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Chapter 1

Two-level atoms

In this chapter, we review some properties of an electric field E interacting with
a collection of N identical two-level atoms in the semiclassical formulation. The
emphasis will be on properties which are significantly modified when atomic in-
terference arise.

1.1 Formulation

1.1.1 Electric field equation

Our starting point is Maxwell’s equation for the electric field

(’026::5 - Bft) Etot = (471'/60)6?:3@ (11)

where P, is the total atomic polarization induced by the field E;,: and v is the
velocity of light in the medium. It is assumed that v is constant. We introduce
the decompositions

Bt = % [Beithesvwet) 4 cc.], Pyt = N [Peilkaz=vet) ¢ ¢ c ] (1.2)

where the optical frequency w, and the wave number k, are related by the disper-
sion relation w, = vk,. In the absence of light-matter interaction, a solution of
Maxwell’s equation is given by an electric field amplitude & which is constant in
space and time. This is no longer true, in general, in the presence of light-matter
interaction. Therefore, we seek solutions E(z,t) which vary slowly in space and
time, compared with the optical space and time variation

wo|P|> |0P/0tl,  wa|E|>|0E/6t|,  ki|E|>|8E/0z|  (13)

This is usually justified by the fact that the residual variation of the complex field
amplitude E(z,t) is related to the atomic temporal variations, which occur in a
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2 CHAPTER 1. TWO-LEVEL ATOMS

much longer time scale. With these elements, it is easy to derive a propagation
equation for the complex field amplitude

(v0: + ;) E = (4miNw,/eo) P (1.4)

The final step in this derivation is to relate the polarization per atom, P, with the
microscopic properties of the medium. This is will be done in the next section.

1.1.2 Material equations

The last equation we have obtained for the electric field is still an open equation
since we need a closure relation of the form P = P(E). For this, we have to
introduce a model of the atomic system in order to express the reaction of the
medium to the applied field. The medium is described by the von Neumann
equation

iﬁ%:ﬂ’p—pﬂ' (1.5)
where the density operator g is constrained by the trace condition Trp = 1. Since
we consider two-level atoms, the density operator and the hamiltonian have a
2x2 representation. For the hamiltonian, we use the representation H = Hy + V
where Hy is the unperturbed hamiltonian of the two-level atoms (Hot; = fuw;1;
and we neglect the motion of the center-of-mass) while the interaction energy
V is given by —erkE,, where —er is the projection of the electric dipole in the
direction of the electric field polarization. Let the upper atomic state be labelled
2 and the lower atomic state be labelled 1. The von Neumann equation (1.5)
leads to the evolution equation for the density matrix elements

0 , i

"g? = —twgpn + %Etotn (1.6}
on o
_"—at - 2 IIII ('}—iEtotp21) (17)

where we have used the notation y = py; and n = p;; — pyy. Note that py, = P51-
The closure relation we are looking for is the relation P = pyppye®et = wa
between the atomic polarization and the off-diagonal elements of the density
matrix. Neglecting fast oscillating terms, we obtain the coupled equations

(8: + v 10) E = (4miNp*w,/veg)o (1.8)
%% = —ifo + -;-%En (1.9)
gt—” = 2Im (%Ea) (1.10)

with 6 = wa — w,.



2 AL

1.2. LINEAR PROPAGATION REGIME 3

1.1.3 Pumping and decay

The description obtained sofar is incomplete. Equations (1.8)-(1.10) correctly
describe the interaction process between stable atoms and a medium which is
lossless in the absence of light-matter interaction. However, the atomic levels are
not stable. In addition, the material medium accounts only for the quasi-resonant
interaction with the field. Apart from that, there are nonresonant interactions
(involving the other atomic levels) which yield a linear, i.e., field-independent
loss. The usual procedure is to add phenomenological constants to the evolution
equations (1.8)-(1.10) in the following way. For the field equation, we add to the
right hand side a term kE

(8, + 78, + k) E = (4miNp"wa/veo)o (1.11)

In the absence of interaction with the two-level medium, this leads to a solution

which decays in time like exp(—«t). For the atomic polarization, we also add a
linear damping term —v, o while the population difference we add the damping
—~n. However, we have to take into account the incoherent pumping which
populates the upper atomic level. Let n® be the population difference reached in
steady state in the absence of interaction with the coherent field Ei.:. Then we
add a source term to the population inversion evolution equation and arrive at

do ) il

il —(yu +1i8)0 + - En (1.12)
on . 0 H *

5 = —n) +21m (£ Eo*) (1.13)

Equations (1.11)-(1.13) form the basis of our study of two-level atoms interacting
with a monochromatic electric field.
1.2 Linear propagation regime

In the linear regime of propagation, the problem is reduced to the pair of linear
coupled equations

