0 = Ny (S 9 - e CL2, vk

(12)
k &=
D) = - Meew Y .
Here the normalization constant
5 NP | " L
1 k=0 kelk :
'Y
. [
.5
5
kel k=5 [
o || @
Im(a)
1 k=2 k=6 r
6| 0
5 ] [
S
: k:3 k37 :
s o
-5 ] M LI " T
=5 0 5 -5 0 5
Rel(a)
FIG. 1. Contour lines of the Q-function

Q(a) = {ajp™)?/x for the field state |¢*)) after the kth
atom has interacted with the field and has been detected in
the ground state. The parameters for the internal states of
the incoming ‘afomns are given in Table I. The contour lines
are at Q = 0.025,0.050,0.075, .. ..
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1 (13)
VP (1+ [exl?)

consists of two parts: the factor 1//1 + [ex|? which takes
into account the normalization of the internal state of the
kth atom, and the factor 1/y/P*) which is due to the
normalization of the field state after the state reduction.
Here

Ni =

k 2
3 158 ) g 0B kD)
p*) _ n=0
()

14
1+ |eg)? (24)
is the probability to find the kth atom in the ground
state. From the first equation of (12) follows

N
vi = [T (Mesi,) of”. (15)

k=1

Since we start from the vacuum state we have 1,{)},0) = 1.

Moreover, we note that for a normalized desired state we
have ¢,(.N) = dn. We substitute N from Eq. (13) into
Eq. (15) and obtain for the probability Py to find all N
atoms in the ground state

N ) 1 N (Sl(tk)l)z 6
= = = . 1
PN EPB llez g[1+|€k|2J ( )

The probability Py depends on the choice of roots
of the characteristic equation, Eq. (9), and the inter-
action times 7;. Can we use these “degrees of free-
dom” to optimize the probability Py? To get an idea

1!

10?4

10%

!
0 02 0.4 06 0.8 1
gt/m

FIG. 2. Probability Pr to find all seven atoms in the ground
state as a function of the interaction parameter gr for the
truncated phase state, Eq. (10). Here we have chosen £ with
the smallest absolute value. Note the occurrence of trapping
states at gr = ﬁ/s/'_(, gr = n /6, gr = w/\/E, gr = w/ﬂ.
gt = n/V3 gr = n/V3 gr = 2n/V7T, gr = 2m/VE,
gr = 2r/v/5, and g7 = 7 where, according to Eq. (16), the
probability P; vanishes.
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TABLE II. Internal state |a) + 1jei] e*®*|b) of the kth atom
needed to obtain the truncated phase state, Eq. (10). Here we
have optimized the interaction parameters g7y as to maximize
the probability P, Eq. (16}, to find all atoms in the ground
state. The right column gives the probability P,f"), Eq. (14},
to find the kth atom in state (b} after its interaction with the
cavity field provided all earlier atoms have been detected in
the state |b). In this case we have P; = 0.051 93.

k lex) B /m gre/m P

1 0.7462 —-0.6016 ¢.5000 1.0000
2 0.8513 0.5569 0.3370 0.5655
3 0.8543 0.7427 0.2780 0.7435
4 0.9972 -0.6821 0.2477 0.6265
S 1.2000 —0.5256 0.2363 0.5196
6 1.3198 0.5097 0.1937 0.4366
7 1.1003 1.0000 0.1524 0.8690

of the possibilities of this optimization let us consider
the simplest case of identical interaction times Tp = T
for the example of the truncated phase state, Eq. (10).
The dependence of the probability P; on the interac-
tion parameter gr is shown in Fig. 2. For this curve
we have chosen for each atom the €, with the small-
est absolute value. We note that P; increases for in-
creasing interaction parameter gr and reaches its maxi-
mum Pz =2 0.02067 at gr =~ 0.24457 and then decreases.
Moreover, trapping states, that is, interaction param-
eters g7 with sin{gry/n) = 0 (n = 1,2,...,7), mani-
fest themselves in vanishing probabilities P; as apparent
from Eq. (16). As a general rule the maximum value for
the probability occurs for interaction parameters smaller
than those corresponding to trapping states.

In the next step of the optimization we allow each atom
to have its individual interaction time 7, with the cavity
field. In Table II we have chosen 7 such that the proba-
bility P7 to find all seven atoms in the ground state has a
maximum, Using this strategy we increase P; up to the
valye P; = 0.051 93.

In conclusion we emphasize that we can construct any
superposition of the first N + 1 number states from
the vacuum state by injecting N appropriately prepared
atoms into a cavity and detecting all of them in the
ground state. Furthermore, we note that the Jaynes-
Cummings Hamiltonian is not crucial for this method.
Similar interactions between field and atom can also be
used provided that they allow for energy exchange be-

. tween field and atoms.
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