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Effects of Quantum Interference in Spontaneous
Emission: Spectral line elimination and
spontaneous emission cancellation

Shi-Yao ZHU and M.O. SCULLY
Department of Physics, Hong Kong Baptist University, Hong Kong
Department of Physics, Texas A&M University College Station, TX 77843, USA

I. Introduction

Recently quantum interference and coherence in a muitilevel atomic system have
attracted a lot of attention, because they can lead to absorption cancellation,
electromagnetically induced transparency (EIT), and population inversion without
emission [3]. These quantum interference effects may result in a new type of laser
system operating without population inversion (LWI) and transparent high-index
materials. The spectrum of spontaneous emission from a two-level atom is Lorentzian
with a peak at the atomic transition frequency, and the width of the spectrum depends
on the decay rate of the upper level. It was pointed out that the noise of the radiation
field from the new-type laser systems (LWI) might be less compared to the noise of a
laser light from two-level laser systems. We disease the spontaneous emission from a
three-level atom with two upper levels coupled by the same vacuum modes and how

the quantum interference affects the spontaneous emission process and its spectrum.

IL. Pure Three Level Systems
(A) Basic Equations
Consider a-three level atom with two upper levels | @,) and |a,) as shown in Fig.1a.

The two upper levels are coupled by the same vacuum modes to the lower level |5).



The interaction Hamiltonian of the system composed of the atom and the vacuum

modes in the interaction picture can be written as

V= iz[gii)ei(mqra.)rbk'al )(bl + g,(,z)ei(m"'_m')‘b,|a2 )(b I]
k
i [ gle ™o b BYa, | + g Pbre ™ b){a, | (1)

k
where @, ,@,, are the frequency difference between level |a, ), |a,) and |), b, (5, )
is the annihilation(creation) operator for the kth vacuum mode with frequency w,,
and gi"? are the coupling constants between the &th vacuum mode and the atomic
transitions from | a,) and ja,) to |b). Here k stands for both momentum and
polarization of the vacuum modes and /=1 and real g{** have been assumed. This

Hamiltonian controls the spontaneous emission of the atom initially in the upper levels.

The initial state vector can be written as

lw(0)) = 4V (0)|a, |0} + 4@ (0)|a, )I0O). )

The evolution of the state vector obeys the Schrodinger equation,

d

e t))=-iv 1)), 3

—|w(0) = -1V ]w(®) 3)

The state vector at time t can be written as

lw() = 49 ()|a, )|0)+ 4D (1)|a, J0) + 2_ B, ()b} 10)5). (4)
k

Substituting Eq. {(4) into (3) , we can obtain

A0 (1) = Y g™ B, (1), (s)

dt P

2 4@ (1) = 3 g6 B, (1), (sb)

dt .

%Bk (t) - _gS)A(D (t)e—l(mulb—ﬂu)f _ g;Z)AG) (t)e’(wqb*‘”t)‘ . (SC)

Formally integrating Eq. (5¢), and then substituting into Eqs. (5a) and (5b), we find

ii_ A(l)(t) — _ﬁ A(l)(t) _ V yzlyl A(I)(t)elmut’

dt 2
(6a)
%A(”(t) _ 42’2;‘4(2)(,) _N ?;72 AV (1)e o (6b)



where @, is the frequency difference between the two upper levels and is assumed to
be much less than @,,, 7, = 222"’ D(@,), and 7, = 27g™" D(w, ). Here g, D(@,)
and g, D(@,) are calculated at frequencies @,,, and @,,, respectively, and Do)
is the mode density. In obtaining Eqs. (6) @, << @,,,®,, have been assumed (but
not @,, <<¥,,7,) and we have assumed that the two dipole moments of the two
transitions are parallel to each other (anti parallel will be the same). Here we did not

tayt

neglect the time dependent exponential factors (e***') as was done in a previous
similar work [6]. From Egs. (6) we can obtain the equation of motion for the reduced
density matrix of the atom [15]. In order to obtain the spontaneous spectrum,
however, Eq. (5¢) is necessary, which includes the information of the field radiated by

the atom. Similar equations can be found in the problem of photoionization [16].

