UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL ATOMIC ENERGY AGENCY c@,
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/984-8

Winter College on Quantum Optics: Novel Radiation Sources

3-21 March 1997

Pulse matching

E. Arimondo

Dipartimento di Fisica, Universita degli Studi di Pisa, Italy

MAIN BUILDING STRADA COSTIERA, 1! TEL 2240111 TELEFAX 224163 TELEX 460392 ADRIATICO GUEST HOUSE VIA GRIGNANO, 9 TEL 224241 TELEFAX 224531 TELEX 460449
MICROPROCESSOR LaB. Via BEIRUT. 31 TEL. 2249911 TELEFAX 224600 TELEX 460192 GALILEO GUEST HOUSE VIA BEIRUT. 7 TEL 224031t TELEFAX 2240310 TELEX 460392






Tod
nsk

rid

i€, PA
Z0

OR

ford, MA
PA

.CA
delphia, PA
AA

0K
.R1

J

FL
-
juest. Subscriptions are

it by SAL (Surface :f.ir
ase address all enquiries

within six menths of our

e

,P.O. Box 211, IGOQ AE
wluding air speed delivery.

1. Airfreight and mailing in

Printed in the Netherlands

EISEVIER

1 June 1996

Optics Communications 127 {1996) 35-61

OPTICS
COMMUNICATIONS

Matched pulses and electromagnetically induced transparency for
the interaction of laser pulse pairs with a double-vee system

Elena Cerboneschi?, Ennio Arimondo ™!

® Dipartimento di Fisica, University di Pisa, Piazza Torricelli 2, [-56126 Pisa, Italy
b LA, University of Colorado, Boulder, CO 80309-0440, USA

Received 20 September 1995; revised version received 23 January 1996; accepted 24 January 1996

Abstract

the phenomenon of coherent population trapping. We show that the space-time evolution of the probe pulses is determined
by a pair of normal modes that describe the propagation of the pulsed excitation through the medium. The establishment of
the pulse-matching propagation regime and the transparency for the probe pulses are related to the absorption properties of

the normal modes.

PACS: 42.50.Gy; 42.25 Bs; 42.50 Hz

1. Introduction

Electromagnetically induced transparency (EIT)
consists of a modification of the absorption and dis-
persion properties of an absorbing medium produced
by an electromagnetic field and allows the propaga-
tion of a second field with reduced losses [1-3]. EIT
depends on the creation of atomic coherences and the
occurrence of interfercnces in the absorption process.
Cohcerent bleaching in the interaction of cw clectro-
magnetic fields with A and double-A (DA) level
systems [4] is a precursory achievement in this field.
Dressed fields [5] and adiabatons (6] evidence dif-
ferent EIT features in the shape-preserving propaga-
tion of optical puises. Recently, the first experimental

' Permanent address: Dipartimento di Fisica, Universitd di Pisa,
Piazza Torricelli 2, 156126 Pisa, Italy.

description of the temporal and spatial behaviour of
propagating EIT pulses was reported [7].

In the context of EIT, matched pulses have been
predicted theoretically in the interaction of coprop-
agating optical pulse pairs with three-level atoms in
A or cascade configurations [8-11]. In thesc lovel
schemes, pulse matching is related to cohercnt pop-
ulation trapping (CPT)} [ 12]. The field envelopes of
matched pulses have a definite ratio of intensity and
phase, determined by the quantum preparation of the
atomic system in the CPT state, and have a space—time
profile specified by the input pulse shapes. Maltched
pulses propagate without losses and withou( aroup ve-
locity dispersion,

We have recently demonstrated that pulsc maich-
ing is conveniently achieved in the DA scheme with
a pair of coupling pulses preparing the atomic sys-
tem and a pair of probe pulses showing pulse match-
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This article is dedicated 1o the memory of A. Gozini and G.W. Series.
great teachers in atomic Speciroscopy.

§ 1. Introduction

Spectroscopic investigations of atoms and molecules are based on the interaction
of near-resonant radiation with the species under investigation. The use of
monochromatic, intense, and continuously tunable radiation sources, permits
very high sensitivity and accuracy to be attained in the determination of the
atomic or molecular levels. Although the attention of spectroscopists was re-
stricted to two-level systems for a long time, the possibility of irradiating samples
by several electromagnetic fields simultaneously has produced multiphoton
transitions and other nonlinear phenomena, whose application has been explored
in the continuously expanding field of nonlinear spectroscopy. In comparison to
the two-level system, the three-level system, interacting with two monochromatic
radiation fields, represents a configuration in which the nonlinear phenomena are
greatly enhanced both in the number of possible laser configurations and in the
magnitude of the nonlinearities. The development of monochromatic and tunable
laser sources has produced a large variety of high-resolution spectroscopic
investigations on three-level systems.

Among the different nonlinear processes associated with the three-level
atomic systems, the application of two continuous wave radiation fields leads
to the preparation of the atom in a coherent superposition of states, which
is stable against absorption from the radiation field. This phenomenon has
been designated as coherent population trapping, to indicate the presence of a
coherent superposition of the atomic states and the stability of the population.
Coherent population trapping may be also described as the pumping of the
atomic system in a particular state, the coherent superposition of the atomic
states, which is a nonabsorbing state. The exciting radiation creates an atomic
coherence such that the atom’s evolution is prepared exactly out of phase with
the incoming radiation and no absorption takes place. This phenomenon was
observed for the first time by Alzetta, Gozzini, Moi and Orriols [1976], as a
decrease in the fluorescent emission in a laser optical pumping experiment on
sodium atoms, involving a three-level system with two ground levels and one
excited level. In that experiment, because an inhomogeneous magnetic field was
applied along the sodium cell axis, the nonabsorption was produced in only a
small region inside the cell, and the phenomenon appeared as a dark line inside
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260 ) COHERENT POPULATION TRAPPING v§l1

the bright fluorescent cell. As a consequence, names such as dark resonance or
nonabsorption resonance have been used in the literature to describe coherent
population trapping. At the same time, and independently, the pumping and
tapping originated by two laser fields resonant with two coupled transitions
was investigated theoretically for three levels in cascade by Whitley and Stroud
[1976), and experimentally in sodium atoms with two ground levels and one
excited level by Gray, Whitley and Stroud [1978]. The theoreticai analyses by
Arimondo and Orriols [1976] and Gray, Whitley and Stroud [1978], pointed
out that the sodium atoms were pumped in a nonabsorbing state because of
the presence of interfering processes. Population trapping during laser-induced
molecular excitation and dissociation was examined theoretically by Stettler,
Bowden, Witriol and Eberly [1979). The title of a paper by Gray, Whitley and
Stroud {1978) contains, for the first time, the term coherent trapping, and in
the conclusion of the paper, the phenomencn is defined as a coherent trapping
of a population. The complete designation of coherent population trapping
appeared for the first time in the abstract of a paper by Agrawal [1981] on
the possibilities of using three-level systems for optical bistability. Then the
title of a work by Dalton and Knight [1982a] contained the full designation of
coherent population trapping with evidence on the main characteristic of the
phenomenon.

The process remained a sort of amusing scientific curiosity for some time.
If one resonant laser beam is switched on inside a sodium cell, some very
bright fluorescence is cmitted by the cell. If a second laser beam is sent
into the cell, this second laser being slightly detuned from the first one
but also in near resonance with the sodium atoms, it produces its own
bright fluorescence. The simultaneous application of the two lasers produces
coherent population trapping and eliminates the sodium bright fluorescence. This
interference effect, produced by the presence of atomic coherence, appears at the
macroscopic level. Coherences between states of a quantum-mechanical system
are generated whenever an interaction or measurement leaves the system in a
linear superposition of the energy eigenstates defined in the absence of the field.
Interferences produced by the presence of coherences have been known since the
development of quantum mechanics, and their creation has been largely exploited
in spectroscopy and quantum optics. However, a macroscopic effect such as the
total suppression of fluorescence emission by coherent population trapping is
quite unusual,

In the early 1980s some theoretical attention was given to the process of
coherent population trapping, with extensions to the case in which the upper state
of the three-leve! system lies in the continuum, e.g., Knight [1984]. However, the
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real rise in interest waited for the extensions or applications on the experimental
side. The first application, to metrology, is linked to the work by Tench, Peuse,
Hemmer, Thomas, Ezekiel, Leiby Jr, Picard and Willis [1981], and Thomas,
Hemmer, Ezekiel, Leiby Jr, Picard and Willis [1982] (see also discussion in
Knight [1982]), who demonstrated how very high-frequency accuracy in the
measurement of the sodium ground-state hyperfine splitting could be obtained
by using what they called Ramsey fringes in Raman three-level transitions. That
now should be defined as a Ramsey fringe investigation of coherent population
trapping. The next application was to optical bistability; Walls and Zoller (1980}
investigated theoretically the optical bistability from threc-level atoms contained
in an optical cavity and driven into the coherent-trapping superposition. That
optical bistability was observed for the first time by Miynek, Mitschke, Deserno
and Lange [1982]. After those early observations, the phenomenon of coherent
population trapping has been exploited in very different applications: in high-
resolution spectroscopy, laser multiphoton ionization, four-wave mixing, and
laser-induced structures in the continuum. Increased attention is due to the work
of Aspect, Arimondo, Kaiser, Vansteenkiste and Cohen-Tannoudji [1988] on the
application of velocity-selective coherent population trapping to laser cooling.
Very soon other interesting phenomena such as adiabatic transfer, lasing without
inversion, matched pulse propagation, and photon statistics, strictly connected to
the trapping propertics of the three-level system, were discovered. It should be
noted here that even if some theoretical work has considered the extension to
molecular systems, the evidence of coherent population trapping in molecules is
still very limited and has been associated with the adiabatic transfer experiments
of Gaubatz, Rudecki, Schiemann and Bergmann [1990] and of Dam, Oudejans
and Reuss [1990]).

For the most important steps in the theoretical understanding of coherent
population trapping, Hioe and Eberly [1981], and later Hioe [1983, 1984a,
1984b], have shown a relation with the invariants in the density matrix equations:
coherent population trapping is related to the SU(3) group symmetries of the
Hamiltonian and to some conservation laws satisfied by the density matrix
elements of a three-level system during the time evolution. Smimmov, Tumaikin
and Yudin [1989] and Tumaikin and Yudin [1990] have presented generalizations
in the construction of the coherent population-trapping atomic superposition.
Radmore and Knight [1982] and Dalibard, Reynaud and Cohen-Tannoudji [1987]
have derived the dressed atorn description.

Coherent trapping as an interference phenomenon is closely related to other
interference processes well exploited in spectroscopy, such as the Fano windows
in the autoionization profile, the level crossing, or the Hanle effect. A strict
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connection also exists between coherent population trapping and the weak
interaction decay of the Xy and Ky mesons. In coherent population trapping,
the two linear superpositions of ground atomic or molecular states present very
different lifetimes for the interaction of these superpositions with the radiation
field. Owing to weak interaction mixing between the K and K¢ mesons, their
linear superpositions, K's and K, should be considered. Those superpositions
have different lifetimes, short and long, with respect to the weak interaction
decay. However, it should be noted that the reduction of coherent population
trapping to an interference feature is a reductive description: the experimental
observations are strongly based on the role played by optical pumping in the
atomic preparation into that quantum superposition that presents interference in
the absorption or radiative decay.

Coherent population trapping has been examined in several review papers.
An carly review was presented by Dalton and Knight [1983]. Yoo and Eberly
{[1985] presented an analysis of the most important theoretical features of the
phenomenon, although their attention was devoted to three-level atoms inside
an optical cavity. A review by Arimondo [1987) summarized the experimental
observations at that time. A more recent review, with more attention toward
the theoretical features and the extensions to laser cooling, has been written by
Agap'ev, Gomyi and Matisov [1993].

The organization of this chapter is as follows. In § 2 a theoretical introduction
presents the basic properties of an atomic system prepared with the coherent
population-trapping superposition of states. § 3 deals with several experimental
observations concerned with the establishment of coherent trapping in different
discrete systems. § 4 very briefly treats the theoretical and experimental aspects
of trapping which involves states of the continuum, because a recent review
on that subject has been written by Knight, Lauder and Dalton [19%0].
The remaining sections are devoted to a review of both the theoretical and
experimental features associated with coherent population trapping in laser
cooling, adiabatic transfer, lasing without inversion, pulse matching, and photon
statistics. The large amount of theoretical work that has been published with
respect to the phenomenon and to the constants of motion with relation to
the SU(3) symmetry will not be reported here; the book by Shore [1990] and
the recent review by Agap’ev, Gornyi and Matisov [1993] deal with most of
those features. Nevertheless, § 8 is devoted to the theoretical aspect of coherent
population trapping created by spontancous emission, which is a possibility
considered in some theoretical papers. Even if there is little chance of observing
the phenomenon, it is presented because of its fundamental connection with
coherent population trapping and lasing without inversion.
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Fig. 24. (n)Schmnﬁcdiammofthehﬂoonﬁgunﬁon for two-dimensional VSCPT, with
mmpﬁngﬁnLthauhemdmgmdﬁwﬁm(b)nﬁddmlswﬂufw
nmkmmemmnmdmgﬂnmmmmhﬁumdwmledm
with interfering transitions to excited states {open circles). Circles represent families of states;
the wavefunctions of the noncoupled state belong to several families; (c) image of the detected
atomic position distribution for VSCPT in two dimensions in 4He, with experimental parameters:
Oy =08 I'g; & =0.5 I'y; interaction time ©=0.5ms. The momentum distribution consists of four
peaks as in (b); the peak widths are cvidence of » subrecoil two-dimensional VSCPT (from Lawall,
Bardou, Ssubamea, Shimizu, Leduc, Aspect and Cohen-Tannoudji [1994]).

Jy=1—J.=1 case, the lin L lin configuration of counterpropagating lasers in
two dimensions, examined by Arimondo [1992], is represented in fig. 24a. Using
the selection rules for the linear polarization basis of fig. 7b, the corresponding
noncoupled state is obtained as the superposition of |gi,4x.4y) ((=X, ¥ z)
wavefunctions. This is represented schematically in fig. 24b, together with
the interference channels in the excitation to upper states. For both o0
and lin L lin configurations, the wavefunctions composing the noncoupled state
do not belong to closed families, so that the efficiency in the preparation
of the noncoupled state has not yet been calculated. The configuration of
counterpropagating o¥,0~ laser fields for VSCPT in two dimensions has been
realized by Lawall, Bardou, Saubamea, Shimizu, Leduc, Aspect and Cohen-
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Tannoudji [1994] for *‘He atoms precooled in a magneto-optical trap using the
same J; =1 —J.=1 transition of VSCPT in one dimension. After precooling,
the helium atoms interacted for 0.5 ms with the four counterpropagating laser
beams and were prepared in an noncoupled state similar to that represented
in fig. 24b. After the VSCPT cooling, the atoms were falling, due to gravity,
onto a CCD camera that recorded an image of the atomic position distribution.
Figure 24c shows an image from this camera, with the four spots produced by
the detection of the wavefunctions composing the two-dimensional noncoupled
state. From the measured width of the individual peaks, as on the vertical profile
on the peak at the right of fig. 24c, a temperature around sixteen times smaller
than the helium recoil limit was estimated. Examining VSCPT as a function
of the laser parameters, the authors deduced the presence of nonspecified laser
cooling forces that contribute to the efficiency in the filling of the noncoupled
state.

Combinations of linearly and circularly polarized laser fields were examined
by Taichenachev, Tumaikin, Yudin and Ol'shanii [1992a,b] for YSCFPT on the
Jy=32—J,=1/2 and ;=2 — J. = transitions.

The idea of atomic states decoupled from the laser field because of quantum
interferences was extended by Dum, Marte, Pellizzari and Zoller [1994] to cases
in which the electric field amplitudes have a spatial dependence limited in space
similar to that of a laser trap, so that the spatial atomic wavefunction also would
present a confinement.