(3,; +v7 o, + n) E = (4mNp'we/vep)o (1.14)
do ) i
Frilie —(yL +i6)o + ﬁEn (1.15)
on
5 = yy(n® — n) (1.16)

Indeed, retaining the E-dependent term in (1.13) leads to nonlinear corrections
to the relation ¢ o F which derives from (1.14)-(1.15).
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We seek plane wave solutions E = Ee'ke—wt) | g = geitkz—wt) and 5 = n® This
leads to

dmiNwou*
E(ik —iw/v+ k) = el (1.17)
Ep
. : oo g
~iws = —(yL +36)s+ﬁ8n (1.18)

The compatibility condition of this pair of homogeneous equations is that the
determinant of the coefficients vanishes

21 Nuwg || n0

(k- w/v){w = 8) + iy, {k ~ w/v) —ik(w - 6) + kYL + Fiegv

=0 (1.19)

This is the dispersion relation k = k{w) we were looking for. Its solution is

W (w—08)/71
k= Y
v + 14 (w=—6)2/42
21 Nw, | p|?*n®

T TR L+ w67/ -

a+ir(l — A) (1.20)

We have introduced the parameter A = a/k where o @ —n® = Poz - P11 18
the linear {or small signal) gain or loss, depending on whether it is positive or
negative, respectively.

The stability properties of the plane wave are easily derived from (1.20), taking
w real:

e A < 1:1In this case, Imk > 0 and the plane wave is attenuated in the linear
regime.

¢ A > 1: In this case, Imk < 0 and the plane wave is amplified in the linear
regime.

Hence the plane wave solution is stable below the threshold 4 = 1 and
unstable above the threshold. The threshold condition A = 1 is the usual
laser threshold condition. The important property is that the gain condition
A > 1 can be written as a condition for the population inversion as P — Yy >
(P32 — 221 )inreshora > 0- In other terms, an initial population inversion is necessary,
though not suflicient, to ensure gain in the two-level medium.

We can deduce from (1.18) the linearized eigensolution in the form of the ratio
s/€, from which we obtain the expression

HS |lu'2 n’ ’: §—w a2 = xolw) (1.22)

£ 2 Y40 -wP FT-w)



1.3. NONLINEAR REGIME 5

where we have introduced the linear susceptibility xo = Xx§+1xg. We easily derive

the well-known relation
f—w

Xo(w) = Xo(w) (1.23)

YL
The imaginary part of the susceptibility rules the absorptive properties of the
medium. As a function of § — w, it is lorentzian peaked at w = 6. The real
part of xo rules the dispersive properties of the medium and vanishes where x{
is maximum.

1.3 Nonlinear regime

1.3.1 Steady state
The nonlinear equations (1.11)-(1.13) admit steady state solutions of the form

dE/dz 4+ kE = (4miNp*we/veo)o (1.24)
iw En
= £ 1.
7T DRy +ib (1.25)
n = n®+2Im (-E—Ea*) 1.26
oy (1.26)

From the last two equations we obtain an expression of the material variables
in terms of the field intensity

n = nd|1+ EL (1.27)
Ry (L + (§/71)7] :
s = gt it/ \LE?
= 2Ry 14 (6/v1)? { A2y 1+ (6/'Y-L)2]jl (1.28)

Note that in the strong field limit, |E] — oo, we have n — 0 and ¢ — 0.
Hence we obtain

|E| — oo: pnn — 1/2, paz — 1/2, prz — 0 (1.29)

In other terms, a strong field bleaches the atomic system : n = p11 — p22 — 0
(which is independent of n%) but destroys the atomic coherence : p12 — 0.
From the definition P = x.E, we obtain x, = p*o/P and therefore

o i8S/ |uln® E[”
14 (6/v1)? 2Ry B2y (1 + (8/7L)]

We have the obvious relation between the real and imaginary parts of the suscep-
tibility: x' = (6/7.)x". The connection between this result and the susceptibility

Xs = X+ 1X (1.30)
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given in section 1.2 is quite simple: yq is w-dependent but field-independent. On
the contrary, X, is the static or w-independent (since it is derived in steady state)
component of the susceptibility but it is field-dependent. Both expressions repre-
sent different approximations of a more general expression which depends on w
and on the field.