Solving Eq.(6), we obtain the solution for 4 (¢) and A (1),

n
AV() = (Cie™ +C,e)e 2, (7a)
2 - 7_1“_ M
AD () = ~7(S1C,es" +8,Ce%)e 2 (7b)
1/ 2

where S, , are two roots of the equation §* — AS —025y,y, =0,

1
Sz =E(’1'i\f’12+7172)a (8a)

1
A= _(71 '"72) +im),,

2
(8b)
4y} (2}
¢ - S5AYO) +S(2.5_\§y—2 42(0) 30
c. - S A (0) + St')_sijgﬂ; A‘”(O)‘ 5
17 22

From Eqgs. (7) we can calculate, the evolution of the populations. The population in

the two upper levels are equal to | 4% (1))’ and |A(2)(t)l2, respectively, which can be

obtained from Eqgs. (7).

The spontaneous spectrum S(w) is the Fourier transform of



<E ((+0E (1) > = (W) 20,5, O™ [y(0)), . (10)
k.k

Substituting Eq. (4) into (10) and we have

<E (t+DE* () > 0= 2B, (*)B, (w)e'™" = IEQD(m)B; (0)B, ()" arn

From Eq(11) we find

S(@,) = 1|B, @) f2ng* (12)

The spontaneous spectrum is proportional to |8, (w)f. Substituting Eqs(7) into (5¢),

and then integrating Eq. (5c) we can obtain,

B, () = gl(:ncl (1-25,/r) + gs)Cz(l—?.Sz/)fl)
’ = - - >
S ~n/2-i(Sw,-8,) S,-7/2-i(5w,-4)

(13)

where 6, =w,-.5(@, +®, )+, is the detuning of the kth vacuum mode with

respect to the central frequency (from the middle point of the two upper levels to the
lower level). The spontaneous spectrum can be obtained by taking absolutely square
of Eq. (10), which not only depends on the square of each terms in above equation,
but also on their interference terms. The interference results in some very interesting
features.

(B). Dark lines
For a two-level atom, its spontaneous spectrum is Lorentzian and peaked at its

transition frequency due to the population transfer from its upper level to the lower

level. In the three-level atom case, the population initially in one upper level (say |a, )
) is partly transferred to another upper level (say |a, )) during the time evolution. It is
expected that the spontaneous spectrum of the three-level atom will differ from its
counterpart of a two-level atom due to the transferred population in |a,). This

population in |a,) will eventually decay to the lower level. Therefore, a major

difference will be the weight of the frequency components around the transition

frequency from |a, ) to lower (@, - ,) in the spontaneous emission spectrum. The

weight of these components might be larger for the three-level atom than that for a

two-level atom. In Fig. 5, we plot two spontaneous emission spectra as functions of



the detuning &,, one for the three-level atom, and one for a two-level atom. The
three-level atom is initially in upper level |a,). Comparing the two curves, we find that

some components of the three-level spectrum at the neighborhood of @, -, are

much larger than their counterpart of a two-level spectrum. If we simply added the
two spontaneous decay processes together, we might conclude that the spectrum
would have two peaks at the two transition frequencies. However, the spontaneous
emission spectrum of the three-level atom is not a simple two-peak distribution peaked
at the two transitions from levels |a,) and |a,) to the lower level. There is strong
interference between the two processes. Therefore, the spectrum of the three-level
atom is not a two peak one with the two peak located on the two sides of the central
frequency. The interference leads to a dark line in the spontaneous spectrum. In Fig.
2, we plot the spontaneous spectra for a three-level atom and a two level atom, where

it can be seen very clear that there is a dark line in the spectrum of the three-level atom

at the frequency of the transition from |a,) to the lower level. The dark line resuits
from the interference. In fact, it can been proven that, B, («) = 0 at @, being equal to

the frequency of one transition, when the atom is initially in the upper level of the

other transition.

Assume the atom initially in level ‘a!>, and consider B, (o) at o, =a,,

(8, = -05w,,). Substituting §, = -05@,, in Eq. (13), we can obtain,

- C,(1-28,/y)) 4 C,(1-28,/y,)
S, -05y, ~im,, §,-05y,-iw,
=4C181(_S2_0-572)"7172 +4C2S2(_S1"0-5?’2)/7172

B, ()

S, 05y, —iw, S, 05y, ~iw,,
=4(S,C, +38,C,) | (14)
I4VE
In obtaining the above equation
S8, = —3'—‘51, (15a)

S, +8,=05(y, -y, tio,, (15b)



have been used. Because the atom is initially in ‘al>, we have A (0)= and
A®(0)=0. From Eqgs. (8c) and (8d), we can find S,C, +5,C, =0, which yields
B, («)=0. From Eq. (12) we get S(w, = ,,)=0. This tells us that not only is there
a dark lines in the spontaneous emission spectrum, but also that the center of the dark
line is absolutely black, independent of ¥,,7, and @,,, as long as the two coupling
constants are not equal to zero (if one of them is zero, the three-level atom reduces to
a two-level one). In addition, we can see in Fig. 2 that there was an attempt to build a

peak at the dark line position due to the transferred population.