§ 6. Adiabatic Transfer

The aim of adiabatic transfer is to transfer an atom or molecule from one
lower level of the A scheme to the other one by using properly tailored laser
pulses, with as large an efficiency as possible. The adiabatic transfer in three-
and multilevel systems was investigated theoretically by Oreg, Hioe and Eberly
(1984], and Carroll and Hioe [1988]. They demonstrated that by using conditions
for the time dependence of the Rabi frequencies £2g;(f) and ra(f) defined
as anti-intuitive, a complete transfer of population from level (1) to level |2)
is realized. Adiabatic transfer is a consequence of one of the [NC) properties
already discussed. From eq. (2.18), {NC) is an cigenstate of the Ho+VaL
Hamiltonian with zero eigenvalue. If the Hamiltonian is modified adiabatically,
so that the system remains in this state, the occupation of the |[NC) remains
constant. Let us consider a sequence of laser pulses applied to the {1) — [0}
and [2) — |0) transitions, with the time evolution of the electric field amplitudes
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described by functions 2y(r) and Qg5(t), so that [NC(r)) assumes the following

form:

(6.1)

with G given by eq. (2.16b). Adiabatic transfer is realized for a sequence of
Rabi frequency time dependencies such as those shown in fig. 25a. If the laser
acting on the [2) — |0) transition is applied initially, the [NC} state coincides
with state |1} where the entire atomic or molecular system is supposed to be
concentrated. If the laser acting on the |[2) — [0) transition is progressively
switched off while the laser pulse acting on the |1} — {0} transition is switched
on (see fig. 25a), eq. (6.1) shows that at the end [NC(r)) coincides with [2}, so
that in the adiabatic regime the system occupies state |2}. The counterintuitive
pulse sequence is based on a laser being applied to the second transition at the
beginning, and a laser to the first transition at the end. The requirements on
the validity of the adiabaticity condition are (Oreg, Hioe and Eberly [1984],
Kuklinski, Gaubatz, Hioe and Bergmann [1989], Carroll and Hioe [1990], Band
and Julienne [1991a], Shore, Bergmann, Oreg and Rosenwaks [1991], Marte,
Zoller and Hall [1991], Shore, Bergmann and Oreg [1992]):

o) = 220y - 200 1y,

G, Q> o, On, O > 1o
where T represents the time duration of the two laser pulses. If broad-band
lasers are used for the excitation, the spontaneous emission damping rate in
the first relation of eq. (6.2) should be replaced by the laser bandwidth, which
is equivalent to a damping rate of the optical coherences, as in §2.8 (He,
Kuhn, Schiemann and Bergmann {1990], Kuhn, Coulston, He, Schiemann and
Bergmann [1992]}.

The first experimental results of adiabatic transfer were obtained on a
Na; beam with a transfer from the electronic ground and vibrationally excited
level X'E¢ (v=0, J=5) to another vibrational one X'Ty (v=5, J=5) using
a thrcc—lcvcl A system with upper electronic exc1ted level A'E} (v=7,
J=6) (Gaubatz, Rudecki, Becker, Schiemann, Kiiz and Bergmann {1988),
Kuklinski, Gaubatz, Hioe and Bergmann [1989], Gaubatz, Rudecki, Schiemann
and Bergmann [1990]). The counterintuitive time-dependent pulse sequence
was created using the time-dependent interaction of sodium molecules crossing
c.w. laser beams with separate excitations by the two lasers at different positions
along the beam axis. That separated excitation modified drastically the amount
of the population transferred to the final state, such as for the realization of

6.2)
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Fig. 25. (») Schematic representation of the time dependence for the Rabi frequencics required

for adisbatic transfer from level |1) to level |2); (b) experimental results for the adiabatic transfer

efficiency between the X1 Z} (v=0, J =5) and X'E} (v=$, J =5) levels of Nap molecules versus

the iaser 2 frequency, with laser ] in resonance, and the temporal pulse sequence which maximizes

the transfer; (c) experimental results for the fluorescence from excited state AT (v=1,J=6)

involved in the adiabatic transfer showing the resonant decresse associated with coherent population
trapping (from Gaubatz, Rudecki, Schiemann and Bergmann [1990D).

the proper puised laser sequence. Figure 25b shows experimental results from
Gaubatz, Rudecki, Schiemann and Bergmann [1990] for the transfer efficiency
at laser fixed positions scanning the frequency of laser 2, with laser in resonance,
with a maximum efficiency around 0.8. Figure 25¢ shows experimental resuits
for the fluorescence from the upper excited state versus the laser 2 frequency.
Corresponding to the maximum of the adiabatic transfer, a minimum was
obtained in the excited-state population versus laser frequency, as evidence of
coherent population trapping. A similar setup for adiabatic transfer was used by
Liedenbaum, Stolte and Reuss [1989], and Dam, Oudejans and Reuss [1990]
in a molecular beam of ethylene, C2Hy, in a three-level cascade configuration.
A CO, laser induced the transition gs(4,1,3)—v1(5,0,5), and from there a
color center laser induced the transition to vy +vg(5, 1,4). Schiemann, Kuhn,
Steuerwald and Bergmann [1993] demonstrated a highly efficient and selective
population transfer in NO; molecules in the electronic ground X,ITy state
from vibrational level v=0 to level v=6, using pulsed lasers properly delayed
to realize the counterintuitive sequence of fig. 25a. Sussman, Neuhauser and
Neusser [1994] have realized the adiabatic transfer on a A system of the
C¢Hs molecule, with pulsed lasers in the counterintuitive time sequence, for
preparation in a specific rotational state of a vibronic state of that polyatomic
molecule. That transfer was detected through the decrease in the population of
the excited state in the A system, which represents the coherent population-
trapping characteristics.
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Theadiabaticu-nnsferwithaconﬁnumastheupperlcvcl of the A scheme has
been examined theoretically by Carroll and Hioe [1992]. Coulston and Bergmann
[l992]havemnﬁnedthenmdiﬁuﬁonsinthcpmpmducedbydwpmce
of additional levels close to |0) and [2), such as for the vibra-rotational manifolds
of molecular states. Band and Julienne [1991b] have considered the adiabatic
transfer in & four-level system and demonstrated that a significant population
transfer can be achieved, even if a four-level system does not support coherent
population-trapping states.

The concept of adiabatic transfer has been extended by Marte, Zoller and Hall
[1991] to the case of noncoupled entangled states involving atomic momentum,
such as those involved in the VSCPT processes [see egs. (5.5) and (5.17)).
For a three-level ;=1 —J. =1 atom interacting with two counterpropagating
o*/o~ laser beams, such that the linear superposition of eq. (5.5) describes
the noncoupled state, the counterintuitive application of a ¢*,07 sequence will
transfer an atom from the initial |g—1, p ~ Ak} state to the final |g.1, p + hk) state
with a modification of the atomic momentum by twe times kk. For a higher
J transition, such as J; =2 — J. =2 with the noncoupled state given by eq. (5.17),
the adiabatic transfer produces a larger coherent and selective modification
of the atomic momentum by 4kk. The adiabaticity conditions for the photon
momentum transfer are those of eq. (6.2), and are quite casily satisfied
Theoretical analyses for alkali atoms have been performed by Weitz, Young
and Chu [1994a}, and Foot, Wu, Arimondo and Morigi [1994). The adiabatic
transfer between the entangied states of internal and momentum variables has
been realized experimentally by different groups. Pillet, Valentin, Yuan and
Yu [1993], Goldner, Gerz, Spreeuw, Rolston, Westbrook, Phillips, Marte and
Zoller [1994a,b], and Valentin, Yu and Pillet (1994} have demonstrated, using
the D, excitation of cesium atoms precooled by sub-Doppler techniques, a
momentum transfer up to 8kk between the extreme Zeeman sublevels of the
F =4 hypetfine level, with an efficiency up to 0.5. The off-resonant transitions to
other excited states of the 32Py, manifold limited the efficiency, which should
be larger using the Dy excitation to the 6°Py,; manifold where the hyperfine
scparation is larger. Lawall and Prentiss [1994] realized the adiabatic transfer
on ‘He metastable atoms in a beam using the 23§, — 2°P, transition, with an
efficiency of transfer up to 0.9 for a change of atomic momentum by 2kk. Using
multiple interaction of the lasers with the atomic beam, Lawall and Prentiss
[1994] obtained momentum changes up to 6hk. An immediate application is
in atomic interferometry with the adiabatic transfers used as atomic beam
splitters. In fact, an atomic interferometer based on adiabatic transfer between the
cesium 62, hyperfine states |F =3, mp = 0) and [F =4, mr = 0) using a
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o*,0” polarization configuration has been demonstrated by Weitz, Young and Chu
(1994b]. Using the D, excitation, a coherent transfer of 140 photon momenta to
cesium atoms with an efficiency of 0.95 per exchanged photon was reported.

§ 7. “Lasing Without Inversion”

The idea of lasing without inversion was developed independently by two
groups in Russia and the United States, Kocharovskaya and Khanin [1988]
and Scully, Zhu and Gavrielides [1989), respectively. The aim is to produce
a laser system where the population in the excited atomic, or molecular,
state is smaller that the population in the lower state. The states without
inversion are defined according to the atomic, or molecular, basis, in the
absence of applied radiation fields. Much attention has been given to the
subject, both theoretically and experimentally, due to the attractive possibility
of converting a coherent low-frequency input into a coherent high-frequency
output, without any requirement on population inversion between the high-
frequency emitting levels. At the present stage, several mechanisms giving
rise to the phenomenon of “lasing without inversion” have been identified,
as seen in the reviews by Kocharovskaya [1992] and Scully [1992}. One of
those mechanisms has been based on coherent population trapping, and up
to now the large majority of the experimental verifications of amplification
without inversion is based on this phenomenon. In effect, this mechanism of
“lasing without inversion” should be classified as an inversion in the hidden
basis of the coupled/noncoupled states. This mechanism of *lasing without
inversion™ (or more precisely, amplification without inversion (AWI), because
a cavity is required to convert an amplifier into a laser), can be easily analyzed
when the transformation from the atomic basis {|1}, |2), |0}} to the coherent-
trapping basis {|NC), IC), |0}} is applied, as in fig. 26 (Kocharovskaya,
Mauri and Arimondo [1991), Kocharovskaya, Mauri, Zambon and Arimondo
[1992]). For the coupied/noncoupled basis, the interaction of the atoms with
the externally applied electric field acts only on the |C) and |0} states. In a
system at thermal equilibrium, the states |1) and |2) are equally populated,
as represented schematically in fig. 26a, and the excited state |0) contains a
small population. The population of the |C) state may be transferred to the
{NC) state through one of the appropriate mechanisms for creating coherent
population trapping already described in this review, or one of those to be
discussed later in this section. Perfect coherent population trapping is realized
with pc c =~ 0, and an efficient trapping corresponds to pncne S pcc, @5 shown
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in fig. 26b. In these conditions, if a population inversion is realized between the
levels {0) and [C); i.e.,

Pop » Pcos a.n

an amplification of the radiation on the |0) — |C) transition could be ob-
tained. This amplification is produced by an inversion between states {0)
and |C) in the atomic basis of coupled/noncoupled states, but in the atomic
basis of bare states {|1}, |2), [0}} no population inversion exists, because
P11+ P12 = P+ Puenc P poo! This simple presentation exemplifies the
concept of amplification in a hidden basis, the basis of the coupled/noncoupled
states. .

The possibility of obtaining gain in 2 A system on the condition of coherent
population trapping is also understood by examining the plot of Im(poi),
proportional to the absorption coefficient, as shown in fig. 2¢, with the very
narrow peak at the center which has been defined as electromagnetic-induced
transparency (Kocharovskaya [1992], Scully {1992)). By pumping a small
amount of the population into the excited state |0), a contribution with opposite
sign is added to the absorption coefficient, which could bring that peak above
the horizonta! axis and create a condition of amplification.

If the condition oo pcc corresponds to AWI, the operation of a laser
requires three levels inside a cavity with the gain larger than the cavity losses.
1t should be noted that the amplification on the coupled/noncoupled basis
corresponds to an amplification of a bichromatic field, i.e., two electromagnetic
field waves with frequencies wy; and w2, equal to the two transitions [0} — |1)
and |0) — [2) in the bare atomic basis. If the two frequencies have the same
cavity loss K, and the two optical transitions of the three-level system have
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the same absorption cocfficient a, the condition for lasing is a straightforward
application of the condition for lasing based on a two-level system:

2x
Pw —Pcc 2 77 (7.2

where L is the length of the cavity, supposed to be filled uniformly with the
three-level medium, presenting amplification without inversion.

The condition of amplification, or more precisely of no absorption, is valid
only with respect to the [NC), |C) states of eqs. (2.16), as determined by
the process that has prepared those states. In order to realize amplification
of a bichromatic electromagnetic field, composed of two different components
Eriexp[-i(writ+PL1)] and Epzexp[—i(wrat+fra)], the [NC) state should really
be noncoupled for that amplified field. As 2 consequence, the atomic amplitudes
and the amplitudes of the electric field components to be amplified by the
noninverted medium, should satisfy a matching condition. If the |1} and |2) levels
are degenerate in energy, the amplified field has only one frequency component,
and the scparation between the two modes of the electric field originates
from polarization selection rules. On the contrary, if [1) and |2} are separated
in energy, the amplified bichromatic ficld has components at two different
frequencies @y and wys. In this scheme, defined by Fill, Scully and Zhu [1990]
as a quantum beat laser, the beat frequency wy — wyz should match the evolution
frequency of the ground state coherence. Amplification of a bichromatic field
also imposes a phase matching condition: in a laser cavity, neglecting cavity
losses and frequency pulling with respect to the interaction with the three-level
system, the laser field relative phase should be opposite to that of the ground-
state coherence. Fill, Scully and Zhu {1990] have derived, for different schemes
of creation of the coherent population trapping, the phase-matching equation to
be satisfied by the relative phase $; — ¢z of the two lasers.

The relation (2.20) between the density matrix elements in the coupled/
noncoupled basis and in the bare atomic basis shows, that in order to have
a small value of pcgc, the occupation of the noncoupled state, the atomic
coherence || should be large. The different applications of coherent population
trapping for lasing without inversion, both theoretically and experimentally,
are really connected to the differences in the preparation of a large atomic
coherence p;; with a small occupation of the |C) state and a large occupation
of the [NC) state. An efficient process for the realization of amplification
without inversion is based on the double-A scheme, as shown in fig. 26c,
with the two lower levels, [1) and [2) connected by dipole transitions to the
upper levels {0) and |0F) (Fill, Scully and Zhu [1990), Kocharovskaya, Li and
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Mandel {1990, Kocharovsiaya and Mandel [1990], Khanin and Kocharovskaya
[1990], Kocharovskaya, Mauri and Arimondo [1991], Kocharovskaya, Maun,
Zambon and Arimondo [1992]). A pump bichromatic laser field, with amplitudes
21 expli#t,] and Elzcxpl-i#].] resonant with the [1) — [07) and [2) — |07)
transitions to the pumping level |0F), prepares the coherent trapping super-
position in the ground state, so that an amplification of a bichromatic field
from state |0, with amplitudes Ey exp(—igr;) and Eraexp(—i¢ra), takes place.
The preparation of the |[C") and |NC') states, shown in fig. 26d, takes place
through the depopulation pumping process, as discussed in §2.3, with coupled
and noncoupled states given by:

1
\[Iﬂo"lgfx I + |noratll
1 " "
ey = - _ (o ER e 1) + o a7 12))
\ﬁﬂo'l'sfl' + |tor2 R
(1.3)

However, these coupled and noncoupled states should coincide with those on
the transitions to the |0) state, so that the following self-consistent condition
between the amplitudes of all the fields applied to the double-A system should
be satisfied:

porELiexp(—idut) - Hor €L exp(-i¢f,)
HoErzexp(-ia)  Hor2EL,exp—ig{s)

NeT) =

(HoraErae ™ 1) - o L1 12))

(7.4)

Kocharovskaya and Mandel [1990] have derived the conditions for the
realization of steady-state AWI in the double-A scheme taking into account
the simultancous interaction of the four-level system with the two pairs of
bichromatic fields. The important condition to be satisfied for the realization

of this AWI was that the population of the lasing leve! |0) should be larger than
that of the pumping level }07). More precisely, the following condition results:

Poo—Poror > % =)

o
This relation states than in order to obtain AW, a population inversion should
be realized between the two upper levels, but of course no population inversion
is required between these levels and the ground ones. The relation derives
from the competition in the creation of coherent population trapping between
the two separate A schemes of the double A. In fact, the popuiation in the
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|0F) state contributes through spontancous emission or one-photon processes
to the pumping of the population in the coupled state |C), whose presence
decreases the amplification and increases the threshold of amplification without
inversion. In the case of generation of short-wavelength radiation by pumping
with 2 longer wavelength laser, level [0} is higher in energy than level |07), and
in thermodynamic equilibrium the population of the |0) top leve! is smaller than
that of the |0F) intermediate level. Thus, the above threshold condition (7.5)
cannot be satisfied without external pumping.

The above discussion points out the close equivalence between the double-
A scheme and a four-level laser. In fact, optical pumping in a four-level system
represents an alternative way to realize amplification on the same double-
A scheme without creation of coherences. For instance, on the same level
structure of fig. 26c, pumping from the |2) state to the |0F) state foliowed
by spontaneous emission down to the |1} level could produce an inversion
between [0) and [2}. The threshold condition required for amplification on this
optical pumping scheme is exactly equivalent to those for AWT in the double A
(Kocharovskaya, Mauri, Zambon and Arimondo [1992), Fleischhauer and Scully
[1994]). These last authors also pointed out that schemes combining optical
pumping with the creation of coherences could produce a further reduction of
the threshold.