1.3.2 Nonlinear propagation

From (1.24} it follows that the complex field amplitude in steady state is given
by
dE/dz = —nE—aE%(l—w/m (1.31)
21 Nuw, |pl? n(z)
fryLeov [1 4 (6/71)°]

a a(z,b) =

Hi

(1.32)

We introduce the polar decomposition of the field £ = Ee* in terms of which
the electric field real amplitude is the solution of

dE/dz = —kE — aEn/n° (1.33)

Let us define an intensity by the relation I = |uE|? {2y [t + (6/'“)2]}_I e
verifies the equation

dl/de = [-2x — 28/ (1 + ]I (1.34)

The difficulty with this equation is the space-dependence of @. Let us therefore
consider the limit of negligible linear loss: x < @. In that limit, we obtain
dl/dx = —2&I /(1 + I) which can be solved to give the implicit equation

I—Ih+ IH(I/IU) = -2 /La(m)d:l? (135)
0

Let us define an extinction length [, by the condition I(l.} = Iy/e. If the initial
population difference n° is space-independent, we find

le = [L(1 = 1/e) + 1]/(2) o (1.36)

In the high intensity limit Iy >> 1, we obtain {, o Iy/2a.



Chapter 2

Principles of atomic interference

2.1 Physical mechanism

The simplest situation in which atomic interference occurs is the interaction of a
three-level medium with a bichromatic field. Let the field be given by

Eyo = E, cos{w,t) + By cos(wpt) (2.1)

This electric field interacts with a threelevel medium characterized by three
atomic levels. The three atomic wave functions are ¢; and the corresponding
energies are fiw;. We consider the situation of a single upper level and two closely
space low lying states: w3 > wa 2 w;. The interaction hamiltonian is —erE. The
field E, couples levels 3 and 1 while the field E, couples levels 3 and 2.

The main point is that an atom in state 3 may decay either through the chan-
nel 3-1 or through the channel 3-2. The transition probability between two states
is of the form P(j — k) = |C'j,|=l2 where the complex coefficient Cjy is related to
the expansion of the total wave function on the basis of the unperturbed atomic
wave functions. When there are two decay channels available to the atom, Cjy is
the sum of two terms, each coming from one of the decay channels. Hence the
total transition probability will not be the sum of the partial transition probabil-
ities. In addition, there will be interference terms which need not be positive. We
shall see that these interference terms may compensate, partially or completely,
the partial transition probabilities, therefore reducing the total transition proba-
bility. This interference process is the basis of most of the work on gain without
inversion.

As a practical example, let us consider the three-level system described above,
interacting with the bichromatic field (2.1). We still have to specify the selection
rules. Let them be given by

(¢ lerEq| ¢a) = pEby (¢; lerEq| ¢3) = uFEbjp (2.2)

all other matrix elements being zero. To simplify the algebra of this example, we
have assumed that the matrix elements are identical when they do not vanish.

7



8 CHAPTER 2. PRINCIPLES OF ATOMIC INTERFERENCE

This simplification is without influence on the physical results we shall describe
in this chapter. The probability of transition from state 3 to an arbitrary super-
position state ® = C¢y + Cag is given by

Wi = [(Crre™ + Cagoe™ | —crB] ety
EP?, . ;
_ |Ju'4 I lclet(wsl—wa)t + 0281(“’32_wb)t12 (23)

where wjr = w; — wi. The case w3y — w, = way ~ w; is of special interest. If this
condition is verified, that is, if the detuning between the field E, and the atomic
energy difference ws; equals the detuning between the field E, and the atomic
difference ws,, then the transition probability W, becomes a constant in time

1
W= lE(Cy + Ca)l® (2.4)

'To appreciate more fully this result, let us consider another possibility of selection
rules. Let us assume that each field E; couples equally the upper level 3 to the
two lower states

(&5 lerEa| ¢5) = (b;lerEa| ¢s) = pE,  j=1,2 (2.5)

In this case, the probability of transition between the upper state and the state

¢ becomes

[B*
4

There is no way in which this function can become time-independent: it is and
remains a periodic function of time. This shows how critical the selection rules
become in the three-level case.

Let us consider again the first case which yields the transition probability W/.
An interesting situation occurs if the superposition state is ®_ = Cy (¢ —¢5), i.e.,
C1 = —C5. In this case W) = 0 as a result of maximum destructive interference.
Indeed, the vanishing of W, results from the relations |Cy|* = |C,|* = —C1C} =
—C1Cy. Physically, this means that an atom which is initially in the upper
state will be unable to decay in the state ®_ via a dipole-mediated transiiton.
Conversely, an atom which is initially in the state ®_ will remain in that state
forever. Such states are called trap states. However, one can show that there is
another state, ®, = C1(¢; + ¢2), with which the upper state can interact.

At this point, we can already grasp the principles which underlie the process
of gain without population inversion. Let us consider an initial situation in which
there are V; # 0 atoms in level j. If we are able to prepare atoms in states ®_
and @, with numbers of atoms N_ and N, respectively, then gain only requires
that N3 > N,. What makes this result fascinating is that this condition, which
is the ordinary two-level gain condition, may be compatible with the condition

Wy =

|CL(L+ 2124 + Cy(1 + e12t) [ (2.6)
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of no population inversion Nj > N3 and N; > N;. Hence the expression ”gain
without population inversion”.