The width of the dark line depends on the decay rate of the upper level of
corresponding transition. In Fig. 3, we show two spontaneous ernisston spectra of the
three-level atom initially in |a, ), with the same y, and w,,, but different y, (=0.57,
and 0.05y,). It is clear that the larger the decay rate of the corresponding upper level
([az) in this example), the wider the width of the dark line will be. As y, (or y,)
tends to zero, the dark line becomes narrower and narrower (and will finally

disappear), and the spectrum becomes closer and closer to a Lorentzian distribution.

(C). Spectral narrowing
As mentioned above, the dark line is absolutely black at its center, and its width
depends on the decay rate of the corresponding upper level. A larger decay rate
results in wider width. In the above example we use a small value for y, (more
precisely 7, /¥,) in order to show clear dark lines. On the other hand, if y, is of the
same order or is ever larger than y,, the width of the dark line will be big enough to
depress one of the two wings of the spectrum. Consequently, the spontaneous
emission spectrum can be greatly narrowed. In Fig. 4, we plot the spectra of the
three-level atom for different values of the ratios ¥, /y, = 001, 0.5, and 2, where we
can see that the width of the dark line increases and the spectrum becomes narrower as
the ratio increase. In Fig. 5, we compare the spectrum of the three-level atom with

that of a two-level atom. The parameters used for the two-level atom are the same as

6



those used for the three-level atom, except y,=0 (because there is no level |a,)). The

width of the spontaneous spectrum for the three-level atom is much narrower than that

for a two-level atom.

The spectrum may have three peaks as shown in Fig. 2, and may have two peaks, as
shown in Fig. 5, depending on the parameters y,,y, and @,
From dS(w,)/dw, =0 we can obtain a fifth-order polynomial, which may have five
real roots corresponding to three peaks, and may have three real roots corresponding

to two peaks. One of the roots corresponds to the dark line.

(D) Evoluations of Populations
The population in the two upper levels tends to zero as time goes to infinity. If |(012|

is larger than y, and y,, the last term in Eq. (6a) or (6b) can be neglected, and
consequently the population of the upper levels decays to the lower level. For |a),2|
much less than ¥, and vy, assuming ia)n] <<0.5 (v, + 72), it can be proven that the real
parts of $-0.5% (i, j, = 1, 2) are negative. That is to say, from Egs. (6), no population

is in the upper levels at time equal to infinity.

However, during the time evoluation one of the upper-level populations may increase
first, even if initially there is no population in it. In Fig. 6, we plot the evolution of an
initially empty upper level with @;;= 0.2y1, ¥2=y1. The maximum population in this
level is 0.237. In some situations, the population of an initially empty level (also the

other upper level) oscillates for several cycles, and then tends to zero [see Fig. 7].



IIL. Driven Three-level Systems

(A) Basic Equations
Consider a four-level atom that consists of two upper levels |a,) and |a,), and one
lower level }c) The two upper levels are coupled by the same vacuum modes to the
lower level |c) and are driven by a strong field with frequency v to another lower lying

level |); see Fig. 8. The interaction Hamiltonian of the system composed of the atom

and the vacuum modes in the interaction picture can be written as

Y = 'Z [gs;l)ei(m‘"—ml)tbklal )(ci + gil')e"(‘”uc"”»)‘bkla2 )(cll
*
_iZ{gil)e—i(ch-mt)fb;Ic><al |+ giz)b;e—i(ch—mk)tlc)(az ”
k
Qe a, | + 162, a, b| —iS1e ™ B)a, |- 10 ) |, (16)

where ,,, @, are the frequency differences between level |a,), |a,) and |c),
respectively, A, =a,, -v, A,=w,, —-v, b, (/) 15 the annihilation(creation)
operator for the k-th vacuum mode with frequency @,, and g{"? are the coupling
constants between the k -th vacuum mode and the atomic transitions from |a,), la2>
to |c). In Eq. (16), 1 and Qy are the Rabi frequencies of the driving field

corresponding to the two transitions from |a, ), iaz) to |b), respectively. Here &

stands for both the momentum and polarization of the vacuum modes and /=1 and
real g("” are assumed. This Hamiltonian describes the spontaneous emission of the

atom initially in the two upper and !b) levels.