An alternative way to create a lower-state coherence is through the appli-
cation of a microwave ficld resonant with the lower-state splitting, as shown
schematically in fig. 27a (Scully, Zhu and Gavrielides [1989], Fill, Scully and
Zhu [1990], Khanin and Kocharovskaya [1990]). The generated lower-state
coherence can be expressed through coupled/noncoupled states. Again, for a
population of the |0) level larger than that of the coupled state, amplification
takes place, with inversion in the basis of the coupled/noncoupled states. The
main difference between the double-A scheme and the microwave field is that
in the double-A scheme the depopulation pumping of the coupled state leads to
the preparation of a pure density matrix state, i.2., with all the atoms prepared
in the noncoupled state, For microwave-generated coherence, starting from the
nonpure state of the thermal occupation of ground states, the application of a
microwave-coherent field cannot produce a pure state. As a consequence, the
gain in the microwave case is always smaller than in the double-A scheme. The
thermal nonpure occupation of the ground states leads to the following condition
for AWI: pog 2> min{py1, pn) (Mandel and Kocharovskaya [1993]).

Another scheme for the realization of amplification without inversion, actually
the first one proposed by Kocharovskaya and Khanin [1988] and examined later
by Fleischhauer, Keitel, Scully and Su [1992], is based on the application to the
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?
Pulse

Fig. 27. Additional schemes for amplification without inversion based on coherent population
trapping; (a) preparation of the coherent trapping superposition through 1 microwave field and
amplification of the bichromatic field; (b) coherent trapping superposition formed by an ultrashort
laser pulse with duration t,; {c) four-level scheme with pump laser to the level |0F) tuned halfway
between the ground levels with amplified laser also tuned halfway between ground levels.

three-level system of a short laser pulse, as in fig. 27b and as for the experiments
described in §3.3. In order for the short pulse with temporal duration 7, to
interact with both the wq, and w optical transitions and to probe the low-
frequency coherence py;, the relation 1/1, > wy must be satisfied. As usual,
the gain is based on the preparation of a small population in the upper |0) level,
with population in the lower states lying in the [NC} state. The [NC) occupation
should have been realized before the pulse arrival, by applying a microwave field,
using the double-A scheme, or by applying a train of pulses as described in § 3.3.

The last scheme involving coherent population trapping, proposed by Nar-
ducci, Doss, Ru, Scully, Zhu and Keitel [1991], is based on the combination
of the double-A scheme and the dressed-state approach of §2.4 and fig. Sa:
a coherent population-trapping preparation is performed on one A system and
amplification is achieved on the second A system, as shown in fig. 27c. Only
one laser is required for the preparation stage, and only one laser is used for the
amplification process, both lasers being tuned at the center frequency between
the two groundstate levels. -

The scheme of fig. 27¢ was tested in the first experiment of inversionless
amplification performed on sodium atoms by Gao, Guo, Guo, Jin, Wang, Zhao,
Zhang, Jiang, Wang and Jiang [1992], with lower levels being the hyperfine states
of 328, ground level, 32Py,, as the [0) amplification state, and 3?P,/» as the
|07} preparation state. In the experiment a discharge through the helium/argon
buffer gas prepared the required small occupation in the excited sodium states,
and a strong pulsed laser on the {|1}, [2)} — |0%} transitions produced the
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coherent trapping superposition. The amplification of a c.w. dye laser on the
{0} — {|1), |2)} transitions was monitored, through a boxcar detector, during
the application of the pulsed laser. These authors have reported AW, and Gao,
Zhang, Cui, Guo, Jiang, Wang, Jin and Li [1994] have measured the excited-
state population through the absorption of a second c.w. dye laser from the
excited state in order to verify that no population inversion in the bare states was
created by the strong preparation pulse. The positive result of that experiment
has generated some discussion in the lasing-without-inversion community: the
possibility of a real population inversion between the excited state and ground
states produced by the pulsed laser was ruled out in their direct absorption
measurements. Because the experiment was performed in a transient regime,
a theoretical analysis of the transient AWI was performed by Doss, Nardueci,
Scully and Gao [1993], proving that amplification is 2lso reached in the transient
regime. A later analysis by Meyer, Rathe, Graf, Zhu, Fry, Scully, Herling and
Narducci [1994] showed that no coherence between the ground state hyperfine
levels could have been created in that sodium experiment.

Clearer evidence of AWI, based on the scheme of fig. 27c, was obtained by
Kleinfeld and Streater [1994] in potassium atoms, using the ground 4?S, hy-
perfine levels, 43Py, as the preparation state, and 42P),; as the amplifying
state. Continuous lasers were used for both preparation and amplification, tuned
at the center between the two ground hyperfine states separated by 462 MHz.
The upper-state population in the amplifying state was produced making use of
the transfer from 42Py to 4?Pysy in collisions between potassium and helium
buffer gas. The experimental results were very similar to those predicted in the
theoretical analysis by Narducci, Doss, Ru, Scully, Zhu and Keitel [1991], with
some unexplained features of additional absorption dips just outside the gain
peaks.

In the experiments by Nottelman, Peters and Lange [1993] and by Lange,
- Nottelman and Peters [1994], a coherent population trapping in the ground state
of a A scheme was created through a train of picosecond pulses, as shown
in fig. 27b and as analyzed in §3.3. A second picosecond pulse probed, at
different delay times, the amplification without inversion. Samarium atoms on
the J;=1—J. =0 transition (as in the experiment by Parigger, Hannaford and
Sandle [1986] discussed in § 3.5), in the presence of an applied magnetic field
along the z axis, were irradiated by a train of 30ps laser pulses, with electric
field polarization along the y axis, a ground-state Hanle-effect configuration.
When the matching condition of eq. (3.1) was satisfied, the picosecond pulse-
train pumped atoms out of the [, C} = | = 1,y} state and created the
M, NC) = |; = 1,x) coherent superposition of states, as from the selection
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rules of eq. (232b). However, in the presence of a magnetic field B, that
superposition is not an eigenstate and the atomic wavefunction experiences a
time evolution. Because of the energy scparation wy =2gppBlh between the
Ve, ms = 1) and [, m; = 1) cigenstates of the atomic Hamiltonian, starting
from a perfect atomic preparation at time £ =0 in the noncoupled state, the atomic
wavefunction |y(f)} at time f is:

() = cos%'i INC) - sin%lf ICy. (1.6)

From eq. (7.6) it can be seen that the absorption from the |C) part of |ye{)
varies with the delay time of the probe pulse. At fy=7/2ws1, the occupation
of the coupled state is equal to one half the initial value; at f4=mn/wy the
occupation of the coupled state is equal to 1, and it is 0 at {4=2"/wy. In
order to realize AW, a third pulse, linearly polarized along the z axis, pumped
a few atoms from the ground [J; = 1, z) state to the L, = 0} state, and the
amplification between the excited |, = 0) state and the [C) = [ = 1, y) state
was probed by the delayed pulse. Depending on the delay time, the coupled-state
occupation produced different contributions, so that at a proper delay time an
inversion between |J, = 0) and lJ; = 1,C) could be realized with no population
inversion in the Zeeman atomic basis. Actually, the experiment was operated
slightly differently from that presented: at a fixed delay time of the probe,
the tuning of the occupation of the coupled state was realized by varying the
splitting @,, through an applied magnetic field B. Moreover, the maximum value
of the generated ground-state coherence was only 0.14, so that the full occupation
of the coupled or noncoupled states could not be realized. Finally, while the
relatively long decay time of the ground-state coherence (~15 ns) was beneficial
for the experiment, the comparable decay time of the optical coherence (= 9 ns)
implied that the atomic dispersion affected the pulse propagation, and the length
of the samarium cell could not be increased. Thus, as stated by the authors, the
measured amplification of 7% did not seem exciting, but was obtained with an
optically thin sample. X

Another experiment by Fry, Li, Nikonov, Padmabandu, Scully, Smith, Tittel,
Wang, Wilkinson and Zhu [1993] was based on the sodium D) resonance
line. A detailed analysis and presentation of the experimental results has been
published in a series of four papers: Meyer, Rathe, Graf, Zhu, Fry, Scully,
Herling and Narducci [1994], Nikonov, Rathe, Scully, Zhu, Fry, Li, Padmabandu
and Fleischhauer [1994], Padmabandu, Li, Su, Fry, Nikonov, Zhu, Meyer and
Scully {1994), and Graf, Arimondo, Fry, Nikonov, Padmabandu, Scully and Zhu
[1995]. The level configuration involved in this experiment was based on two
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o* circularly polarized lasers exciting hyperfine componeats of the D, line and
has already been presented in fig. 7f. The two laser beams, with linewidth
2 30MHz and frequency difference matching the 1.77 GHz ground hyperfine
splitting, were generated through an acousto-optic frequency shifter. The first
step in the experiment was to test the production of the coherent population-
trapping superposition by the bichromatic 0* radiation: one of the pumping lasers
was switched off through a fast Q-switch and the transient absorption of the
sodium atoms on the remaining pumping beam, as a consequence the destruction
of the coherent trapping was monitored. The time evolution of the transmitted
light was in good agreement with theoretical predictions. AWI was realized by
pumping atoms to the excited F=2 state from the ground F =2, mg=2 level
not involved in the coherent trapping superposition, through application of a
weak excitation 0~ polarized light. As soon as the population inversion was
established, an amplification of the bichromatic * radiation was observed. The
amount of coherence established between the ground levels was not specified;
however, in a theoretical analysis, which well reproduced the experimental
results, a ground-state coherence around 0.10-0.12 was reported. The observed
dependence of the coherent trapping superposition on the helium buffer gas has
been discussed in § 2.8,

The last experiment in the coherent population-trapping application by van der
Veer, van Dienst, Dénszelmann and van Linden van den Heuvell [1993]}, operated
on a cascade scheme based on the 12Cd 552 'Sy — 5s5p>P — 5s65°S; levels,
with transitions at wavelengths 326 nm and 308 nm. A longitudinal magnetic
field B, in the mT range produced an energy splitting of the excited 3P, state.
Nanosecond-pulsed dye lasers, with frequency bandwidths in the GHz range
to match the Doppler-broadening of the absorption lines, counterpropagated
through a cadmium cell. The two lasers were linearly polarized, and the
preparation, as well as the amplification processes are well understood in
the level scheme based on the linearly polarized atomic basis of fig. 28a.
Laser 1, linearly polarized along the x axis, excited the cadmium atoms from
the |'S, J, = 0} state to the [Py, x) state. Laser 2, linearly polarized along the
y axis, transferred atoms to the |*S;, z) state. From there, amplification could be
produced with emission towards the |*P;, y) state. This interpretation of AWI
comes out very naturally in the hidden basis, whereas in the Zeeman atomic
basis the interpretation of amplification without inversion requires a careful
analysis of the atomic coherences created in the intermediate 3p, state. The
presence of amplification was tested by monitoring the gain of a seed laser
transmitted through the cadmium cell, and a gain of 4.3 was measured. The
amplification was monitored in two different regimes. In the first one, laser 2
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Fig. 28. (2) Level scheme, in the linear atomic basis (see § 2.6), for the !'2Cd AWI experiment, and
(b) measured AWT gain versus applied magnetic field, with a loss of gain at the larger magnetic field
due to the absence of population inversion (from van der Veer, van Dienst, Dénszelmann and van
Linden van den Heuvell [1993]); (c) hidden basis population inversion in a #Rb double-A scheme
versus an applied magnetic field; spontaneous emission rate No=0.24 T, 5. pumping rate 0.05 I‘s to
excited state |0, Rabi frequencies Q;l -.qu =012 g. and interaction time for preparation of the
coupled/noncoupled state G=83 I 5 (adapted from Kocharovskaya, Mauri and Arimondo [1991]).

was delayed by 30ns with respect to laser 1, and when the amplification was
measured versus the applied magnetic field, the periodic evolution between the
coupled and noncoupled states could be monitored. In the second regime the two
lasers produced simultaneous excitation to the top level of the cascade scheme,
and the amplification was observed as a function of the magnetic field with
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experimental results reported in fig. 28b. Figure 28¢c reports the results of a
theoretical analysis for the popuiation inversion in the hidden basis, proportional
to the gain, as a function of the applied magnetic field, derived for the doubie-
A scheme of ¥Rb atoms in Kocharovskays, Mauri and Arimondo [1991). The
strong similarity between the two figures evidences the common features of
evolution between coupled/noncoupled or |x)/{y} states.

The use of the index of refraction has been considered in the context
of amplification without inversion (Scully [1991, 1992}, Fleischhauer, Keitel,
Scully and Su [1992], Fleischhauer, Keitel, Scully, Su, Ulrich and Zhu [1992],
Friedmann and Wilson-Gordon [1993]). It has already been noted (see fig. 2d
and § 3.8) that a large index of refraction can be generated in the conditions of
coherent population trapping. The use of that large index of refraction could be
inhibited by the absorption coefficient of the material, which is large outside
of the Raman resonance (see fig. 2c). However, by preparing the three-level
system with a small population in the upper |0} state, a contribution to the
absorption with opposite sign could be created, which is really an amplification,
so that a regime may be realized with the large index of refraction occurring at
a laser frequency where the absorption coefficient is effectively equal to zero.
Applications of the enhancement of the index of refraction, considered by Scully
[1991], are to the realization of phase-matching in the laser acceleration of
electrons, to the increase of the resolving power in a microscope, and to the
development of a new class of magnetometers. The experiments by Schmidt,
Hussein, Wynands and Meschede [1993, 1995} and Xiao, Li, Jin and Gea-
Banacloche [1995] on the index of refraction, as discussed in § 3.8, have been
performed with the aim of modifying the group velocity for propagation inside
a medium pumped so that it gives rise to coherent population trapping. A group
velocity v =¢/1280 has been reported by the first group of authors.

Attention here has been concentrated on schemes where no population
inversion exists in the basis of the bare atomic states, but a population inversion
is found in the basis of coupled/noncoupled states, or equivaiently in the basis
of dressed states. Other schemes of amplification without inversion have been
identified where population inversion does not appear to occur in any basis
{Kocharovskaya [1992]). However, the transformation from the bare-atomic basis
to the dressed-state basis transforms population differences into coherences,
so that the gain can be associated with the creation of coherences (Agarwal
{1991a], Bhanu Prasad and Agarwal [1991]). Even if the amplification cannot
be described simply through a population inversion in an appropriate basis, the
role of coherence population trapping cannot be excluded. For instance, in an
asymmetrical A scheme with level |2} metastable and the Rabi frequency Qg
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quite large, AWI can be realized on the |0) — |1} transition (Imamoglu, Field
and Harris [1991]). For that process, Cohen-Tannoudji, Zambon and Arimondo
[1993] pointed out the important role played by coherent population trapping.
For Sp; <€ Qpa, the ground state |1} coincides with the noncoupled state, so that
even a small population in the |0) statc may be able to produce amplification.

Dowling and Bowden [1993] have considered AWI in a dense medium, where
the near dipole—dipole interactions modify the local microscopic electric field
through volume polarization, as in the Lorenz-Lorentz local field correction.
This dipole—dipole interaction also would affect the phenomenon of coherent
population trapping in a dense medium, with a frequency shift and a distortion
of the resonance lineshapes.

§ 8. Coherences Created by Spontaneous Emission

The possibility of creating ground-state coherences in 2 A or V system was
first considered by Agarwal [1974), but has received more attention recently in
the context of lasing without inversion (Imamoglu [1989), Javanainen [1992],
Fleischhauer, Keitel, Narducci, Scully, Zhu and Zubairy [1992]). In general the
role of spontaneous cmission is to crasc the coherences through destructive
interferences from the vacuum modes contributing to the excited state decay.
However, in some particular cases those interferences do not cancel completely
and a coherence may even be created by the spontaneous emission process.
The most relevant case is for the A system when the two optical transitions
|0) — |1) and |0) — |2) are completely equivalent from the point of view of
the electric dipole emission, which requires two transitions at the same frequency
but also with the same angular momentum quantum numbers. Javanainen [1992]
considered the decay from a [Je = 1, m; = 0) level to two degenerate |1} and
|2) ground levels, both of them with J; = 0 quantum numbers. It is quite unlikely
that such a configuration will be found in atoms, but it should not be completely
excluded for molecular levels. In the case of these degenerate levels being found,
the spontaneous emission terms in eq. (2.8) should be modified because of
constructive interference in the upper level decay to both ground states. A new
term should appear in the evolution of the ground state coherence:

dpz2 - To
T, 8.9

df |pem 4
Thus, ground-state coherence would be created in the spontaneous emission
decay from the |0) state. Javanainen [1992] has pointed out that the superposition
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principle requires the creation of that coherence. If the linear symmetric and
antisymmetric combinations of ground states are considered, i.e., the coupled
and noncoupled states, the upper state is dipole-connected to the coupled state
only, and by spontaneous emission it will decay only to that coupled state, An
atomic preparation of the coupled state through spontaneous emission implies
that a coherence between the |1) and |2) ground states is formed. It is quite
obvious that any experiment dealing with coherent population trapping will be
affected dramatically by the presence of that coherence.