If the upper state is empty, then C; = 1/ v/2 and the trap and interacting
states are the well-known combinations & = %(d)l + ¢). The presence of atoms
in the upper state does not change the discussion. The general wave function of
the system is then ¥ = Cy¢y + Cogy + Cs3 with the normalization constraint
|C1|2 + 10212 + |Ca|2 = 1. The choice Cl = —-CQ implies 2|01|2 + |C’3|2 = 1.

2.2 The formal framework

Since we shall be dealing with more than two atomic levels, some caution must be
exercised when dealing with the phenomenological constants which are introduced
in the evolution of the density matrix elements. For instance, it is well known
that for a two-level system, the constraint 2y, > holds. The question we want to
address in this section is what inequality is to be used in the case of a multilevel
medium.

Let us consider an isolated atomic system. In the absence of any interaction
with any coherent field, we may assume that the coherence decay as

Wik o [t (wp =)l s G (21

For the population dynamics, we introduce the transition probabilities W — k)
and express the dynamics in terms of a balance between populating and depop-
ulating processes

dp;; ) )
T e W G R D (k=) (2.8)

However, the transition probabilities W(j — k) must be proportional to the
population N;. Hence we write

W(j — k) = Nymye = Ny/T1" (2.9)
In terms of these transition probabilities, the decay rate of the coherence can be
shown to verify the relation
1
i
The sum over [ is unrestricted and includes the W (I — 1) transitions which are

positive and describe higher order processes in which, for instance, one has the
sequence of transitions I — j — ! . Hence we have the inequality

2 2 Y W=D+ Wk—D)

I#5 I#k

> Z Neype + ) Niviat (2.11)

1] ik

Yijk = Yk =

=%Z[W(j—>l)+W(k—»l)] (2.10)
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If there are only two levels with N} + N, = 1, the inequality reduces to the
usual relation 2yy3 > 7y10. However, if there are more than two levels, the inter-
relations between the various decay rates becomes more complex and introduce
constraints on the possible range in which the rates may be chosen. For instance,
if all the coherence decay rates are equal (y;; = ) and all the population decay
rates are equal () = 7)), it follows from (2.11) that 2y > (1 + N;)7y;. Summing
over j leads to 3y > 2+, quite different from the two-level result.
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Chapter 3
The A schemes

3.1 Formulation

In this section, we shall analyze more systematically the scheme which was de-
scribed in chapter 2. The electric field and atomic polarization are decomposed
as follows

1

Etot = _2_ [Eaei(ku:c—wat) + Ebei(kb:z—wbt) + C.C.]
1 . ,
Bot = 5 [Pae‘l(ka-’ﬂ—wnt) + Pbet(kg,x—wbt) + C.C.] (31)

The relations between the components P; of the polarization and the density
matrix are

P, = pspme™t = py3oa, Py = paapaae™®’ = pia3os (3.2)
Therefore the two field equations are

(Bm + 'U;lat + Ka) Ea = (41rin13wa/va€a)c731 (33)
(31. + ’Ub_lat -+ K,b) B, = (4m’N,u23wb/vbeb)032 (34)

Likewise, the equations which govern the time evolution of the optical coherence
are

do . 1 i

'Fg"l' = —(ys1 + tbs)om + —g’";—lEanll?' + %Eb@l (3.5)

Ao i 1 1

_at“ﬁ = —(v32 + 90s)032 -+ ";’i};Ebn% + —;%Eadm (3.6)
0o = W31 — Wa, Op = w3y — Wy

In these equations, we have introduced the important low frequency coherence
pa1 and its slowly varying envelope defined by pa = 091 exp [ (wp — w,) t]. To be

11



12 CHAPTER 3. THE A SCHEMES

complete, we should write the evolution equations for the low frequency coher-
ence and for the populations p;;. However, these equations are not necessary to
determine the nature of the solutions in the lincarized regime. Therefore, we shall
analyze these additional equations at a later stage of the analysis. For the lin-
earized analysis, it will be sufficient to assume that o3, and the p;; are constants,
given therefore by their initial value.