The initial state vector can be written as

|w(0)) = {4 (0)|a, ) + 4P (O)|a, ) + BO)IB)}I0). a7

The evolution of the state vector obeys the Schrodinger equation, and the state vector

at time t can be written as



|lw(0) = {4V @a,) + 4P W)|a,) + B@)Bi0)+ ;C* ()b, 10)c). (18)

By using the Weisskopf-Wigner approximation, we obtain[3, 4]

%A("(t) = —%A") () - pJ—}-(_g—i AP (e + Qe B(1), (19a)
%A“’(r) = —-’;—’Am(z)— p——‘/}’_é—y—z—Am(.t)e"‘”“‘ +Q,e™ B(1), (19b)
g;B(t) = -Qle ™ AV (f) - Qe A1), (19¢c)
G, =g 40 o - gP AP (e, (20)

where @,, is the frequency difference between the two upper levels, which is much
smaller than the transition frequencies, and p = g4/ /pas/-it2/ with p; and ,u} being the
dipole moments of the two transitions. Here y, and 7, are the decay rates from the

two upper levels to the lower level. [f the dipole moments of the two transitions are

parallel, we have p=1, while for orthogonal dipole moments we have p= 0. On
solving Eq. (19), we obtain a solution for A (£}, A®(¢), or B(t), which can be

written as a sum of three terms.

The spontaneous emission spectrum, S(w), is the Fourier transform of
<E (@+71)E*()>,_ ., and is equal to S(a),,)=;q!Ck(oo)lz/brg“)2 (i=lor2). On
substituting the solution of Egs. {(19) into (20), and then integrating Eq. (20) we

obtain,

3 Mg g
C(@)=3 & N & B, ’
) +HA -05w,,+58,) —A +i(A, +05w,,+5,)

(21)

where §, = 0, -.5(o, +w, )+, is the detuning of the kth vacuum mode with

respect to the central frequency (from the middle point of the two upper levels to level

|c}). Here A, (i =1,2,3) are the three roots of a cubic equation.



B —([ +T)2 (I, -025 7, +| [ +]Q,1)A
—05(r JU[* 47, - 27 72 (QIQ, + Q) +i(A, O +A]Q,[) =0,
(22)

where I', =05y, +/A,,. The spontaneous emission spectrum can be obtained by
taking the absolute square of Eq. (21). For p = I, quantum interference can cancel
spontaneous emission, but for p = 0, there is no cancellation. This interference results

in some very interesting features, e.g., spectral peak elimination and the cancellation of

spontaneous emission.

(B) Dark Lines and Spectral Narrowing

The spontaneous emission spectra for the two cases (p =1 and 0) are quite different

due to interference. It is well known that the spontaneous emission spectrum for
p =0 is a three peak distribution. For p =1, we have interference, which can lead to
the elimination of one of the three peaks. In Fig. Ib, we plot spectra for p=1 and
p=0 with the atom initially being in |a,). We can see the disappearance of the
central peak as a result of interference. The elimination of the central peak can also be
observed for the atom being initially in a superposition state. In Fig. 9, we show the

elimination of central peak for the atom initially in the state (|a,)-|a,))/v2 . It can be

proven analytically that the central peak is eliminated if
A, =-2'A, (23)

where x =|Q, /| = g@/g" is the ratio of dipole moments between the two upper
levels and level |5), which is also equal to the ratio of the dipole moments between the
two upper levels and level |c> The elimination of the central peak indicates the
cancellation of the spontaneous emission into those modes with their frequencies near
the central peak (in the neighborhood of the driving field frequency) and is the resulted
of a destructive interference. As opposed to destructive interference, a constructive
interference can also be found as shown in Fig. 10, where the central peak increases

while the other two peaks decrease.