§ 9. Pulse-Matching and Photon Statistics

The research on lasing without inversion has shown that the preparation
of a coherent population-trapping superposition modifies the interaction with
radiation. As a consequence, properly tailored atomic superpositions may
produce particular properties of the electromagnetic fields interacting with those
superpositions. This section presents the application of coherent population
trapping for modifying radiation field properties.

In the proposal of matched pulses by Harris [1993], a three-level system,
supposed to be prepared in the [NC) state, was probed by a bichromatic electro-
magnetic field, £y,(z, 1) u; cos (w1t + ¢1) and E12(z, 1) w2 cos (wrat + ¢2), with
time-varying envelope, applied to the two arms of a A system. Interacting with
the [NC) state, the Fourier components of the input electromagnetic field, which
are matched in their frequency difference, amplitude, and phase so as to preserve
the atomic preparation in the noncoupled state, do not experience any absorption.
On the contrary, the nonmatched Fourier components experience an absorption
and are attenuated in the propagation. As a consequence, after a characteristic
propagation distance, the transmitted field contains only Fourier components
matched in amplitude and phase to the nencoupled state, and those components
do not experience any further absorption. This concept of matched pulses has a
strict connection with the observation by Daiton and Knight [1982a,b], reported
in §2.8, that critical cross-correlated fields acting on the two arms of the
A system may preserve the coherent population-trapping preparation.

The idea of pulse matching has been formalized by the introduction of the
normal modes by Harris [1994] and dressed field modes by Eberly, Pons and
Haq [1994]. In effect, as the atomic time evolution is greatly simplified by using
the |NC) state, for which eq. (2.18) expresses a time-independent evolution, a
similar relation may be written for a combination of the electric field £1,(z, f) and
E12(z, ) components propagating through the three-level medium. The matched-
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or dressed ficld combinations are lincar combinations of the slowly varying
envelopes £y,(z, 1) and £2(2, 1), and can be derived from the Maxwell equations
for propagation through the three-level system. The dressed fields represent a
more general concept. If the atomic wavefunction |y,) is written through the
amplitudes a, and a for the ground states of the A system:

1
lwe) = (a1 |1} +a212)), (9.1)
- V layf? + |aaf?

the dressed-field states are defined through their Rabi frequencies Q¢ and Onc

Q\_(a @) (2

(a)- (% ) (@) o2
where Qg and Qg are the Rabi frequencies for the fields acting on the
1) — [0} and |2) — [0} transitions. This linear transformation produces a
coupled/noncoupled combination of the electric fields such that the Q¢ cou-
pled field component is heavily absorbed during the propagation whereas
the Quc noncoupled field component propagates without attenuation, Under
conditions of fast evolution of the excited-state population and optical coherences
and of siow evolution of the ground-state coherences (fast and slow as compared
to the pulse duration) the atomic amplitudes a, and ; of eq. (9.1) are determined
by the initial conditions of the electric field amplitude. As a consequence,
the input electric field determines the occupation amplitudes of the atomic
wavefunction and fixes the linear combination £xnc of the nonattenuated electric
field: the normal modes of Harris [1993] are defined by those atomic araplitudes
and the Qc, $nc Rabi frequencies. Normal modes may be realized in the
propagation of a bichromatic pulse pair where the occupation of the coupled
state is fixed through 2n initial interaction with the pulse pair. The pulse-pair
propagation causes a distortion of the initial pulse edge and an unperturbed
propagation of the remaining part of the pulse. Other methods for the preparation
of the coherent trapping superposition may be also devised. Cerboneschi and
Arimondo [1995] pointed out that the double-A scheme of fig. 26¢ is convenient
for realizing pulse matching with great flexibility, because a pulse pair on one
A system prepares the noncoupled superposition, whereas the pulse pair on the
second A experiences pulse matching without any distortion of the initial edge.
Notice that the definition of the dressed-field pulses by Eberly, Pons and Haq
[1994] treats on the same footing the atomic superposition states and those
classified as dark states in § 2.6.
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Agarwal {1993] has generalized the idea of coherent population trapping by
considering a quantized electromagnetic field in an approach similar to that used
in the case of dressed states, but considering electromagnetic states with a very
low photon number. Starting from the quantized field Hamiltonian of eq. (2.29)
describing two field modes interacting with a A system, Agarwal searched for
a wavefunction corresponding to a generalized atom—field noncoupled state, in
the form of an entangled state of the atomic and field variables:

INCar) = N(grac: [1) - gric2 [2)) ® | Wgesa) , (9.3)

with the ¢ and ¢; coefficients and the N normalization constant to be
determined. For the state [NCar) to be an cigenvalue of the quantized
Hamiltonian with zero eigenvalue, the radiation field |¥fieta} Wavefunction should
satisfy the following equation:

(crar1 ~ c2ap2) | Pgad) = 0, (9.4)

with ag; and ag, the annihilation operators of the two field modes. The general
solution of eq. (9.4) is obtained in terms of coherent states |zx1, zr2) associated
with the two modes of the field:

¥pea) = f a(zry)

ZR1, 22&1) dzgy, (9.5)
(5

with the ¢),¢; coefficients and the function g{zr|) fixed from the inijtial
conditions of the system. The important point of this equation is that it describes
two fields matched in their mode mean value:

{ar1) _ f‘_l' ©.6)

(ar2) c2

but also in their photon statistics, because from eq. (9.5) it results that the
coherent states of the two modes are replicas of each other, only scaled by the
¢/e; factor,

The coherent population-trapping mechanism has determined the correlations
of the two field modes. Jain [1994] has shown how the correlation in the
phase noise of the two modes can be utilized for measurements limited only
by the coherent-state shot noise. Agarwal, Scully and Walther [1994] have
described how the ground-state coherence leads to a noise-free transfer of
energy between a pump laser and a probe laser acting on the two arms of
the A scheme. Fleischhauer [1994], investigating the correlations in the phase
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fluctuations of the laser beams propagating through 2 three-level A system,
pointed out the importance of the adiabatic response of the atomic coherence
with respect to the phase or amplitude fluctuations of the field. In the adiabatic
Jimit the atomic system responds promptly, and any modification in the field
drives the atom into a new coherent superposition, again decoupled from the
fields. In contrast, in the regime of nonadiabatic response, the atom remains
in the initial noncoupled state on the time scale of the phase/amplitude field
fluctuations, and those fluctuations will be damped out. In closely related papers
involving the application of coherences and preparation of atoms in ground-state
superpositions, the possibility of reduction of the intensity or phase noise in’
the three-leve! system has been discussed by several authors (Agarwal [1991b],
Gheri and Walls {1992], Fleischhauer, Rathe and Scully [1992]). A discussion
of those results will not be reported here because a clear definition of the role
of coherent population trapping has not been established.

A lincar superposition of ground states noncoupled to laser radiation has been
considered by Cirac, Parkins, Blatt and Zoller [1993] for the motion of an ion in
a trap. The ground states were associated with different vibrational states of the
jonic motion. The noncoupled state formed by that superposition should present
properties of squeezing in the atomic motion. Parkins, Marte, Zoller and Kimble
[1993}, and Parkins, Marte, Zoller, Camal and Kimble [1995] have proposed 2
scheme for the preparation of general coherent superpositions of photon-number
states. Three-level atoms initially in state |1) should experience an adiabatic
transfer process, through proper time dependencies of Rabi frequencies, crossing
a cavity where a laser field resonant with the transition |1) — |0} is present,
whereas a vacuum field acts on the |0) — |2) transition. As a consequence of the
atomic adiabatic transfer process to state |2), a cavity mode with one photon at
frequency w2 1S created. The atomic adiabatic transfer allows the generation of
photons in the cavity mode starting from the laser field acting on the i1y — 10)
transition. Sequences of atoms passing through the cavity can be used to generate
Fock states of higher photon number. The adiabatic transfer from properly
tailored noncoupled atomic superpositions in high-J angular momentum states
allows the generation of arbitrary superpositions of Fock states.

§ 10. Conclusions
Quantum—mechanical interference effects involving the existence of two different

paths for the final process are well known in laser spectroscopy investigations,
and they have been fully exploited in order to improve the spectroscopy



i Reprinted from

OPTICS
COMMUNICATIONS

Optics Communications 27 {1996) 55-61

Matched pulses and electromagnetically induced transparency for
the interaction of laser pulse pairs with a double-vee system

Elena Cerboneschi?, Ennio Arimondo %!

* Dipartimento di Fisica, Universita di Pisa, Piazza Torricelli 2, I.56126 Pisa, Ttaly
b LA, University of Colorado. Boulder, CO 80309-0440. USA

Received 20 September 1995 revised version received 23 January 1996; accepted 24 January 1996

ELSEVIER



|3 B Y

) §1

BRI TRt L

56 E. Cerboneschi, E. Arimondo/ Optics Communications 127 (1996} 55-61

ing [13]. In the DA scheme the coupling fields, acting
on one A system, prepare a CPT superposition, which
determines the propagation of the probe pulse pair
acting on the second A system. However, the pulse-
matching process is influenced not only by the CPT,
but also by the electromagnetically induced coherence
between the two upper atomic states. The contribu-
tions from CPT and quantum coherences have been
identified and analyzed also in the context of lasing
without inversion [14,15]. To test more precisely the
role of atomic coherences in pulse matching, the prop-
agation of pulse pairs through a four-level medium in
a double-vee (DV) configuration is here investigated.
In the DV scheme, the two probe pulses, taken as the
candidates for pulse matching, interact with a V-type
pair of Lransitions, where CPT cannot occur. In fact, in
V.like transitions, the noncoupled state, i.e., superpo-
sition of excited states, is rapidly depopulated by spon-
taneous decays. On the other hand, in the DV system,
the interaction of the probe pulses with the medium is
affected by the coherence between the lower-energy
atomic states. Here we show that such a coherence
does produce pulse matching. The excitation of the
lower-state coherence can be explained, again, on the
basis of the CPT mechanism. Even though CPT does
not take place on the pair of transitions concerned
with pulse matching, it actually appears, because of
the combined action of the coupling and probe fields,
on other transitions of the DV system.

We show also that the space-time evolution of a pair
of probe pulses, copropagating through a DV system
prepared by two strong coupling fields, 1s governed by
two normal modes. These modes describe the prop-
agation of the pulsed excitation through the atomic
medium. Our approach to normal modes is similar to
that of Refs. (4] and [10], as well as to the dressed
states introduced by Eberly et al. [5]. In those papers
the propagation of paired ficlds has been examined in
A-type systems. Our major result is that propagation
normal modes have been found in the novel DV con-
figuration. Unlike what has been done in Refs. {10]
and [5]., we have not applied any basis change to the
atomic and field variables; instead, we have examined
the space-time dependence of the atomic variables. In
the hypothesis of adiabatic elimination of the atomic
variables. their space dependence, equivalent to that
of the field variables, allows us to determine the prop-
agation normal modes.

123

Fig. 1. Scheme of a four-level system in the DV configuration.
Optical transitions and spontancous emission decays are indicated.

In Section 2 we describe the DV scheme and dis-
cuss the atomic preparation accomplished by the cou-
pling fields. In Section 3 the pulse matching is ana-
lyzed in the simple CPT approach and then through
the normal modes. Numerical simulations supporting
the analytical description are also presented.

2. DV system

As in Fig. t, the DV scheme is composed of two
pairs of V-like transitions, connecting two different
low-lying states with the same pair of excited states.
We consider a configuration in which two intense cou-
pling fields interact with one of the two pairs of tran-
sitions and two weak probe pulses with the other pair.
The lower cigenstates of the atomic Hamiltonian are
denoted as |p) and |c) and the upper states as |1} and
|2). The angular frequency separations between the
upper and lower states are j, withi=1,2and j =
p,c. The upper states decay by spontaneous emission
into the lower states with rates [ (i=1,2,j=p.C).
The relaxation rate from the state |c} into the ground
state |p) is I, and the dephasing of the lower-state
coherence results as Yop = Lep /2.

The coupling field consists of two components res-
onant with the atomic transitions lc) «= |1) and jc)
|2}, respectively, and either field component interacts
with only one transition. The coupling-field compo-
nents are described by their slowly varying envelopes
Ei.(z,1) and Ezc(2.1), 2 being the propagation axis
of both coupling and probe lasers. The interaction with
the medium is described by the space-time depen-
dent Rabi frequencies a (2,1} = mcErc(z. 1) /2hand
Be(z.1) = pocEac(z.0) /2R, with p;; the dipole ma-
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trix element between the states i) and | j). Analogous
assumptions hold for the probe-field components, de-
scribed by the Rabi frequencies ap(z,t) and B,(z,1)
assaciated (o the transitions |p) < |1} and [p) — 12).
The Maxwell-Bloch equations form the starting
point of our analysis. In the moving frame defined
by the space coordinate ¢ = z and the local time
T =1 — z/c, with ¢ the speed of the light in the
medium, the optical Bloch equations of motion for
the slowly varying envelopes of the density matrix
elements are (cf. those of the DA system [4])

30”,

?""Tlpfhp = i, (Ppp - [) ~iBp03 +iteogy, |
(1a)
aUZﬂ , . .
?4'72,»0'2;; =if, (ppp - 922) —la,oz +ifo,
(1b)
30'“- . . - . -
o TV =it (pee — pu) — B0 +iayal,
(1c)
Ar, . . . .
gy T Y00 =B (pe — pn) — oy +iBpal,
(1d}
ATy,
r?f + .y('ﬂ(rf'ff
= —iapa), — a3 + . ay, +ifloy, ., (le)
90y, . - h o w i oe
. +ynon =iapay, vxacagc+rﬁpa'|p+tﬁco*,c ,
(1f)
w _ p r
3 1pP11 + 2pP22 + Fcppcc
- 2% {a,‘,a,,,+,8;0'g,,} . (1g)
P .
T”JT_ =lpn + Faepr — rc'ppcr
- 23{ajo + Bloy} (Th)
HPH ~ ® *
T = - (rlp + rl(‘) P11+ 2% {a_nalﬂ + (1’(_.0']{-} N
(11)
where the polarization damping rates are
Yip = I§ (rip + rf‘c) » (23)
Yie = % (1_','," + i + rcp) , (2b)
yn=3y (Fy+Te) . (2¢)

=1.2

with { = 1,2, In Egs. (la)~(1i), the equation for
P22, not included, has been eliminated through the use
of the conservation of atomic occupation probability.
The Maxwell equations for the slowly varying Rabi
frequencies are

3(1", .
a—g' =K Ty, (33)
aB; .
E?’ = iKyioy; (3b)

where j = p,c and the «;; coupling coefficients are,
in MKS units,

o “’UN|#U|2

YT 2cegh
with N the atomic density of the homogencously
broadened medium 2.

The Maxwell-Bloch equations must be solved au-
toconsistently to determine the propagation of the
laser fields. The coupling fields propagate through
the medium nearly unaffected by the probe pulses,
assumed much less intense. While propagating, they
excite the population of the state |} to the upper
states [1) and |2} and, through an optical pumping
process, lead population into the ground state |p). I
the pumping rates are much larger than the ground-
state relaxation rate, the pumping process is very
efficient, and the whole population is pumped in |p).
As a consequence, the coupling fields present a free
propagation through the system 3. With the whole
atomic popuiation in the ground state }p}, the atomic
polarizations o and o3, vanish. Egs. (1a)-(1i) also
show that, ignoring negligible terms proportional to
the probe pulse amplitudes, the upper-state coherence
oy drops to zero. The coupling fields are taken as
pulses having, apart from the rising and falling cdges.
flat time profiles, as shown in Fig. 2(a). Thus the
probe pulses, during their interaction time. at any
position ¢, see constant coupling-ficld amplitudes.
For what concerns the probe-field propagation. we
consider

(4)

Ppp(.T) =1, (5a)

?When the adiabatic solution of Eq. (8a) for y, at o, = 0
is substituted into the Eq. (3a) for a@p, the Beer's length Lg; =
Yip/Kip for the transition [p} «— {1} is obtained.