3.2 Linear propagation regime

In the linearized regime, we seek plane wave solutions of the form

E, Ea

B |t & | jitke—wt) (3.7)
031 $31

032 832

Qur purpose is to derive the dispersion relation k& = k(w). Inserting these expres-
sions into equations (3.3)-(3.6) yields a pair of equations for the atomic polariza-
tions

831 = oF (H32Ee021 + pnaniz) / (a1 + i6a — iw) (3.8)
Sg2 = '2% (a2€mas + p31€a012) / (Va2 + 165 — iw) (3.9)

and a pair of equations for the fields

[i(k = w/vas) + Ko + garis) 43160 + gaonpnls = 0 (3.10)
Goo12iz1€a + [i (k — w/vp) + Ko + gonoa] p132E, = 0 (3.11)
where we have introduced the notation
2rNw, [,u31|2
= - 3.12
By 3 e (o o (3:12)
2N 2
o = TN Itz (3.13)

YaoesUsfi [1 + 4 (6, — w)/va2)]

The final step is to express the compatibility condition for the existence of non
trivial solutions &;. This leads to the dispersion relation

0 = (k—w/va)(k—w/v) — ik —w/v.) (ks + gsnas)
—Z(k - (.J/'Ub)(h’,a + ganlg) + L (314)
L = gagslosaf® — (Ka + ganas) (s + gonaa) (3.15)

Note that although we follow the same reasoning as in section 1.2, the struc-
ture of this problem is completely different from the corresponding two-level
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problem. In the two-level problem, the dispersion relation arises from a com-
patibility condition between the field amplitude and the optical coherence. On
the contrary, here the dispersion relation arises from the compatibility condition
between the two field amplitudes. Rather than undertake a study of the gen-
eral dispersion relation, we shall introduce some simplifications in order to reach
more transparent physical conclusions. Let us therefore introduce the following
assumptions:

e We shall assume that §, = 6, = w because this corresponds to the condition
of maximum linear gains g;.

o We assume negligible linear losses: «; ~ 0.

o We assume that the two fields have equal velocity in the absence of the
nonlinear medium: v, = .

With these simplification, it is easy to verify that the amplification condition,
Im(k) < 0, is equivalent to the condition L >0 which is therefore

lﬂrul2 > M3Nng3 (3.16)

Let us analyze this condition. First, we note that if there is no population in
the upper level 3, (3.16) can never be verified. Indeed, if ps3 = 0 we have
|012|2 = lp12|2 > p11pae which is impossible for a density matrix which is def-
inite positive. Hence, amplification requires atoms in the upper state. Next, we
note that the amplification condition involves only functions which are in fact
not yet defined: in this chapter, we have assumed up to now that o2 and the
pj; are given constants. It turns out that they are not independent constants
but matrix elements of the same density operator and therefore they cannot be
chosen arbitrarily. Finally, the essential result is that the amplification condition
cannot be verified spontaneously with the extra condition n;3 > 0 and ng3 > 0
which express the absence of population inversion. That is, a bichromatic field
of arbitrary amplitude is unable to create spontaneously enough low frequency
coherence o5 to verify selfconsistently the gain condition. Fortunately! Other-
wise, we would have proved that using a bichromatic field of arbitrary amplitude,
gain can be achieved. To prove this result, an analysis similar to the nonlinear
propagation made in section 1.3.2 must be carried out. This is a fairly heavy
calculation which will not be carried out here. Hence, we arrive at the conclusion
that in order to reach gain, we need to add a mechanism which produces extra
low frequency coherence.

Despite the negative conclusion we have reached so far, it is worth considering
the nature of the state of the system at threshold, even though the threshold can
only be reached asymptotically for arbitrarily intense fields. We note that at
threshold, i.e., for |o1a]® = misngs, it follows from (3.8)-(3.9) that the optical
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coherences o3; and o3 identically vanish. This is another significant difference
with the two-level system. As a consequence, the density matrix has the structure

P p12 0
p=1| pu pn O (3.17)
0 0 P33

It is quite easy to find the eigenvalues (the atomic populations) and the eigen-
vectors of this density matrix. The eigenvectors are

N1 = N3, N2 =1- 2N3, Ng = P33 (318)
while the corresponding eigenvectors are

-/ P22 = p11 VP11 ~— P33 0
Uy =1 P11 — ps3 ) Vo= | Von—pu |, V=10

0 0 1
(3.19)
In terms of the atomic states
1 0 0
er=110 1, wa=1 1|, p3= 1|0 (3.20)
0 0 1

the eigenvectors of the density matrix are
\I’1 = Ebgog + Ea(pl, q’g B Eb(pg — Eatpl (321)

These eigenvectors (which are not normalized) generalize quite clearly the trap
and the interacting states ®_ and ¢, introduced in section 2.1. They also provide
a simple physical interpretation of the mechanisms which lead to gain without
inversion. Since [(¥; |er Eyo| U3)|* = 0, only the pair of states (¥, Uy4) contribute
to the absorption and emission processes. However, they are equally populated.
Hence they are transparent to the radiation which can propagate without atten-
uation. And since the trap state ¥, is the most populated state if N3 < 1/3, this
threshold obviously does not require population inversion between level 3 and the
other two levels. This is in complete opposition with the result that amplification
requires 4 > 1 if the field propagates in a two-level medium since this threshold
condition implies an initial population inversion.