10



(C) Spontaneous Emission Cancellation and Populations Trapping in the Upper Levels

The area under the spectral curve is proportional to the energy emitted by the atom to
the vacuum modes. For p=0, the area is always equal to unity (energy
conservation), that is to say, the atom finally will be in the lower level |c) and no
population in the upper levels. For p =1, we find the area may be less than unity (see
Fig. 8 and 9) if condition (8) is satisfied, which means that some population is still in
the upper levefs at t=co. That is to say, in the steady state the spontaneous emission is
canceled due to interference. In Fig. 11, we plot the evolution of the population in
level |a,) for p=1and p=0. Itis clear that the population goes to zero for p=0,

while it tends to a steady value 0.51 for p=1. The cancellation of the spontaneous

emission in the steady state is another phenomenon of the interference.

The populations trapped in levels |a, ) and |a,), |a,[* and |,[°, are determined by

a, +a,+a, =A4/(0),

ﬁl +132 +ﬁ3 = Az(O),

b +b, +b, = BO), (=123), (24)
A, -Qla —QB, =0,

Qb, (T, - 4,)at, ~ 05 7.8, =0,

where the condition Eq. (23) and p=1 have been used. For arbitrary y the

expressions for |a,|" and |,|" are complicated. For x =1 and the atom initially being
in lal>, we can find the populations trapped in |a1> (or |a2>) and |b) are
Q*/(A* +2Q%)?, and Q*A’ /(A L2007 )2 (Q=Q, and A = A)), respectively. In Fig.
11 we see more than 50% of population is trapped in ‘a1> (also 13% in laz)). The
population trapping in upper levels depends on the driving field and the detunings.
Without the driving field, there will be no trapping [5] if the two upper levels are not
degenerate. How much population can be trapped in the upper levels depends on the

separation between the two upper levels, the ratio of the two decay rates, and the Rabi

frequency. In Fig. 12 we plot the population in the level \a1> versus the Rabi frequency

11



for three cases with x = 2 and Eq. (23) being satisfied. It can been seen that 30% of the
population will be trapped in level |a,) if the Rabi frequency is 10y, for a large

separation (12 = 40v,). In order to trap more population we need high Rabi frequency.

The spectral peak elimination and cancellation of spontaneous emission in the steady
state can be understood in the dressed state picture. On diagonalizing the Hamiltonian
for |al) and ]az), |6) and the driving field, we get three dressed states. The decay from
|a1> and |a2) to |¢) becomes the decay from three dressed states to |c). The decay
rates for the three dressed states depend on the interference (terms of the type

P\Y 72 /2). Under the condition A, = —z*A,, the decay rate of one dressed state

AN /8 2%

For p=1, this
A, A, A4,

(with intermediate energy) is proportional to

decay rate is proportional to (A, + ¥’A,)* =0. The interference results in a zero
decay rate. The population in this dressed state will not decay to lower level |c), and
consequently we have the central peak elimination and spontaneous emission

cancellation in the steady state.

In order to experimentally observe the elimination of the spectral line, we need two

closely separated levels with parallel dipole moments. Mixing two different panty

levels by a static electric field or other means can produce such two closely separated

upper levels with parallel dipole moments.

12
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Figure Captions:

1.
2.

10.

11

12.

The three-level atom.

Spontaneous emission spectrum for (a) the three-level atom with @,, = 0.67, and
7,=0.1y,, and (b) a two-level atom.

The dark lines in the spontaneous emission spectrum of the three-level atom with
, =7, and (@) y, =0.5y,, and (b) y, =0.05y,.

Spectral narrowing by increasing the ratio y,/y,= (a). 0.05, (b). 1, and (c). 5,
with A=y,

Spectral narrowing, (a) the spectrum of the three-level atom with @, = , and
¥, = 27,, and (b) the spectrum of a two level atom with a decay rate y,.

The temporary population in |a,) reaches a maximum of 237 (@, =0.27,,
Y2 =1

The oscillation of the populationin |a,) (@, =5¢,, ¥, =¥,).

The spontaneous emission spectra for @, =2y ,, &, =7, ,7, =¥,, andAi=y,,
(@) p =1, and (b) p = 0. The atom is initially in level |a1). Inset shows uppers
levels |a,) and |a, ) coupled to level |4) with Rabi frequency Q while decaying to
level |c).