3 Because of the optical pumping by the coupling putses, our
whole analysis applies also to the case when |p) lies above [¢).
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(a)

a, B, (10°s7)

{b)

(c}

(10° s

a. B
N

(d)

T (ps)
Fig. 2. Snapshots of the coupling and probe Rabi frequencics
versus local time. in (a) ac = Sc at the entry surface of the
medium ¢ = 0. 1n (b) ap (solid line) and Bp (dotted line) at
¢ =0and in (c) and (d) ap and Bp at two different penetration
depths: £ = SLgy and £ = |00Lp,.

pofl. Ty =pu(l. 1) = pull,7) =0, (5b)
o (L Ty =0 (L T) =0, (5¢)
an(g.my=0, (5d)
al{l.Ty=a. . (5e)
BAL.TY =B . (5

3. Pulse matching
3.1. CPT approach

Fig. | shows that the DV system can also be seen as
composed by two A systems sharing the same pair of
lower states ¢} and |p), but involving different upper

states |1} and |2). For instance, the A system com-
posed by the states |c}, |1}, and |p) is driven by the a
and a, components of the coupling and probe fields.
The combined action of these two fields prepares the
medium into the noncoupled state [ 12}, defined by

|NC,>=M, 6)

0ael? +la[?

It may be observed that, in the absence of the probe
pulse, for a, =0, the noncoupled state coincides with
the optically pumped ground state |p}. For an adiabat-
ically smooth application of the ap component of the
probe field, the population remains in the state [NC.)
{12]. Thus, no absorption of the a, probe field takes
place. This analysis applies, at the same time, to the
second A system, which involves the excited state |2).
An expression analogous to Eq. (6), with the 5, and
B. components in the place of ap and a, can be writ-
ten for the noncoupled state |NCz). The two noncou-
pled states coincide for ap = B, = 0, and they must
also coincide after the smooth application of the probe
fields. As a consequence, the relation

= =< (7)

must be satisfied, in the steady-state solution of the
problem of the probe field interaction. Eq. (7) consti-
tutes the definition of pulse matching in the DV sys-
tem, and the same relation applies to the DA [131. 1t
shows that the shape-matched probe puises have the
same complex-amplitude ratio as the coupling fields.
i.c., their amplitude ratio is determined by the prepa-
ration of the medium through the coupling pulses.

3.2. Normal modes

The normal mode analysis presented here is based
on the separation of the time and space coordinates.
The time dependence of the considered input pulses
is very smooth, Furthermore, the time response of the
atomic system is supposed to be very fast, so that.
for each point in space, the steady state for the time
response is reached. By using Egs. (5a)—~(3f), the
density matrix equations are reduced to the following
set of differential equations:
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‘;Uf '
TTL‘{'” + Yipo 1 (L. T)

=lap({.7) +iaa.,({, 1), (8a)

(?()'3,.

—{;—T—(f.f) T+ }‘2,;0'2,:((v T)

=Bl 1) +iBo, (L T), {8b)
dar,
-{97({.?} + VepTep (L. T)

=ia:“ly({-")+£B:a'2p(('7-) . (BC)

These equations are to be solved together with Egs.
(3a)-(3b) for a, and B,, in order to describe the
probe-pulse propagation through the DV system pre-
pared by the coupling pulses. If the polarization damp-
ing rates yy, and vy,, are sufficiently large to allow
the adiabatic elimination of the polarizations o, and
a2, Eq. (8¢) becomes

ﬁ (¥4 ’ 4
%’“({,T) + (y(',; + r; +1_‘2) J(‘p(Z|T)
ol .
= - [ Ca,(f.7) + £ ﬁp(g',r)] . (9)
‘ylp Yp

where we have defined the optical pumpingrates I =
@’ /1, and T} = 1Bl /725

The damping term on the left-hand side of this equa-
tion defines an effective decay rate for the lower-state
coherence o, given by Fﬁf =Yep + I+ 7. We as-
sume the coupling-field Rabi frequencies, and there-
fore [fﬁ to be sufficiently large to allow the adiabatic
elimination of o, even in the case Yep =0

_aay (L TV Yip + BBp (L. T) [yap
rey '

Fepld . 7) =
(10)

By making use of Egs. (3a)-(3b). coupled equa-
tions are derived for the space dependence of Teps T,
and o2, expressing how the atomic excitation prop-
agates through the sample. Those equations indicate
that the ¢ dependence of the atomic variables can be
described through a linear combination of two nor-
mal modes, defined by exponentially decreasing fune-
tions. After a sufficiently long propagation through the
medium, only the mode with the smaller absorption
coetficient survives. Such a rode corresponds to the
pulse-matching regime for the probe pulses.

The normal mode analysis is very cumbersome in
the most general case. and it will be reported here for

a degenerate system, with Kip = Kk3p = « and vy, =
Y2p = - In this case, the spatial evolution of the lower-
state coherence and of the probe optical polarizations
is given by

oo, 1

a_;({‘ﬂ=*§—l‘0’q;(§,ﬂ. (i)

30'”, _~l L a. 3

a{ (g- T) = fsalp({"r) - IK_f;_EUrP(é‘T) .
(I

An equation similar to Eq. (11b} applies for &2,, With
B. in place of a,. We have defined the characteristic
lengths of the medium as

I+ I
§L=Z[l+‘—~—2}‘ (12a)
K Yep
£s=21 (12b)
K

The soluations of Egs. ( 11a)-(11b) arc

Tep({ 7)) =0.,(0,7) exp{ —{/€,) . (132
o1l T) =ci(T)exp(—{/€s)

+eoalTYexp(—4 /&) {13h}
with
(1) = oy, (0, 7) + f—¢ (0.7
S T T G g T O
( 14a)
cary = —i— o (0.1 (14b)
: K(EL—&5) T

Egs. (13a)-(13b) show that two normal modes do-
scribe the propagation of the atomic excitation, The
mode with propagation parameter &5 rapidly decays,
since &5 < & for I, Iy = ye,. After its absorption.
the following relation between aip and o, applies:

JI;)(§~T}=i U'(p(é‘,‘n"}. (15

&,
k(&L — &%)
An analogous expression is found for the polarization
o1,. The adiabatic solution of Egs. (Ba} and (8h)
allows us to obtain

Y [l

a',,(g',r) =~ (I + m

)‘T(-p(é‘»r} \
t 16a}
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= - Y __
BP((.T) - .BC (l + r,{ + r;) UC[P({VT) .

(16b)

By dividing Eq. (16a) by Eq. (16b), the pulse-
matching condition given in Eq. (7) is recovered.

We have demonstrated that the pulse matching
arises from the absorption of the first normal mode,
after the characteristic propagation length £s. The
second mode decays with the characteristic length
£, which represents the transparency length for the
matched pulses. Eq. (12a) shows that the trans-
parency length £ diverges when ycp approaches zero.
Thus, for small y., values matched pulses can prop-
agate over long distances inside the medium nearly
without absorption. The excitation of the lower-state
coherence is responsible for pulse matching and
transparency in the DV system. The dephasing of
such a coherence exerts a twofold influence on the
process of pulse matching. On one hand, it causes
the decay of the matched pulses and therefore limits
their transparency length. On the other, the analysis
of the nondegenerate case shows that the coherence
decay produces deviations from the pulse matching
relation of Eq. (7.} Such deviations do not appear in
the degenerale case presented here.

3.3. Numerical results

The analytical results have been confirmed by the
numerical analysis of the Maxwell-Bloch equations.
Conditions of exact resonance with the atomic tran-
sitions have been assumed, so that the amplitudes of
the electromagnetic fields, assumed initially real, re-
main real during the propagation. In the simulations,
not in the degenerate case, the parameters were sim-
ilar to those of Ref. {131, with I, = 2.6 x 10P,
Fop = 1.5 108 2 =35 108, Iy = 9. % 107,
Fep =t x 107, @y =23X 10'S, @y, = 4.7 % 107,
wn, = 2.9 x 10'%, and @y, = 5.3 x 10'%, all of them
in s, The corresponding coupling coefficients were
i = 2.1 % 107, K1y =29 % 10° ke = 1.8 % 107, and
K1 = 14X 108, ail of them incm ™' s~!, for an atomic
density N = 10® em™'. In order to show that pulse
matching takes place as described in the previous sec-
tion. the decay rates have been chosen large enough
1o allow the adiabatic elimination of the probe-field
polarizations.

The coupling-field Rabi frequencies have the initial
values a, = Bc =9 x 108 57!, in the flat central part of
their time profile, as shown in Fig. 2(a). They remain
unchanged during the propagation (see discussion in
Section 2). Figs. 2(b-d) report the time profiles of a
pair of probe pulses before entering the atomic sam-
ple, in (b), and during the propagation, at two differ-
ent fixed penetration depths inside the medium, in (c)
and (d). The penetration depths ¢ are expressed in
units of the Beer's length Lgy for the |p) — [1) transi-
tion (see footnote 2). In (c), the propagation regime
of pulse matching is nearly established. Since the cou-
pling fields have been taken with the same amplitudes,
the matched probe pulses are identical to each other,
as from Eq. (7). As in (d}, the maltched pulses prop-
agate through very long absorbing samples with neg-
ligible losses.

4, Conclusions

The propagation of a pair of weak probe pulses
through a DV four-level medium prepared by two
coupling fields has been examined. This configura-
tion produces EIT with pulse matching for the probe
pulses. In the DV scheme, unlike in previously studied
A- or DA-type systems, CPT does not involve the pair
of transitions acted upon by the coupling pulses, and
a CPT state is not prepared by those pulses. Neverthe-
less, CPT preparation occurs through the combination
of coupling and probe pulses and affects pulse match-
ing through the excitation of the coherence between
the two lower-energy states.

Under the specific conditions for the medium
preparation accomplished by the coupling fields, the
Maxwell-Bloch equations have been reduced to a
simpler set of equations, involving only few atomic
variables, With the assumption of fast decay rates
for the atomic variables, those equations have been
solved analytically. Two normal modes describe the
propagation of the pulsed excitation through the
atomic sample. The absorption of the first mode de-
termines the reshaping of the probe pulses and leads
to pulse matching. The transparency length of the
maiched pulses is equal to the penetration length
of the less absorbed mode. This penetration length
depends inversely on the dephasing rate of the lower-

state coherence and, in the limit of absence of such a
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dephasing, the DV medium is completely transparent
for the maiched pulses.

Simulations not reported here show that, when the
condition for the adiabatic elimination of the atomic
variables is not strictly fulfilled, the probe pulses still
evolve into a pair of shape-preserving matched en-
velopes. However, new propagation features, such as
group velocity reduction and dispersion, appear for the
matched pulses.
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amptitudes and phases for the propagating pulses. Different atomic and ficld configurations based on a double-

A system in rubidium atoms have been explored.

PACS number(s): 42.50.Gy, 42.25.Bs, 42.50.Hz

The phenomenon of electromagnetically induced transpar-
ency (EIT) in the propagation of laser radiation through an
absorbing medium has been recently investigated and ex-
plained in terms of quantum coherence and interference for
three-levet atomic systems in A, V, and cascade configura-
tions [1-5). In the A configuration, if the atomic medium is
prepared in a quantum superposition of states, matched
pulses, i.c., a pair of optical pulses whose amplitude and
phase have a well defined relation, propagate without absorp-
tion [2,4). The mechanism of coherent population trapping
[6] is responsibie for EIT in a A system [4]. Pulse matching
takes place owing to the nonlinear interaction between the
pair of time-varying envelope ficlds and the atoms, prepared
in the coherent population trapping superposition. The two
fields, each one resonant with one transition of the A system,
while propagating through the absorbing medium, experi-
ence reshaping until, after a characteristic penetration depth,
temporal pulse matching of the field envelope shapes and
transparency take place.

The propagation of matched pulses may be described as
the spatiotemporal transparency for a linear superposition of
optical electric field amplitudes. That transparent superposi-
tion of optical fields, or dressing [7], is fixed by the ampli-
tudes in the atomic coherent trapping superposition and the
preparation of the atomic quantum superposition allows a
handle on the choice of the matched pulse characteristics.
Thus atomic preparation represents the first stage in the
realization of pulse matching. The question of the prepara-
tion of the coherent population trapping superposition state
has been addressed by Agarwal [3] and Harris [4). They
assume that the time-varying fields of the pulse pair are su-
perimposed onto constant electric field components, resonant
with the atomic transitions, which produce the trapping su-
perposition. If this assumption is renounced, numerical simu-
lations show [4] that pulse matching is attained as well, but
pulses undergo leading-edge preparation losses as they pre-
pare the trapping state. Therefore, a completely lossless
propagation cannot be achieved.

In this Rapid Communication we show, through numeri-
cal simulations, how, in a double-A four-level atomic system
like that of Fig. 1, a separate pulse pair can be used to pre-
pare the atomic superposition. Qur numerical simulations re-
port completely lossless propagation of shape matched
pulses within long penetration distances inside an absorbing
medivm. Moreover, the transparency and dressing of the
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pulse matched pair can be controlied very precisely and with
a large degree of freedom. In the double-A system atomic
preparation and matching take place on different atomic tran-
sitions, so that a very flexible control of the amplitede and
phase for the two electromagnetic fields composing the
transmitted pulse is realized. The introduction of a short time
delay between the preparation pulses, to be denoted as cou-
pling, and the matched pulses, denoted as probe, allows us to
separate the phases of atomic preparation and pulse match-
ing. Furthermore, we have found that the assistance between
simultaneously propagating coupling and probe pulses is re-
sponsible for an enhancement of the lossless propagation and
pulse shape preserving. This electromagnetic assistance on
the pulse matching is produced by the coherence between the
two upper states of the four-level system. A similar electro-
magnetic assistance was reported before in the context of
simulton theory [8].

The double-A scheme has already been investigated in
the context of amplification without population inversion
[9-11]. In [9] amplification without inversion became fea-
sible if a high degree of coherence between the lower states
was established and a definite condition on the population
difference between the upper states was fulfilled. In the
analysis reported in [11], the coherence between the two up-
per levels was shown to provide an additional mechanism for
inversionless amplification. However, in our simulations we
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FIG. 1. Atomic energy levels in the double-A configuration.
Optical traositions and spontaneous decays from |B} and |R) slates
are indicated. A nonradiative coupling y;; between ground states is
introduced. In the simulations, we investigated both cases with
strong pulses and weak probe puises acting on the transitions to
states |B) and |R), and vice versa.

R1823 © 1995 The American Physical Society



a4

1Rl

1§ 8

#

R1824 ELENA CERBONESCHI AND ENNIO ARIMONDO 52

do not obtain amplification without inversion, because the
characteristic requirements on the upper state populations are
not fulfilled.

The double-A system is composed of two A subsystems,
which share the lower energy levels |1) and [2) with upper
levels |{B) “blue” and |R) “red.” We treat a configuration
where a pair of strong coupling fields is coupled to one of the
two A subsystems and a pair of weak probe ficlds interacts
with the other {see Fig. 1). Since the coupling pair is several
orders of magnitude stronger than the probe pair, the sub-
system concemned with the coupling fields is nearly decou-
pled from the other. Thus the intense coupling fields trap the
atoms in the nonabsorbing cohcrent trapping superposition of
|1) and |2) ground states; the probe pulscs, on the other
hand, by interacting with thus prepared atoms, cxpericnce
amplitude and phase shape matching. The following expres-
sions for the applied electromagnetic fields are considered:

Eg (2,))= Re{Ele(z,t)exp( ~iwg t+ ikg z)}s
Epf(z,1)= Re{ £ (z,0)exp( —iwg ¢t + ik,,zz)},
Eg (2.0)=Re{ &3 (z.t)exp(—iwp 1+ kg 2)},
Enz(z,t)=Re{$52(z,:)exp(—iw32t+ikszz)}, (1)

where we assume that each field component interacts with
one atomic transition only. We suppose also that exact reso-
nance conditions are fulfilled. The time- and space-
dependent Rabi frequencies, defined rtespectively for the
transitions |1)-|R) and |2)-|R), are ag=pg &p,/2h and
Br= 1r, %R 2k, with pg (i= 1,2) dipole matrix elements.
ap and By are the analogous quantities for the transitions
involving the state |B). If we propose using the excitations
to the |B) state as coupling transitions, the |[NC) noncoupled
state is given by

= ——. )
Vag+ Bp

[NC) is an eigenstate of the feld-atom interaction Hamil-
tonian and is decoupled from the coupling fields acting on
the transitions to the |B) state: atoms in the INC) state do
not absorb radiation from the coupling fields. The coupled
state, given by the orthogonal superposition, allows transi-
tions to the upper state. In general, in a double-A system, the
|INC) state is nonabsorbing with respect to the coupling
fields that generate it, but it does couple to the probe fields.
However, if the noncoupled quantum superposition for the
probe fields coincides with that of the coupling fields, the
probe ficlds also are not absorbed and they propagate freely.
It is immediately verified that the rwo nonabsorbing super-
positions coincide if the probe pulses have their Rabi fre-
quencies in the same ratio as the coupling pulses. The fol-
lowing condition results:

ag g
=— 3)
Bz Br @

Shape matched pulses satisfying this condition are stable so-
lutions for the propagation in the double-A scheme. The con-
dition of Eq. (3) is independent of wtich transitions of the
double-A system are used for the coupling fields and which
are used for the probe fields.