3.3 The driven A scheme

3.3.1 Formulation

The next step is to consider a system in which there is an additional element
which will induce the necessary low frequency coherence. Various strategies have
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been imagined to realize this program: as usual, the imagination of physicists
has shown itself to be pretty unbounded. For the purpose of this course, we shall
analyze the driven A scheme because it will provide an opportunity to discuss
the question of the two mechanisms on which gain without inversion relies.

Let us therefore consider the A system described in the previous section and
add a strong driving field

E,= % (Epeltr=r®) +c.c.) (3.22)
which couples levels 1 and 2. We also assume that this driving field is strong
enough that its attenuation due to the light-matter interaction can be neglected.
Hence it will be treated, in first approximation, as a constant. The presence
of the driving field induces a modification of the density matrix whose optical
coherences are now given by

o . 1 t ¢

——3:1 — (a1 + 980 )031 + -—g;l Eqnys + %Eﬂm - "g_;l posz (3.23)
do : 1 z s *

_3? = —(vya +ib)on+ —%Ebnzs + g—?;—EaUm + %Epasl (3.24)

The rest of the analysis proceeds as in the previous section: we seek plane wave
solutions and the compatibility condition between the two equations for the com-
plex field amplitudes E, and E, determines the dispersion relation from which
we derive the amplification threshold as the instability condition. The general
form of the dispersion relation is
0 = (k—w/ve)(k—wfw)—i(k—w/va)Ts

—i(k — w/vp)La + G = Tol : (3.25)

where we have defined

(021 — iYpnasts) {012 — 1Y R13Va)

G = ga 3.26
59 (Lt vl (320

N3 — Y012l
Fa = Kqt a_'_—'p_“_ 3.27
9 ¥ vl (3.27)

Tg3 — iY5021%
Iy = syt 2 3.28
b Kp Qb 1 + VaVb|'Yp]2 ( )

and

1ve = iz +i(ws — we —w) (3.29)
/vy = 7132+ i{wsz —ws —w) {3.30)
Yo = buEy/2h (3.31)

For simplicity, we again assume v, = 1 = V. There are two branches of
solutions to the dispersion relation

kﬂ: = w/’u + % {Fa + Fb + \/(Fa + Pb)2 + 4(G — FQPb)} (332)
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3.3.2 The two mechanisms

There are two ways in which this expression may lead to amplification, i.e.,
Imks < 0: either Re(G — I'sI's) > 0 or Re(T', + I';) < 0. We shall see that
these two possibilities correspond to two mechanisms..

To simplify somewhat the analysis, let us consider the much simpler case of
line center amplification with equal detunings (w3 —w, = w3 —wy = w), resonant
pumping (wy; = w,), and negligible passive losses (k, = x; = 0).

o Re(G -~ T'.T'y) > 0. With the simplifications we have just introduced, this
condition reduces nicely to the condition (3.16): |012[2 > ni3ngs. The dif-
ference between the present result and (3.16) is that now the density matrix
is a function of the driving field E,,. Therefore, the condition |05 |2 > Nq3tag
is an implicit equation for the driving filed. The other point which merits
attention is the following. It has been shown that the condition |oys|® >
713703, Which is expressed in the bare state basis, is strictly equivalent to
the condition of population inversion in the dressed state basis. Hence, in
this case there is a unitary transformation of the density matrix which leads
to a representation in which gain occurs in the natural way, namely with
population inversion. This situation is referred to as hidden inversion. Its
is intellectually reassuring since we can still understand gain in terms of a
classical picture, without recourse to purely quantum arguments.

e Re(l, + ') < 0. Here the situation is more tricky since one of the two
transitions may be forbidden. In such a case, there is no more interference
between two decay channels and all the arguments we have used up to
now fail to explain why there could be gain. Recently, it has been shown
that the gain mechanism is still atomic interference.. More precisely, it has
been shown that only one Feynmann diagrams contributes to the emission
process which retains its usual expression but that absorption displays an
interference between two diagrams. This leads once again to an interference
process for the absorption coefficient which is a transition probability and
therefore the modulus squared of the sum of two complex coefficients. Be-
cause of this interference, the symmetry between emission and absorption
is broken, paving the way to gain without population inversion.