The spontaneous spectra for Ai=4y,, @, =5y,, Q, =y,,and y, =025y, ()
p =1, and (b) p=0. The atom is initially in (|a,) - |@, }}/</2.

The spectra with a constructive interference for @, =2y,, A=y, Q =7,,
and y,=4y,, (@ p =1, and (b) p = 0. The atom is initially in (|la,) -
316) Y10

Time evolution of populations in |a,), for @,, =4y, ¥, =4y,, Ar=08y,, and
Q, =2y,,(a) p=1, and (b) p =0. The atom is initially in |a,).

The trapped population in level |a, ) versus the Rabi frequency (in unit of y1) @1

= (a) 40y,, (b) 20y,, and (c) 4y1.
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Quantum Interference Effects in Spontaneous Emission from

an Atom Embedded in a Photonic band gap structure
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Abstract

The spontaneous emission from a three-level atom embedded in a photonic band gap
structure is studied. Interference between two transitions leads to qausi-periodical oscilla-
tions of population between the two upper levels with large amplitudes. The spontaneous
emission of the atom is characterized by three components in the radiated field; a localized
part, a travelling pulse, and a 1/+/t decaying part. An analytical expression for the local-
1zation distance for the localized field is obtained. The phase velocity for the travelling
pulse is larger than vacuum speed of light, and its energy velocity could be close to zero.
By selecting a certain initial superposition state, a large amount of population trapping

can be achieved.

PACS:32.80.-t, 42.50.Gy



Quantum interference between different atomic transitions and atomic cohereuce can
lead to various effects such as change of spectra, population trapping, phase-sensitive
amplification, and laser without inversion[1-3]. In the past, these phenomena were studied
mostly in systems with coberent driving field. In a four-level system the spontaneous
emission from two neighbouring levels (which emit photons of the same polarization) to
the lower level can be totally supressed when they are coupled to the fourth level by a
driving field [2]. In the case, population trapping and oscillation of population in upper
levels can be observed. In the absence of external coherent field, oscillation of population
in the upper levels also exists due to the emission and re-absorption of a single photon from
the two upper levels as the result of the interference [3]. However, such external-field-free
oscillation is very weak as the spontaneously emitted photon travels away from the atom
in free space with the vacuum speed of light c.

It was shown that, in a photonic band gap structure(PBGS), the prohibition of light
wave transmission can be achieved for some frequency range in all directions [4]. As a
consequence the energy of field can be localized in a space domain without propagating
away. Recently a lot of effort has been concentrated in the study of photonic crystals
in which a three-dimensional periodic dielectric structure is used to create one or several
forbidden frequency bands [5].

An atom {impurity) embedded in such a structure will interact with field modes in
the propagating frequency band as well as those in the forbidden band, localized field
modes created by the atom [6,7]). Since emitted photon can be trapped in the vicinity of
the atom. the exchange of energy between the atom and fleld can be significant. It has
been shown that a two-level atom emBedded in a PBGS could retain some population in
the upper level, even when the transition frequency was in the transmitting band [6.8].
The final state is a dressed state of the atom with a localized field mode, which lies in

the forbidden band. A natural question arises: how to use the localized field to enhance

[



quar.tum interference effect. Furtliermore, one might ask wlit the properties of the fiel
emitted by the atony are.

In this letter we report the effect of quantum interference without coherent drivine
field in the spontaneous emission of a three-level atom embedded in a photonic banl
structure. The two upper levels are coupled to the lower one via the same field contimumnm.
The intereference between the two transitions leads to an exchange of population betwec:,
the two upper levels, extended oscillations of energy distribution between the field an
the atom, and a large population trapping in the upper levels. The field emitted by tlie
atom 1s composed of three parts: a localized feld. a travelling wave with very slow enecrev
propagation velocity, and a decaving field.

Our model consists of a three-level atom with two upper levels la; >.lay > and 4
lower level b > . The dipole vectors between la; > and [b > and between a2 > and |b =
are parallel. The dispersion relationship of the band gap material near the band gap edge

wc can be approximated by [6,8]
wp =we+ Ak —kg)'. A= /K2 (1)

The Hamiltonian for the system. after carrying out the rotating wave approximation ar

we, 18
H = Z Rlwy — wc)a.zak -l—ih[Z(gi”an >< ay| 4 gi_z)a“b ><ag|)— Hel. (2
k k

The coefficients gil),gf) are related to the decay coefficients of each upper level. We

assume here as in practical situations \way — wa,| << we. Fora special case wy p — w, =

2)

—(wWa,b ~we) = A with gil) = gl_ . analytic results can be obtained for the evolution of an

atom from an arbitrary initial excited state. The state vector at a time t 1s given hy

we(t) >= (AN (1)jay > +4P(t)|ay >],/0 > +ZBk(t)|b >, |1 > (3)
k

with A17(0). A™2(0) £ 0, and B,(0) = 0.