The semiclassical description of the interaction between
electromagnetic fields and a homogeneously broadened ma-
terial medium, in the configuration represented in Fig. 1,
leads to a set of Maxwell-Bloch coupled nonlinear partial
differential equations [9]. We have used, in the simulations,
the parameters of a double-A system in a 87Rb atomic beam
with states (12] [1)=|57812F = Lmp=1), |2)=15%8F
=1mp=—1), |R)=|5?P3pF=1m=0), |B)=|6P,F
=1,mp=0). The electric ficlds of Eq. (1) are supposed to be
o~ and o* polarized. The spontaneous emission decay rates
of the "Rb excited states, at wavelengths of 780.0 and
4202 nm, respectively, are ['g=3.77X 107 s™!' and
[,=893%10° s™'. The nonradiative coupling 2 between
the two ground states determines the finite lifetime of the
coherent trapping superposition: the value yyy=5%10% s
has been assumed. Such a value for ¥ results in a lifetime
of the noncoupled state that is much longer than the time
duration of the pulses, so that the loss in coherence of the
ground-state superposition is not a limitation.

We have solved numerically the partial differential equa-
tions in the moving frame, along the propagation direction,
defined by the variables {=z and retarded time T=t—2z/cC,
where ¢ is the velocity of the light in the medium. Given the
time evolution at the entrance of the medium as an initial
condition for the field envelopes, and the initial conditions of
thermal equilibrium for the atomic variables throughout the
medium, we determine the temporal profiles of field and
atom variables at any fixed { position. The £ coordinate val-
ues are expressed as multiples of ™ 1, the Beers law absorp-
tion length for the transitions from each ground state to the
excited state, which involve the probe pulses. In the simula-
tions the amplitudes of the electromagnetic fields have been
chosen real, before they enter the medium; since we assume
conditions of exact resonance with the atomic transitions,
they remain real during the propagation.

Figures 2 and 3 refer to the case where the coupling
preparation is based on the excitations of the |B) state and
the probe takes place on the transitions to the |R) state. In
Fig. 2, the coupling field amplitudes are shown as a function
of the time at different penetration distances through the
atomic medium. They are compared with the occupations of
the noncoupled trapping state and the coupled state, pyc.ne
and pcc respectively. The strong coupling blue pulses,
while propagating through the medium, excite the |B) state
and pump the atoms into the noncoupled state. In the simu-
lations reported in Fig. 2, the maximum population in the
noncoupled state is only about 90%, since the coupling fields
have been switched off before the full accomplishment of the
trapping process. Such a preparation of the medium does not
provide the optimum conditions for pulse matching, but al-

lows us to distinguish between different physical mecha-
nisms concerned with pulse matching. The transmitted cou-
pling fields, together with the population of the coupled
superposition, display Rabi oscillations. The population of
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FIG. 2. Snapshots of the @g and By coupling pulse amplitudes
and of the occupation of the coupled and noncoupled superpositions
at different penetration depths ¢ through the medium. The thick
solid line indicates the identical coupling amplitudes ap and B,
with the left axis. Thin solid and dotted lines indicate the coupled
Pc.¢c and noncoupled Pyc.wc Occupations with the right axis, Pen-
efration depths in (a) {e=3 and in (b) La=30. At {e=0, ag and
Bp are as in (a), without the tiny oscillations, and pec and
Pwe.wc are equal to 0.5, their thermal equilibrium valye.

the noncoupled state does not oscillate, since such a state
does not interact with the fields, while it is filled by the
spontancous decay process.

We have chosen coupling blue pulses that are identical to
each other to produce the noncoupled trapping superposition
of Eq. (2) composed by both lower states in equal percent-
ages. Figure 2 shows that the coupling pulses remain equal
during the propagation. With such a preparation of the
atomic system, from Eq. (3) we expect exact coincidence for
the final amplitudes and phases of the probe pulses. As can
be seen from Fig. 2, the atomic system, which interacts with
the propagating coupling pulses, reproduces the same tempo-
ral behavior at any { position inside the medium: the curves
of the popuiations, in Figs, 2(a) and 2(b), are almost identical
to cach other. Thus the system #lways undergoes the same
atomic preparation, and constant conditions are encountered
by the probe pulses. Such a stability in the preparation of the
atomic medium is essential for pulse matching to take place,
so that the probe pulses reach matched temporal profiles, as
shown in Fig. 3. Further simulations have demonstrated that,
if the noncoupled state changes in the course of the field
propagation, then the matching process is inhibited.

Figure 3 reports the shape evolution of probe pulse am-
plitudes g and By, as they propagate through the medium,
simultaneously with the coupling fields shown in Fig. 2. The
input puises, at =0, are different in amplitude and time
duration. At a penetration depth of {a =3, pulse matching is
already realized, with pulse amplitudes satisfying Eq. (3).
Even though the trapping state is only partially occupied,
pulse shape matching takes place. At longer propagation
depths, pulse matching is not accompanied by transparency,
because of the residual population in the coupled absorbing
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FIG. 3. Snapshots of the probe pulse amplitudes a ({solid tine)
and By (dotted line) at different penetration depths, as they propa-
gale simultaneously with the coupling pulses on the transitions to
the | B} state (shown in Fig. 2). Penetration depths in (a) a=0, in
(b) {a=3, and in {(c) La=30.

state. Figure 3 evidences the presence of Rabi oscillations on
the transmitted probe pulses. Those oscillations are origi-
nated by the coupling pulses on the population of the
coupled state.

Figure 4 refers to a situation where the coupling fields
produce a compiete pumping action into the population trap-
ping noncoupled state, so that transparency of the probe
pulses remains at longer penetration depths. The atom and
field parameters are the same as those of the previous cases,
except that the coupling preparation takes place on the tran-
sitions to the |R) state and the probing stage on the transi-
tions to the |B) state. This choice corresponds to the purpose
of illustrating a condition with perfect dressing and transpar-
ency. A large value of [y allows a faster preparation of the
atoms in the trapping state. Pulse matching is reached at a
penetration depth around {a =10, longer than in the case of
Fig. 3. In fact, in agreement with the normal mode analyses
of [4,9], the pulse matching is reached exponentially with a
characteristic penetration depth that depends on the ratio be-
tween the oscillatory strength of the transition and the spon-
taneous decay from the upper level. Once pulse matching is
realized, the penetration length where pulse matching and
transparency are conserved is determined by the siow ab-
sorption of the coupling pulses. For the case of Fig. 4 (b) the
transparency of the matched pulses remains at penetration
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FIG. 4. Snapshots of the probe pulses aj (solid line} and B3
{dotted line) as they propagate simultaneously with coupling lasers
on the transitions 1o the [R) state. At the entrance of the medium,
the probe shapes are as in Fig. 3(a). Penetration depths in (a)
La=30 and in (b) Ja= 300.

lengths longer than La=300. The simulations reported in
Fig. 4 evidence the joint effect of the full preparation of the
atoms in the trapping superposition and of the electromag-
netic assistance provided by the coupling fields. The way to

accomplish that is to usc coupling pulses that overlap the
time envelopes of the probes and propagate through the me-
dium enough in advance to complete the trapping process.

We have also numerically investigated the pulse matching
process as a function of the time delay of the probe pulses
with or without time overlap with the coupling laser pulses.
Without simultancous propagation of the two pulse pairs, at
time delays where the pgg coherence has died out, but the
Py coherence is still on, the atomic system is effectively a
three-level A system prepared in the trapping state by the
coupling pair. Investigation of this time delayed regime has
allowed us to isolate the influence of the coherent population
trapping preparation from the electromagnetic assistance
provided, through the pgg coherence, by the simultaneous
presence of the coupling fields. ‘We have verified that, even if
pulse matching is realized in the time-delayed propagation,
the electromagnetic assistance greatly enhances the pulse
shape preservation.

In conclusion, we have studied the propagation of pairs of
weak probe pulses through a double-A medium, prepared by
a pair of strong coupling pulses. Exploration of the pulse
matching process over the different transitions of the double-
A system has allowed us to determine the influence of dif-
ferent atomic and laser parameters. Numerical calculations
show completely lossless propagation of shape matched
pulses: leading edge preparation losses have been avoided
and conditions on the pulse areas ignored. Finally the elec-
tromagnetic assistance on the pulse matching process pro-
vided by the upper level coherence has been discovered.

The authors are grateful io Professor Neal Abraham for
inspiring conversations and to Dr. Marina Mazzoni for her
encouraging interest in experimental realizations in this field.
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The propagation of intense laser pulses through a four-level atomic system in a double-A schemce is exam-
ined. Under conditions of adiabatic perturbation of the atomic quantum state, paired pulses with arbitrary
shapes establish a correlation between their amplitudes and reach a quasiform-stable regime of propagation.

The amplitude cotrelation is a feature of pulse matchin,

g. whilc the propagation presents the same properties as

the so-called adiabatons, predicted and observed in single-A sysiems. We show that in the double-A scheme
the phenomena of pulse matching and adiabaton-type propagation are associated with two distinct propagation

aormal modes. [S1050-2947(96)07212-5]

PACS number(s): 42.50.Gy, 42.25.Bs, 42.50.Hz, 42.50.Md

L INTRODUCTION

A A-type atomic medium can be pumped, by a pair of
strong resonant electromagnetic fields, into a coherent super-
position of the lower-energy states, where the atomic popu-
lation is trapped because of destructive interferences between
two different absorption paths. This phenomenon, known as
coherent population trapping (CPT) [1], leads to the suppres-
sion of the total absorption of the resonant fields and renders
the atomic system transparent, even with most population
remaining in the lower-energy states. This type of cancella-
tion of the absorption is currently termed electromag-
netically-induced transparency (EIT). In A systems, the EIT
is obtained as a direct consequence of the coherent trapping.
In general, the EIT is produced by quantum coherences and
interferences and can be achieved in different multilevel SYSs-
tems, including V-type systems where the CPT does not oc-
cur [2].

EIT has attracted much interest for its application to the
amplification without inversion (AWI) [3,4] and several au-
thors have focused their attention on the implications of the
EIT on the total transmission of resonant light [5]). Disper-
sion properties [6] and spatial consequences [7-9] of the EIT
have also been investigated, as well as applications to non-
linear optics [10]. In [11], the analysis of the phenomena of
CPT, EIT. and AWI has been extended to autoionizing tran-
sitions,

The absorption and dispersion features of the EIT have
important consequences on the interaction of time-dependent
electromagnetic fields with an atomic medium and different
aspects of the propagation of pulsed excitations through
three-level systems have been discussed in several theoreti-
cal papers [12-22]. In [12], the process of puise matching
has been predicted as a result of the nonlinear interaction of
two laser pulses with a A system, with the coherence be-
tween the lower-energy states fixed by an external prepara-
tion. This process generates a correlation between the Fou-
rier components of the two pulses, and hence a shape
matching of their temporal profiles. After the comrelation is
established, the maiched pulses propagate without losses and
without group velocity reduction and dispersion. These

1050-2947/96/54(6)/5400( 10)/$10.00 54

stable pulses can have arbitrary shape, determined by the
initial pulse shapes and by the preparation conditions of the
medium. As pointed out in [13), pulse matching originates
by the selective absorption of a well-defined superposition of
the two applied laser fields interacting with the coherently
prepared A system, while the orthogonal superposition
propagates without attenuation. The propagation of those
field superpositions, termed as ‘‘dressed fields,”” has been
discussed in [14,15], as well. Matched fields represent a
steady state solution to the problem of the propagation of a
pair of time-dependent ficlds through a A system. This
steady state is stable against small fluctuations of the inten-
sity and phase-difference of the two fields, as explicitly
shown in [17-19]. The propagation of matched puises in the
absence of initial coherent preparation has been investigated
in [13,20]. It has been shown that the preparation of the
atoms is performed by the leading edge of the applied pulses,
if sufficiently intense, through the CPT process, so that the
atomic medium results transparent to the puise trailing edge.
In [21], new form-stable pulses, named adiabatons, have
been predicted under specific conditions of adiabatic excita-
tion of a A system. The adiabatons develop as a pair of
complementary pulses interacting with two different transi-
tions and propagate with reduced group velocity. The invari-
ance properties of this type of pulse have been discussed and
specified in [22] and their essential features described experi-
mentally in {7). The formation of the adiabatons is under-
stood in terms of adiabatic following of the instantaneous
nonabsorbing CPT superposition and is related to the process
of stimulated Raman adiabatic passage (STIRAP) [23].
Interesting propagation features have also been predicted
for four-component fields interacting, in strong-coupling-
weak-probe configurations, with four-level atomic systems.
As shown in [24,25], these systems can be prepared coher-
ently, by applying a pair of coupling pulses to two different
atomic transitions, so that paired probe pulses, coupled to
other transitions, experience shape matching and propagate
without losses. Different configurations of interaction, such
as the double-A [24] and the double-V [25], lead to the trans-
parency of the four-level medium for weak probe fields. In
[26], the refractive properties of the coupling-probe double-

5400 © 1996 The American Physical Society
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A system, associated to the process of pulse matching, have
been investigated.

In this work, we report on additional properties of the
dynamics of the double-A system, when all of the driving-
field components have a high intensity. We focus on the case
ofadiabaﬁcmnbaﬁonofmciniﬁalcohaemmmicm
and use, to describe the system under these conditions, the
dressed-basis representation introduced in [22]. We demon-
strate, both analytically and numerically, that the adiabatons
originate also in four-level systems and evidence the corre-
lation that, in such systems, is established between the am-
plitudes of these puises. Under adiabatic conditions, the field
propagation is governed by two spatial normal modes. One
ofmcsemdes.mamlyabsorpﬁvcandassociawdmdnm-
sient regime of pulse matching, is characterized by a short
extinction length. Its absorption determines the establishment
ofamehﬁonhetweeudlcamplimdesofpulmacﬁngon
diﬁ'amtm:iﬁonl.Themondmode,mﬁaﬂydispersive
and traveling with reduced group velocity and very small
losses, describes the propagation of pairs of adiabatons. Our
analysis clarifics that pulse matching and adiabatons repre-
sent two distinct transient phases towards the statiopary state
of the atom-ficld system, which is represented by matched
fields and coberently trapped atoms. New effects of mutual
interaction between the different field components and inter-
play between the process of pulse matching and the forma-
tion of the adiabatons are predicted.

The organization of the paper is as follows: In Sec. I we
derive the Maxwell-Bloch equations for the double-A system
in the basis of the adiabatic dressed states. In Sec. 111 these
equations are solved under quasiadiabatic conditions, in
terms of propagation normal modes. The normal-mode solu-
tion is discussed in Sec. IV, where numerical simulations
that support and extend the analytical description are also
presented.

II. THE FOUR-LEVEL SYSTEM IN THE ADIABATIC
DRESSED STATE BASIS

A four-level system in the double-A configuration is
shown in the diagram of Fig. 1(a). The interaction scheme is
composed by two A subsystems that share the lower-energy
states |1} and |2). For simplicity, the dipole allowed
[1}—1é) and {2)—|i) transitions (i=c,p) of both A sub-
systems are supposed symmetric, i.e., with equal frequency,
dipole moment, and spontaneous emission rate. We describe
the interaction of this system with slowly-varying four-
component fields and assume that each component is only
coupled to one of the allowed transitions and has its carrier
frequency exactly resonant with the transition frequency. We
disregard the transverse distribution of the fields and the in-
homogeneous broadening of the medium. These assumptions
allow us to obtain a straightforward analytical description of
the spatio-temporal evolution of the system.

We indicate the angular frequency of the transitions to the
upper state |i) (i=c,p) as w; and the natural decay rate of
|iy as T',. The population of |i} is supposed to decay by
spontaneous €mission into 11) and [2) with equal rates,
given by I';/2. Nonradiative decays of the lower states are
neglected. A symmetric double-A system is provided, for
instance, by two F=1—=F =1 atomic transitions with com-

le>

1> 123

e>

INA>

FIG. 1. Double-A system in the (a) bare-state and (b) dressed-
state bases.

mon lower state, driven by circularly polarized laser fields:
the me=1 and mp= — 1 Zecman substates of the lower state
are coupled to the mp=0 substate of either upper state by
resonant o~ and ¥ field components, respectively.