Let us now analyze more explicitly the two gain conditions. The first con-
dition, |cr12|2 > ny3nes, requires a knowledge of the populations and the low
frequency coherence in steady state. For this, we need to specify the evolution
equations for these variables. Using the reservoir theory, it can be shown the
three-level generalization of (1.12) for the low frequency coherence and (1.13) for
the population differences is

do , }
6:1 = —[va +1(wa —w)] oo + ipnae
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un By s Fg
+?l#'—'223§'b"0'31 — %”321?1 s DX (333)
Op11 _
2 ~ = (Nypgs — Nopur) + vja1 (N1pas — Napui)
E; .
| —2Im (%3_,1_031 + 'ypagl) (3.34)
Opza
5 (Napry — Nipaz) + sz (N2pss — Napaz)
E*
—2Im (#2235 b rag — 7;021) (3.35)

In the absence of light-matter interaction, the steady state solution for the pop-

ulations are p;; = N; which represents the net balance between the incoherent
pumping and decay processes taking place in the medium. Note, however, that
we are considering here a closed system since Ni + No + N3 = 1. The reason for
imposing this constraint is that it accounts in a simple way for the fact that, in
practical situations, populating a level means depopulating other levels. There-
fore, all the conclusions we shall reach are restricted to these closed systems.

Since we are considering the response of the atomic medium driven by a strong
pump field E, and weak probe fields E, and E, it is sufficient that we evaluate
the steady state expressions of og1, pu, p2 and pss with zero probe fields. This
gives

o9 = ivpniz/ [ya + 1 (wa — w)] = pnae (3.36)
_ 2 2
ni = (le + 47, 721/%) / (1 + +4 [V, 121/’7;%) (3.37)
_ 2 _
Ngz = (st + 47, 721/%) / (1 ++4 l’Yp|2 721/%’%) (3.38)
Tiyg = N12/ (1 + +4 IWPF ’}’21/")’f“}'¢) (339)
with njx = pj; — ek, Njx = N. — N, and where we have used the notation
j j
1
Y = 3 (Niaypar + Nozyjs2) /d (3.40)
1 1
Yy = (Nl’Yn?.l + Navyyae + §N3’Yt|32 + §N3’71|31) /d (3.41)
d = Niyjarys: + Nayjaivgsz + Navsrvise (3.42)

The correction to these expressions for o9, p11, p22 and pss is quadratic in the
probe fields E, and E,. Although these are rather heavy expressions, it turns out
that the gain condition, |alg|2 > nanes, has eventually a simple expression in
terms of the auxiliary variable z =4 1vp|® / (Yev21), namely

flz) =2*+  [Nis + Nz — N/ (4vev21)] + NMisNoz > 0 (3.43)
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The problem is eventually reduced to finding a domain in the parameter space
{ Ny, No, N3, 112,13, Y23, V12, V13, Vy23 } Subject to the constraints N3 < Ny, N3 <
N3, 32 Nj =1 and the inequality (2.11) where f(z) > 0. For instance, the gain
condition (3.43) does not have a solution if either 73, = YIs2 OF Y21 < V)32 31-
However, if y21 > vja1 > 32, there exists a domain of gain with the restrictions
we have imposed. Note also that if we do not impose the assumption of a closed
system, and therefore do not impose the inequality (2.11), the domain of para-
meters becomes significantly larger. The main point, however, is the proof that
gain without population inversion may be reached even with all the restrictions
we have imposed.

Let us consider next the second mechanism. Since it does not require two
probe fields, we shall assume that the transition 3-2 is forbidden. This becomes
a variant of the V scheme, although we call it the h scheme to stress the fact
that we have in mind schemes in which there is a low frequency driving field
and a high-frequency probe field. In this case, the Bloch equations (3.23)-(3.24)
and (3.33)-(3.35) imply that there is nevertheless a coherence which is induced
between levels 3 and 2. Indeed, the low frequency pump field is coupled to the
low frequency population difference to drive the low frequency coherence. This
coherence, coupled to the probe field E, is the source of the coherence o3, despite
the restriction uss = 0.

To analyze the gain condition Re(T', + I';) < 0, we shall assume resonant
driving (w31 — We = w and wy; = w,) and the symmetric case Va1 = Y31 With
these simplifications the gain condition becomes

el® > Nis/ [(Nia/¥s2 = 4%) /1] (3.44)

In the absence of population inversion, Ny3 > 0, gain requires Nyg > 4,732 which
can be transformed into

Nip [(Nl + NZ) Yz + N3')’i|13] > (N13 + N23) (’Y||13 + N1'7||12) (3.45)
If Y12 < Y3, the inequality (3.45) cannot be fulfilled. However, in the opposite
regime 712 > 7|13, the inequality Ni; > 4ry.v3; becomes 2N, (2N3 — Np) > NZ
which is verified in the range

1
§N2 <A< N3 <N;<1/3 (3.46)

where A is the smallest root of 22 — z(1 — 3N;) + 3N, = 0. This completes the
proof that there is a domain in parameter space where all the constraints we have
imposed are verified and gain occurs.

3.4 A short bibliography

A short and incomplete bibliography of the "firsts” on gain without inversion in
three-level media.