Following procedures similar to Ref. [8] we obtain the Laplace transform for the

amplitudes A4 (¢), A2(¢):

I(l)(s) _.-1(1)(0)(3 — 1) - [A(l)(o) - ‘4(2)(0)](2-7)3/2\/‘;
) - s? + A2 = iy /2 /5 )
A2)s) _ADO)(s +i8) — [AD(0) — AV(O)(in)*2V5

4
T F AL v (4)

Here v = w:fdﬁb/(ﬁweohc?' ). The RHS contains four poles, s; = :cf-,i = 1,2,3.4, where r;

are the roots of the equation z* + A? — 2(:4)*/?r = 0 and are located in the quadratures
I1. IV, III, and I respectively. The inverse of Eq. (4) can be expressed as

A("z)(t) _ Z 051,2) [(-’Ee n y,-)e"'z‘ +yill - erf(\/;f-;)]ef?‘]. (5)

i=1

where aE] ) is the expansion coefficient corresponding to the pole z;. which depends on both

A and A2(0). Here y; = /27 is on the right half plane, thus only two purely exponential
terms due to ry4 (oscillatory without decay at a fixed space point) and z, (oscillatory with
decay at a fixed space point) survive. The second half containing er f( \/I_;"t ) decays usually
as 1/v/t, while similar terms in Ref. [8] decays at a faster pace as (1/v/1).

The radiated fleld amplitude at a particular space point is (9]

7 _
E(rt) =34/ gogre T Be(t), (6)
k

where the one-photon state amplitude

t
Bi(t) = _] dt'[gi AV () + g7 AP ().
0

—
-1
——

We find the right hand side of Eq. (6) ‘('an be expressed as the sum of three contnibutions
Iy.I,. and I5 for large times (¢t — oo). The first part, I, comes from the z4 term in Eq. (5)
and does not decay in time. Its amplitude drops exponentially as e~ /', and its frequency
(w. — jrsl?) is within the forbidden band. Tt represents a localized field. The size of the

localized photon mode is I, = v/A/|z4|?. The maximum amplitude of the localized photon



mode 15 proportional to (1 — iy/w./irg|?). The I, part comes from the o ternn. Spatially

It 1s an exponential pudse with the phase velocity », and energy velocity v, .

Up =[1 — Re(y/1.05/w. )] ko/a,

ve =Im(y/1zd fw ko /. (

(o 4]

The phase and amplitude propagation is proportional to e ="/l e=3(t=r/v) Ito fre.
quency a = w, — Im(z3) is in the transmitting band. The phase velocity v, is greater
than the vacuum speed of light ¢, while v, is considerably smaller than ¢ (could be close
to zero).

For the third part. I3, the exact result can not be found. An approximate expression
was obtained for large 4¢. The I3 term decays to zero, but unlike I3, 1t does not have
the form of an exponential of e™!~"/*) representing a wave-packet travelling away from
the atom. It only contains a phase propagating factor e~ *(we<f—kor) = Ay any fixed time.
the amplitude of the third part decreases to zero exponentially as distance from the atom
increases. At any space point, the amplidute decays to zero as time goes to nfinity.
Therefore, it represenets a decaying field. The amplitude decay is usually very slow.

proportional to % (see Fig. 2) due to the interference between the two transitions from

the two upper levels to the lower level.

We examined the evolution behaviors and the final state with various initial super-
position states to analyze the roles played by the coupling of the decaying field to the
travelling wave and the localized wave, and by the interference due to the two interactiow
channels. A picture of how the population transfers between levels, and how the energy is
transferred from the atom to the t.ra'\'eiling wave and localized field is thus obtained.