We describe the electromagnetic fields through the space-
time—dependent Rabi frequencies ac(z,t)=chC|(z.t)!ﬁ,
Bc(z.r)=chc2(z,t)Iﬁ, ap(z,t)=dPEpl(z,r)Ift, and
,Bp(z,t)-:dpEpz(z.t)lﬁ, where E;;(z.1), for i=c,p and
j=1.2, is the slowly-varying envelope of the field compo-
nent interacting with the transition  |j}—|i} and
d;=(3hc? T /8w})"? is the dipole moment matrix element of
the symmetric transitions from the lower states to the upper
state |i). The Maxwell-Bloch equations of the double-A sys-
tem in the basis of the bare atom are written explicitly in
(27). Here we introduce the basis change to the dressed states
|NA) and |A),

Bl -ad?)
WA= o 1B

ay= LBl
NPT

If we consider a,,8,=0, then the system in Fig. 1(a) is
reduced to the A system composed by the states [1}.12), and
|c): the state |NA} represents the nonabsorbing CPT super-
position [1] associated to this system, while |A) is the ab-
sorbing orthogonal superposition. When the fields a. and
B, are time dependent, unless they have matched time-
profiles, |NA) and |A) are explicit functions of the time, as
well. The field components c, and B, could be chosen as
coefficients of the superpositions in Egs. (1) in the place of
a, and §.: the following analysis is independent of such a
choice.

We describe the spatio-temporal evolution of the atom-
field system in the moving frame of the coordinates {=2 and
7=t — z/¢. Under exact resonance conditions, it follows from
the Maxwell-Bloch equations that, if all field components are

(1a)

(1b)
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in phase at the entry surface of the medium, and the initial
atomic polarization is 7/2 out of phase with respect to the
ficld, then the phase of the field, as well as that of the atomic
variables, remains unchanged during the interaction, Thus, in
the following, we can assume the Rabi frequencies o,
B, a,, and B, real for any T and {, We define the new field
variables 027({,7) and 0, ({,7), with dimensions of fre-
quencies, as

QD= Va1 + 8L 7, (2a)
d ad
] B8 )-allm-adl, 52847
ﬂc ({v 1-): n+2(£ 1.) ' (2b)
crp 2NN+ BL DB
0= T . ()
np_({‘rhBc(f.f)a,,(f,f)-ac(i,f)ﬂ,,(f.f). 2

0l

A pair of field variables of the form of ) has been intro-
duced in [22] to describe the atom dynamics and the loss-
free propagation of laser fields in a three-level A scheme
under STIRAP conditions. In terms of 0 and 1, the
original Rabi frequencies are expressed by

ac(:j,r):Q:(g’,r)sin[fr ﬂ;(g,r')dr’whconst}, (3a)

BAL)=Q7({ 7)cos

f_ .ﬂ,c({,f')dr'+constJ, (3b)

@ (£ ({7 + B4 1N, (1)
QX

ap(L,7)= . (3¢

B($, 10 ({1 - all, Y, (L,7)
QL7 ‘

B,({.7)=

Equations {3a) and (3b) are easily obtained from the relation
Q, =(d/d7){arctan(a, /)], with the conditicn
lim,_, _.arctan] a (£, 7/8.({,7)]=const. :

In the basis of the dressed states defined in Egs. (1), the
equations for the elements of the density matrix p in the
interaction picture read, under exact resonance conditions,

PNy - v - )
T = }‘cPc(NA)"Qc Pea™ fﬂp Ppct ‘Q‘:pA(NA) B
(4a)
apcA . — .
g7 = YePea "I (= pan) + 0 ponay— i p,
(4b)
FPp(Na) o~ )
“ar o YePeivay~ Y, (Ppp— pivaya)) + ’Q;PMNA: '

{4c)
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C?PPA R . ey —
ar =T YoPpa —‘Q;(ppp“pAA)_‘ﬂ:ppc"'"n’p PA(NAy

{4d)

9Ppc - . .
== 'rpcppc_'n Pe(vay— 'ﬂ; Pca —l‘n':ppA ’ (45)
ar 4

OPANA) . _ . .
s - Q7 (Pivayma) = Paa) +if2] Pemy T80 Boina)

+ ;‘ﬂp‘pp,t y 40
9P, ;
7 == F‘-‘pcc - 210:.‘):»\ ’ (4g)
39”__[. -2i (0 +07p,4) (4h)
3. =~ Loppp—2i(0, pyona) p Ppals
3pvaynay; T r (1 .
ar =3_pcc+ Ep_ppp"_z'np Prna) = 2R pagna)
(41)
9paa T r i
B L e e at 000
+20 pana) ()
with
r,
7c=7‘ ta)
r
Yo=5 30)
1
7pf=5(rc+rp)‘ (%)

Here all terms proportional to the field variable ) . arse
from the explicit dependence of [NA) and |4) on time (cf.
the equations derived in [22] for the single-A system). Equa-
tions (4) hold for real ficlds. We notice that 17 and ) , can
be consistently considered real if the ¢ jth density matrix el-
ements, with i=A.NA and j=c.p, are considered purely
imaginary and the other elements real.

Equations (4} must be solved in a self-consistent way with
the Maxwell equations that, in the slowly varying envelope
approximation and in terms of the field variables Q7 and
th , are

IO
- =i’<cpm4' (6a)
14

N 5(Prmm)

o _IKCE". Q: , {6b}
a0y -0,
—a€—=£KPPpA+£Kc‘FPC(NA)v (60)

[
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a0, o
Tg%:ix,pp(NA)"""cﬁiTPcmm- (6d)

where the coupling coefficient «,, for i=c,p, is given by

_81rw,-N|d,-|1

ch ' )

K

with N the atomic density.

Formally, Eqs. (4) and (6) describe a four-level system
driven by the fields 027 and £} . As sketched in Fig. 1(b),
Q] and 2, couple the state superposition |A) to the upper
states |c) and |p), respectively, {1, couples |NA) to |p), and
Q] connects |[NA) and |A). Some interesting conclusions
can be directly drawn from the scheme in Fig. 1(b). Let us
observe that, when the original fields a. and 8. have
matched time profiles, i.c., have the same time dependence
and only differ from each other by a constant scaling factor,
then the transformed field (b is identically equal to zero. On
the other hand, {}, vanishes when @, and B, are, at any
time, in the same ratio as «, and B,

ap({! 1') _ a‘-(g. T)

3,7 BLD ®

When a, and 8, have matched profiles, so that their ratio is
independent of time, this equation establishes the condition
of pulse matching for a, and B, - Provided that both {)_ and
Q, are equal to zero, the state superposition |[NA) is decou-
pled from the fields. Then, if the atomic system is coherently
prepared in |[NA), all the population remains there indefi-
nitely, while the transformed fields Q} and Q, interact with
the remaining empty states and propagate freely. The conser-
vation of 0} and Q) corresponds, in the bare-state repre-
sentation, to the stable propagation of two pairs of matched
pulses, whose amplitudes satisfy the correlation condition
given in Eq. (8). Thus, in the dressed state basis it is imme-
diately seen that pairs of arbitrarily strong and arbitrarily
shaped pulses, with matched profiles and correlated ampli-
tudes, maintain the atomic population coherently trapped in a
nonabsorbing state. Atoms in the coherent trapping superpo-
sition |[NA) and matched pulses correspond to a stationary
state of the atom-field system [28].

The application of the fields Q_ and {}, represents a
perturbation to the stationary state described above. In this
work, the spatio-temporal dynamics of the system is exam-
ined in the hypothesis of weak perturbations. This assump-
tion does not require, in general, that the original fields a,,
8., a,, and B, are weak, since both (1 and {}, can be
rendered small by properly choosing the relative amplitudes
of those fields. As shown in the following, with strong origi-
nal fields new nonlinear phenomena arise in the transient
dynamics of the four-level system, not observed in strong-
coupling—weak-probe configurations as those considered in
Refs. [24-26].

1. PULSE PROPAGATION UNDER QUASIADIABATIC
CONDITIONS

We now describe the transient dynamics of the atom-field
system under conditions of weak coupling of the state
[NA} to the upper states, i.e., for Q. and (}, much weaker
than 0 and ;. When this requircment is satisfied, the
evolution of the state |[NA} is quasiadiabatic [15]. We con-
sider, for any position [, the state |NA) fully occupied at the
initial time, as an effect of a coherent preparation of the
atomic sample. In fact, the double-A system can be prepared
into any superposition of the lower-energy bare states by
means of the application of a pair of sufficiently long and
intense matched pulses, with proper amplitude ratio, to either
A subsystem [20,24].

From Eqs. (4) and (6) we can see that, with all the popu-
Jation initially in [NA), 7 and (2, remain small during the
interaction, if they are both small at the entry into the ine-
dium, in {=0. For IO:1,|Q;I<]Q:|.]Q;|, the atomic
population always remains, at first order, in the state |[NA)
and the coherences between initially empty states are never
excited,

povanak ) =1, (9a)
paalls 7)=pecl{s T)=ppp(£’f)=0 ' (9b)
pcA(gvT):ppA(CvT)=Ppr:(‘:,7)=0- (9¢c)

Under these conditions, the equations of motion for the re-
maining atomic variables become

a
E;Pc(m)(f"’)= - 7cpc(NA}(§v7)+EQ:PA(NA)(gvT)v
(10a)
a oy —
E;pP(NA)(C-T) = — Y,PpNakEs ) +ifd, ({.7)
+£ﬂ;pA(NA)(§vT)- (10b)

a
E;pA(NA)(CvT)'__in:pc(NA)(c'T)+iﬂ;pp(h’.&)(;v‘r)

+Q. (&7 (10c)

Moreover, at first order, the driving terms on the left-hand
side of Egs. {6a} and (6c) vanish, so that the fields 1, and
), are conserved along L

n:({.‘l’):Q:(O.T), (113)
Q) (L.n=0,0.7). (11b)

We further assume that the decay rates Y. and 7y, are suffi-
ciently large that the coherences pc(va) and p,(va) instanta-
neously follow the evolution of the fields. This adiabaticity
hypothesis simplifies the analysis but does not change, in
substance, the results presented in the following. By elimi-
nating pcvay and Ppva) from Eqs. (10a) and {10b), and
substituting them in Eqgs. (10c), (6b), and (6d), the Maxwell-
Bloch equations are reduced to
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3 Q407 Qx40
EPA(NA)(L T)= - 7. + 7, Panay{,T)
0,(0.7)

+ﬁ£(s’.r)——7—-n;(;.r). (12a)
f

d

c

- K, @
a{ﬂc(§-7)=“;‘;;Pum)({'?). (12b)
J s _
Eap(g,r)=—;fnp(§,-r)
Kc Kp +
+ ;r"“_; Q, (0.7)pana)( L, 7).
(12¢)

By choosing the amplitudes of the incident fields {}} and
(1, as constants, Egs. (12) become a set of linear differential
equations with constant coefficients, easily solved analyti-
cally in the frequency domain. This particular case allows us
to determine the basic mechanisms underlying the evolution
of the system.

By Fourier-transforming Eg. (12a) with respect to T, we
obtain

. l - P
PacNAn(f-w)—m Q7 ({,w)- _ZQP (L),
(13)
where the Fourier-transformed variables are marked by a cir-
cumflex accent and the effective decay rates L/ =0y,
with i=c,p, are introduced. By substitution of Eq. (13), the
propagation equations for f).c_ and ﬁp_ become

d . . .
ﬁﬂc—(g’.wh ~A(@)) ({,w) - B(w)(), ({,w), (i4a)
. ‘ .\ A
Qﬂp({.wF*C(wmc(c.w)LD(w)np(f;,w). {14b)
with
wzﬁiw(r',ﬂkr')
. _ B C Il
A(w)-ric—“———wg+(r;+r;)2 . (15a)
wl—iw(I+T) Q7
=TT el Py
Blw)=— 7" ST {15b)
'+ +iw
—r BB )
Clw)=(y, ﬂf)“‘—"-—m2+(ré+r;)2 M (15¢c)
B/ B r ] . '
D(m):(n,,rﬁmr,,)(rc+rp)+w2n§—m(n§—v;f)r,,

@'+ (T +1))? '
(15d)

where 7%= Kiiy,, for i=¢, p, denotes the Beer's absorption
coefficient of the symmetric transitions from the lower states
to the upper state [i). We notice that, if {} » is equal to zero,
or very small with respect to {27 and to the upper state decay
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rates, then the coefficients B and C vanish and the evolution
of £}, and (), is diagonal. Thus, only for large values of
02, a mutual interaction between the perturbation fields
{1, and Q, is produced. This interaction will be discussed
in the next section.

The solutions to Eqs. (14) are combinations of two normal

modes exp{— m{} and exp{— (3,
f‘lc_({.w)=a,(w)e—”"“”;+asz)e_ @ (16a)
0, (Lw)=bi(we” Mt hy(w)e 1N (16b)

with the propagation coefficients 7, and 7, satisfying the
condition

7—(A+D)p+AD-BC=0. (17)

The coefficients g; and b; (i=1,2) are determined by impos-
ing that (1" and ), satisfy Eqgs. (14) with the boundary
conditions assigned in =0,

By solving Eq. (17), we obtain the following expressions
for 5, and 7,

|
7=3{A+D+\(A+D)"-4(AD-BC)]. (i8a)

!
=5(A+D—-A+D) ~4(AD=BC)]. (I3b)

We assume that all the relevant Fourier frequencies are suf-
ficiently small, such that |w|<€[]. At first order in w/l],
the propagation coefficients are given by

1 i¢u+0 w2
TII—E—Z (I..—;J , (19a)

_ iw wl?
W:——Z'FO F;— . (19b)

where the length {, and the velocity parameters u; and u,
are introduced as

F;,+F;

=5 —=. 20a)
Yo+ T

(T, +TD2 [ 78 4P
=7 (T"’ i (20b)

U\ =—pg g3l =+t =1.
! (Ug_ﬂf)z.r,, r-!

[

L

T, T
=—F+

Uy

The real and imaginary parts of 7, and 7, represent the
absorption and dispersion coefficients, respectively, associ-
ated 1o the two propagation normal modes. At first order
R{7} is constant in w and describes a uniform damping,
with characteristic length ¢, of all Fourier components,
while I{ 7} is linear in @ and determines the slowing down
of the group velocity: the more Beer’s coefficients nf’ and
77,? differ from each other, the larger this dispersive term is.
For {*{, only the second mode survives. At lowest order
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FIG. 2. Time dependence of the fields {1, (solid curves, left
axes) and 2, (dotted curves, right axes) from Egs. (21), for differ-
ent penetration lengths within the medium: (a) { 17£=0. (b}
{11:=1, {©) {q£=50, and (d} (1]:=500. The parameter values
used in the calculation are T',=1.0X% 108 571, I,=93x% 107 s,
k. =39%x10% cm ™! s, .vc‘,=1.5><109 cm ™! s~'. For the fields
)} and (), the constant value =0, =141% 10% s ! has been
assumed. The corresponding extinction length for the first normal
mode is {,ng= 1.51. In (c) and (d) the scale on the right axes is
expanded by two orders of magnitude with respect to (a) and (b).

77, is purely imaginary and linear in © and describes a dis-
persive and shape-invariant propagation. In the laboratory
frame, the group velocity u; associated to the ith mode, for
i=1.2, is defined by Lliv;=1llc+ Vu;. The higher-order
terms in the expansions of Egs. (19) represent nonlinear Cot-
rections to the absorption and dispersion coefficients and are
responsible for small effects of group-velocity dispersion and
selective absorption of high-frequency Fourier components.

IV. AMPLITUDE CORRELATION AND FORMATION
OF ADIABATONS

_ In this section we illustrate the normal-mode solution de-
rived above and show how it accounts for phenomena of
correlation between the amplitudes of the different field

components and for the formation and propagation of adia-
batons. The solution is discussed, in Sec. IV A, in the
dressed-atom representation, i.e., for the fields {1 and
Q. and in Sec. IV B for the original fields a.., B.. a,
and B, in the bare-atom representation. The analytical results
obtained in Sec. TII only apply for a Jimited choice of time
distributions of the amplitudes of the input fields, namely,
when the field variables {1 and ﬂ; are independent of
time. An example of time distributions that do not meet this
requirement is considered in Sec. IV C. In that case, the field
evolution is computed numerically, but is still understood in
terms of the mechanisms previously described analytically.

A. Fieid evolution in the dressed-atom representation

We first use Eqs. (16) to describe the evolution of input
fields {2, (0,7) and ﬂ; (0,7) of the form shown in Fig. 2(a):
] (0,7) is taken equal to zero, so that Q,(0,7) represents
the only nonvanishing but small perturbation to the CPT
steady state of the system. The fields 1} and 1, are as-
sumed independent of time. For the assigned boundary con-
ditions, the solution given in Eqgs. (16), transformed back
into the time domain, reads

A
afordlh
Q;({,’,T)=ﬂ;(0,‘r— %)cxp{ - %] +g{%n;(o,f
Son|-£]- oo &)

(21b)
with
f."‘T—iT—% (22a)
npr;"—n(‘r; ¥p '
B B B '
¢ - r)r
nom,— M, (22b)

=g _Bprye-
(Pl + 7L,

This solution is plotted as a function of r, for three different
positions £, in Figs. 2(b)-2(d}. For strong values of Q; , the
spatial evolution of the perturbation fields Q_ and Q, is
determined by a combination of the two normal modes. This
renders the two fields coupled to each other. For instance, in
the situation examined here, we see from Egs. (21) and from
Fig. 2 that 0, initially equal to zero, builds up from the
absorption of {1, during the transient of decay of the first
mode. In general, for {1, the ratio between the fields
Q. and {}, becomes independent of {. In the bare-atom
picture this corrasponds, as exemplified in Sec. IV B, toa
correlation between the amplitudes of the different field
components. In Figs. 2(c) and 2(d) the first propagation
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mode is extinguished and the field evolution, purely deter-
mined by the second one, comresponds to a dispersive and
shape-invariant propagation.