& s

3.4. A SHORT BIBLIOGRAPHY 19

3.4.1 The founding papers

e O. Kocharovskaya and Ya. I. Khanin, Pis'ma Zh. Eksp. Teor. Fiz. 48 (1988)
581 [JETP Lett. 48 (1988) 630]

e S.E. Harris, Phys. Rev. Lett. 62 (1989) 1033.

¢ M.O. Scully, S.-Y. Zhu and A. Gavrilides, Phys. Rev. Lett. 62 (1989) 2813.

3.4.2 Review papers
e O. Kocharovskaya, Phys. Rep. 219 (1992) 175.

e M.O. Scully, Phys. Rep. 219 (1992) 191.

e P. Mandel, Contemp. Phys. 43 (1993) 235.

3.4.3 The simple V and A schemes
e O. Kocharovskaya and P. Mandel, Phys. Rev. A 42 (1990) 523.

e A. Imamoglu, J.E. Fields and S.E. Harris, Phys. Rev. Lett. 66 (1991) 1154,

» O. Kocharovskaya, F. Mauri and E. Arimondo, Opt. Commun. 84 (1991)
393.

3.4.4 The two mechanisms

e O. Kocharovskaya and P. Mandel, Opt. Commun. 84 (1991) 179.

e O. Kocharovskaya, P. Mandel and Y.V. Radeonychev, Phys. Rev. A 45
(1992) 1997.

o G. Grynberg, M. Pinard and P. Mandel, Phys. Rev. A 54 (1996) 776.

3.4.5 Lasing without inversion

e O. Kocharovskaya, R.D. Li and P. Mandel, Opt. Commun. 77 (1990) 215.

e V.J. Sanchez-Morcillo, E. Rolddn and G.J. de Valcarcel, Quant. & Semi-
class. Opt. 7 (1995) 889.



20 CHAPTER 3. THE A SCHEMES

3.4.6 The first experiments using population trapping
s A. Nottelmann, C. Peters and W. Lange, Phys. Rev. Lett. 70 (1993) 1783.

s E.S. Fry, X. Li, D. Nikonov, G.G. Patmabandu, M.O. Scully, A.V. Smith,
F.K. Tittel, C. Wang, S.R. Wilkinson and S.Y. Zhu, Phys. Rev. Lett. 70
(1993) 3235.

e W.E. van der Veer, R.J.J van Dients, A. Donzelmann and H.B. van Linden

van den Heuvel, Phys. Rev. Lett. 70 (1993) 3243.

3.4.7 The first experiment using the second mechanism

o A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L.W. Hollberg, M.O. Scully, V.L.
Velichansky and H.R. Robinson, Phys. Rev. Lett. 75 (1995) 1499.

3.4.8 The first reports on trap states

e G. Alzetta, A. Gozzini, L. Moi and G. Orriols, Nuovo Cimento B 36 (1976)
3.

e E. Arimondo and G. Orriols, Nuovo Cimento Lett. 17 (1976) 333.
e H.M. Gray, R.M. Whitley and C.R. Stroud Jr, Opt. Lett. 3 (1978) 218.
o G. Alzetta, L. Moi and G. Orriols, Nuovo Cimento B 52 (1979) 209,

¢ G. Orriols, Nuovo Cimento B 53 (1979) 1.

3.4.9 Electromagnetically induced transparency

e K.J. Boller, A. Imamoglu and S.E. Harris, Phys. Rev. Lett. 66 (1991) 2593.
e J.E. Field, K.H. Hahn and S.E. Harris, Phys. Rev. Lett. 67 (1991) 3062.

e S.E. Harris, Phys. Rev. Lett. 72 (1994) 52.

J.H. Eberley, M.L. Pons and H.R. Hag, Phys. Rev. Lett. 72 (1994) 56.

A. Kassapi, M. Jain, G.Y. Yin and S.E. Harris, Phys. Rev. Lett. 74 (1995)
2447,

3.4.10 Enhanced index of refraction

¢ M.O. Scully, Phys. Rev. Lett. 69 (1992) 1360.



3.4. A SHORT BIBLIOGRAPHY 21

3.4.11 Quantum effects

e G.S. Agarwal, Phys. Rev. Lett. 67 (1991) 980; Phys. Rev. A 44 (1991)
R28.

e K.M. Gheri and D.F. Walls, Phys. Rev. A 45 (1992) 6675.

3.4.12 Strong driving fields

e O. Kocharovskaya, S.-Y. Zhu, M.O. Scully, P. Mandel and Y.V. Radeony-
chev, Phys. Rev. A 49 (1994} 4928-4934.

e O. Kocharovskaya, P. Mandel and M.O. Scully, Phys. Rev. Lett. 74 (1995)
2451.