Interference leads to the transfer of population from ja; > to |a; > or vice-versa.
as witnessed by the oscillations in Fig. 2, {(initially the atom in |e; >). The population
trapping 1n the two upper levels is due to the photonic band gap with a non-decavine

component to form the final dressed state. In Fig. 2. the dominating part ([3) decars



at a rate (1/57)7' due to the interference. The populations oscillate many cycles (~ 104
hefore eventually decaying to their final values (for other initial states, the oscillutions are
similar. )

This quasi-oscillation has a quite large amplitude of the order of 0.5, a feature signifi-
cantly different from the two-level case. In the current situation, the interference between
the two transitions is enhanced by the localized field. Consequently, we have larger os-
cllation amplitude compared to either a two-level atom in a PBGS or a three-level atom
in vacuum. From the pattern of decay we determined that the strong quasi-oscillation is
mainly due to the I part. The energy in the decaying localized field (given by the atom
initially) will transfer back to the atom, and then become the energy of the travelling wave
and the localized field. This explains the small value of v,.

It can be proven analytically that the amplitude of the oscillations can be minimized
by choosing a special initial state A()(0) = A®(0) (minimizing the interference). and
with this initial state the amplitude of the third part (I3) decays as (1/v/%)%, as shown in
Fig. 3. (Note decay as (1/v/1)® is the situation for a two-level atom.)

The amount of population trapped in the upper levels depends on the initial condition.
The population in the upper level within the band gap (|a; >) could be transferred to the
upper level in the transmitting band (|a; >) from which it could emit the travelling wave.
‘The final state contains an upper level part (trapped excited state population) and a lower
level part with one photon in the localized mode. The phase difference between the two
upper levels at a final state is always zero. The dependence of the ratio of the populations
in the two upper levels, 411)(00)/ 4! (oc). on the initial state is weak. This ratio. as well
as the portion in the lower level, depeﬁds on A/y.

Since the true trapped final state is a dressed state with a lower level component. no
superposition of the two upper levels can evade decay completely. This is in contrast with
the dark state of a driven four-level system. However, if the atom is prepared in a state.

which is a renormalized state of the final state projected onto the manifold of the two



npper levels starting from auy initial ~nre (e, by making Br(t = x - =01 Eq. (3 and
renormalizing the resulting srate), we can minimize the cuergy emitted into the trivdliing
wave, and could have more population trapped in the upper levels (even more than the case
that the atom 1s initially in the level in the gap, i.e.. |@; >). This final state population
trapped in the two upper level is plotted in Fig. 4 (where for comparison we also plotted
the final population trapped in the two upper levels starting from the atom initialy in the
upper level in the band gap). We have established that the trapped population for cach
value of A is higher than that from any other initial states (see Fig. 4). This is ~imilar
to the situation of a driven four-level system. If the four-level system is prepared in a
non-decaying dressed state, the four-level atom will never decay (no travelling wave}. In
the current case, the atom gives energy mainly to the localized field to form the required
component of lower level with one photon.

In conclusion, we found in a photonic band gap structure, the interference of <pon-
taneous emission from a three-level atom with the two upper levels coupled to the same
continium can be significantly enhanced without the help of a driving field, which i~ essen-
tial in free space. The re-absorption and re-emission of photons in the three-level sv~tem
embedded in PBGS are more pronounced. The atom releases its energy during the spon-
taneous emission process in three forms. a localized field with a localization distance [, a
travelling wave (an exponential pulse with a phase velocity larger than ¢ and very lower
energy velocity), and a slowly decaying field. Since there is one level in the forbidden
band and one level in the transmitting band. it could also serve as a mediumn to study the

coupling of external field and the local trapped field.
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Figure Captions

1.

b

A three-Jovel atom in # photonte band gap structure. The two upper levels ({1 - and
laz >) are symmetrically placed from the band gap cdge by A.

Upper state population evolution for the initial state |$(0) >= \—}5(|a1 > i >
A =19 = 1. py,p2 are the populations in levels |a; > and |a; > respectively.

Upper state population evolution for the initial state [¥(0) >= ﬁ(]a, > =0, >).
A =5 = 1. Notice the significantly different decay rime scale compared with Fie. 2
Trapped population in the two upper levels as a function of A for the initinl state
which is a renormalized state of the final state projected onto the manifold of the
two upper levels and started from any initial state (solid line). For comparizon the

trapped population for the initial state [%(0) = |a; > is also plotted (dashed line ).
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