Intheadiabaticlimit,whcnthcmteofchangcofmc
perturbation fields is completely negligible with respect to
) and 0}, Eqs. (21) simplify to Q.(L,7=0 and
ﬂ;((,r)=ﬂ;(0.r)exp{—§/§,}. This also applies when the
field {2, is negligibly small. In these cases, for {® {, both
perturbation fields {}_ and ) » are equal 1o zero so that, as
shown in Sec. II, a steady propagation regime with matched
pulses is established. In this sense the exponential decay of
the first normal mode, with characteristic length ¢, corre-
sponds to the spatial transient of pulse matching.

The second mode, comresponding to the last term on the
right-hand side of both of Eqgs. (21), describes the form-
stable and delayed propagation typical of the adiabatons, in-
troduced in [21] for the A system. As first pointed out in
[22], the invariance of the pulse shapes, in this kind of propa-
gation, is an approximate result, which holds when the rel-
evant Fourier frequencies of the perturbation fields are suffi-
ciently small. In the present analysis, apart from the
condition |0;I.Iﬂ;[<]n:|,|ﬂ:], the shape invariance fol-
lows from the first-order truncation in the expansion of Egs.
(19). Actually, in the propagation of the adiabatons, absorp-
tion and group velocity dispersion are small effects, but not
negligible over very long propagation distances. These ef-
fects cannot be observed within the distances considered in
Fig. 2,

B. Field evolution in the bare-atom representation

From the solution for 2 and Q. given in Egs. (21} and
displayed in Fig. 2, by applying the formulas of Eqgs. (3), we
find the corresponding solution for the original fields «,,
B.. a,, and B, . shown in Fig. 3. In Fig. 3(a), the fields
a.and B, in =0 are independent of time and equal to each
other, while, in Fig. 3(b}, a, and 8, are given by opposite-
signed modulations superimposed to strong and equal con-
tinuous components: such time distributions for the original
fields correspond to those of Fig. 2(a) for the transformed
fields €2, and ), with 2 and Q2 constant in 7. Figures
3(c) and 3(d) show that, as Q) develops at the expense of
£, [cf. Fig. 2(b)], the modulations of the incident fields
a, and B, are transmitted to the initially flat fields a, and
B. . In Figs. 3{e)--3(h), the behavior of the fields is shown
after the first propagation mode has died out. From Egs. (21)
we see that the second mode in the evolution of both () . and
0 » is described by terms proportional to the time derivative
of {2, evaluated in {=0. In the present case, those terms are
of comparable strength and, at any ume 7, much smaller than
the values assumed by () p in {=0. This appears from Figs.
2(c) and 2(d), where the fields 1. and ﬂp' are shown after
the full absorption of the first mode, when only the contribu-
tion of the second one is present: in those figures the ampli-
tudes of ()" and €}, are two orders of magnitude smaller
than the initial amplitude of (1, , in Fig. 2(a). Nevertheless,
as shown in Fig. 3(e), the second mode in £}, results in a
relatively strong modulation of the fields a. and G, depen-
dent on {}_ through a time integral [cf. Egs. (3a) and {(3b)].
On the contrary, the second mode in {1, affects a, and B,
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FIG. 3. Spatio-temporal evolution of the original ficlds a -8,
(left column) and a,,-8, (right column) corresponding to that of the
transformed fields ) and {1, in Fig. 2. The time profiles of the
ficlds are shown in (a) and (b) {7, =0, (c) and (d} {n®=1, (e) and
L qf=50. and (g) and (h) { ng=500. Exact numerical results
{dotted curves) are shown together with the analyrical results (solid
curves).

very weakly. Thus, for {» (|, (1, is negligible and Eq. (8) is
approximately satisfied. However, that equation does not de-
scnibe, here, a condition of shape matching for the fields
@p and B, , as the ratio a, /8. is time dependent. Instead. it
15 nearly obeyed with alf,T)=a,({,7) and
B.({, 7y~ B,({,7). The conservation of ()} and Q1 along
¢ forces the modulations in the field pairs a -8, and «,-
B, to have opposite signs. In the bare-atom representation,
the formation of modwlations with complementary ampli-
tudes in the time profiles of the fields is a feature of the
adiabatons [21,22]. The comparison between the curves in
Figs. 3(e) and 3(f) and those in Figs. 3(g} and 3(h) evidences
that, after the absorption of the first mode, such modulations
propagate simultaneously with reduced group velocity,
nearly preserving their shapes for long penetration distances.

The generation of the field €1 and, in general, the cou-
pling between the two perturbation fields can be regarded as
a phenomenon of nonlinear mixing between the ‘‘pump
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FIG. 4. Time dependence of the field pairs a,-B,. (left column)
and a,-B, {right column) in (a) and () {7;=0. (c) and (d}
L qg - 50, and (e) and (f} £ 7 = 500. Numerical {dotted curves) and
analytical (solid curves) results are almost indistinguishabie. Param-
eters as in Fig. 3.

waves”” (1] and (1) and the ‘‘probe waves”” (1. and
(¢, . Inthe bare-atom picture, a consequence of this mixing
is the possibility to transfer amplitude modulations from one
pair of fields to another. We remind the reader that, in the
considered F=1—F=1 interaction scheme, the field com-
ponents a, and ., as well as a, and 8,, interacting with
frequency-degencrate transitions from a pair of lower states
to an upper state, must have an opposite circular polarization.
In the situation shown in Figs. 3(a) and 3(b), e, and 8. have
flat time profiles, so that the polarization of the total field at
the frequency of the transitions to the upper state |} is con-
stant in time, while the complementary modulations in the
profiles of @, and B, correspond to a modulation in the
polarization of the total field at the frequency of the transi-
tions to the state |p). Thus, the adiabatons shown in Fig. 3, in
the form of complementary-shaped amplitude moduiations in
the field pairs a-8, and ap-B,. correspond to **polarization
adiabatons’’ in the total ficlds at the two transition frequen-
cies.

To check the validity of our approximate analysis, we
have examined the evolution of the input fields shown in
Figs. 3(a) and 3(b), using the whole set of Maxwell-Bloch
equations. Numerical and analytical solutions, plotted to-
gether in Figs. 3(c)-3(h), show an excellent agreement.

In Figs. 4(a) and 4(b) different time distributions for the
input fields in the bare-atom picture, still satisfying the con-
ditions 2 (0,7)=07(0,0) and 03(0,1=0,(00), are
shown. With these input fields both and {1, result, in

4
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FIG. 5. Time profiles of the fields ., B.. (left column, solid and
dotted curves, respectively), a,, and B, (nght column, solid and
dotted curves) from the numerical solution of the Maxwell-Bloch
equations, at different penetration lengths: (a) and b)Y ng=0. (c)
and (d) { n}=50. and (e) and (f) { =500

£ =0, different from zero. Moreover, as the field a, vanishes
for 7— — @, while 8. assumes a constant value different
from zero, the nonabsorbing state |NA) of Eq. (1a) coin-
cides, at the beginning of the interaction, with the bare
atomic state |1). The spatio-temporal evolution of the field
amplitudes, evaluated both analytically and numerically, is
illustrated in Figs. 4(c)—4(f). As noticed above, the absorp-
tion of the first propagation normal mode establishes a con-
dition of correlation between the field components, in the
form of a constant ratio between {1, and {3, . Also in this
case, such a condition results in a negligibly small amplitude
for (3, , compared to the amplitudes of all original fields, so
that Eq. (8) is nearly satisfied, for (3¢, with a.(L.7)
sa,(L,T) and Bc(g,r)*ﬁp(g’,?). Thus, the correlation be-
tween the field amplitudes arising from the extinction of the
first mode leads again to adiabatons with approximately
matched shapes.

C. Propagation of fields with a finite duration

Here we consider, in the bare-atom representation, the
propagation of the input fields shown in Figs. S(a) and 5(b).
At the beginning of the interaction the field components o
and B, . in Fig. 5(a), are matched and, apast from their rising
edge, constant in time, while a, and B, in Fig. 5(b), have
different time profiles and finite lengths. The analytical re-
sults derived in the preceding section do not apply in this
case, since the variables (2 and {); are time dependent and



5408

the condition lﬂ;(O.r)|<|ﬂ;|.m;j is not strictly fulfilled,
We have calculated the evolution of the fields and the atomic
variables numerically from the Maxwell-Bloch equations,
with the assumption that the atoms have been prepared, for
any {. in the pure stuic |NA). Paranieter values relative to the
double-A  system formed by the states I1)=[528,,F
=tme=1), |2)=|S25,,F=1mp=—1), |p)=|5 *PaF
=1mp=0), and |¢)}=16*P1,F=1mz=0) of *Rb atoms
have been assumed: I'.=8.93x 106 ¢! F,=3.77x10
T 0. =4.5% 10 57!, @,=2.4x10' 5! ‘and N= 100
cm ™, corresponding to x,=3.74X10° cm~! 5! and
K,=5.54x10° cm ™' 571,

To a certain extent, the situation considered here is similar
to that illustrated in Fig. 3: at the entry into the medium the
field variable 0 is equal to zero, a, and 8. being identical
to each other, while 12 is different from zero because of the
shape mismatch between @, and B, . However, an important
difference from the case of Fig. 3 is that here the fields a,
and B, are taken as pulses with a finite duration, so that
2, is different from zero only within a certain time interval.
The time profiles of the field componeats are shown in Figs.
5(c)-5(f), for different penetration depths within the me-
dium. Also in this case the basic mechanisms pointed out in
our previous analysis govern the evolution of the system.
The absorptive mode in the field propagation is rapidly ex-
linguished. As a consequence, the mismatch between the
field components a, and B, is strongly reduced, while
modulations build up in the initially flat profiles of «, and
B, giving rise to a pair of complementary-shaped adiaba-
tons. This behavior is illustrated in Figs. 5(c) and 5(d) and is
analogous to that shown in Figs. 3(c) and 3(d). The remain-
ing dispersive mode, whose group velocity is slower than the
velocity ¢ of the light in the nonresonant medium, deter-
mines the further evolution of the generated adiabatons. In
terms of the transformed fields, in the dressed representation,
the adiabatons typically appear, as seen in Figs. 2(c) and
2(d), as time-dependent structures, localized in time, in the
profiles of the fields 1~ and Q » that are, elsewhere, equal to
zero. In the present case, such adiabatons accumulate longer
and longer delay with respect to 17, which has a finite
length along 7 and travels at velocity ¢. Eventually, both
Q" and Q2 vanish within the whole time interval of inter-
action of Q; . As a consequence, as predicted by the relation
in Eq. (8), the original fieids @, and B, become exactly
matched in shape. Moreover, with 2 and €}, equal to zero,
the fields a, and 8, become proportional to the field vari-
able Q; and travel, like .Q; » at velocity ¢ without any fur-
ther absorption or dispersion. On the other hand, the fields
a.and 3., having an infinite length, can support the delayed
propagation of the pair of adiabatons developed on their pro-
files. This situation, with a pair of matched pulses on one
pair of transitions and a pair of adiabatons on the other, is
depicted in Figs. 5(e) and 5(f). If the fields a. and B, are
regarded as pulses with long but finite duration, then it turns
out that the adiabatons slip through the entire length of these
pulses and vanish after reaching the failing edge. Thus, f-
nally, both of the pulse pairs a.-B. and a,-8, become
matched and the CPT steady state of the atom-field system,
perturbed by the initial nonzero valve of the field Q; , is
restored.
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V. SUMMARY AND CONCLUSIONS

We have analyzed the propagation of strong resonant
ficlds through a double-A four-level atomic system. We have
shown that the basis of adiabatic dressed states used in [22]
for the single-A is also convenient to describe the double-
A system. In that basis it is immediately seen that, when both
pairs of allowed transitions are driven by a pair of matched
fields, then the atomic system is clamped, by CPT, in a co-
herent superposition of lower-energy states. Therefore. if the
medium is tnitially prepared in such a superposition, the
maiched fields propagate freely at the speed of light in the
nonresonant medium, and represent a stationary state for the
atom-field system. Under conditions of quasiadiabatic pertur-
bation of this steady state, the spatio-temporal evolution of
the system has been investigated analytically. Our approxi-
mate analysis is confirmed by the exact numerical solution of
the Maxwell-Bloch equations.

All the dynamics of the system is determined by the evo-
tution of the field variables ) and (), that. in the dressed
basis, represent the weak couplings of the CPT state. A per-
turbation approach has been used to linearize the propagation
equations of such field components. Those equations are eas-
ily solved in terms of two normal modes. One of these
modes, which corresponds, in the adiabatic limit, to the tran-
sient of pulse matching, is mainly absorptive and is extin-
guished after a relatively short penetration length of the
fields inside the medium. The second mode survives the first
one, because its absorption losses are very smail. It describes
a quasiform-stable and dispersive propagation, typical of the
adiabatons and, in general, of EIT.

It may be supposed that an experimental realization of
pulse propagation in media with very-many absorption
lengths could be complicated due to the transverse distribu-
tion of the fields, which has been ignored throughout this
work. Note, however, that the superposition |NA)Y is not
dipole-connected to the excited states. As a consequence,
when the population is trapped in |NA), saturation effects
caused by the intensity-dependent atomic susceptibility,
which usually arise with intense laser fields tuned near tran-
sition resonances, are eliminated [8]. Thus, the coherent trap-
ping allows laser beams with a transverse spatial structure 1o
propagate without distortions. In effect, an experimental
demonstration that the CPT can be used for suppressing op-
tical self-focusing and defocusing has been given in [8].
Moreover, high quality beam propagation in a CPT configu-
ration has been reported in {7]. Nonlinear effects like bleach-
ing and self-focusing may be important in the phase of
preparation of the state |MA). Different methods of prepara-
tion are required, depending on the initial conditions of the
atomic medium. If the population lies initially in an incoher-
ent superposition of both states |1) and |2), then the prepa-
ration is achieved by optical pumping [24]. In this case, non-
linear distortions of the preparing fields can be minimized by
rendering the characteristic time for the preparation of the
superposition |[NA) as short as possible, that is, by choosing
very fast relaxation rates for the upper states. On the other
hand, if all atoms are initially in a unique ground state, then
the coherent trapping can be attained by employing the teci-
nique of the stimulated Raman adiabatic passage. In Refs.
[7.8]. it has been shown that, under STIRAP conditions, the
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phase of preparation of the trapping state does not modify
the transverse profile of the propagating pulses. A compiete
analysis of the different processes that occur during the tran-
sient of preparation, taking into account the transverse distri-
butions of the fields, is still needed.

In conclusion, we have obtained an approximate propaga-
tion law for time-dependent fields interacting with double-
A systems, under quasiadiabatic conditions. It includes and
generalizes the descrip ion of the process of pulse matching
and of the propagation of the adiabatons. Both of these phe-
nomena have been individually studied in A systems, in sev-
eral papers [£2,13,16,19.21,22]). Our propagation law, ex-
pressed by Egs. (14), can be casily adapted to a single-A
system, by equating the proper field variables, along with the
corresponding coupling coefficients, to zero: in this way
most results derived in thosc papers are recovered. For in-
stance, the well-known features of the pulse matching in the
propagation of a pair of weak pulses, say a, and B,,
through a A system extemally prepared in a coherent super-
position of lower states [13.16], can be obtained from Eqgs.
(14) if a, and B, are regarded as constant coefficients, L.e.,
Q)] is considered identically equal to zero, and if « is also
taken equal to zero. On the other hand, if we consider

Q, Q,=0 and x,=0, we obtain, for the propagation of
adiabatons through a A system, the same description as in
Ref. [22].

Our analysis predicts correlation phenomena, peculiar of
the double-A system, arising from the interaction between
the different ficld components. These phenomena take place
because the evolution of the field couplings is determined by
a combination of the *‘pulse-matching mode>” and the
**adiabaton-type mode.”

Finally, it has been pointed out that, as concerns the po-
larization dynamics, the four-level schemes are more flexible
and versatile than the three-level ones. The examples illus-
trated in Figs. 3 and 5 show that, in the double-A configu-
ration, it is possible to generate a quasiform-stable modula-
tion in the polarization of the total field at one transition
frequency, by modulating the polarization of the total field at
another frequency. This effect cannot be achieved in a
single-A scheme.
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