

H4.SMR/986-11

ICTP - URSI - ITU/BDT WORKSHOP ON THE USE OF RADIO FOR DIGITAL COMMUNICATIONS IN DEVELOPING COUNTRIES

(17 - 28 February, 1997)

Introduction to Computer Network Technology

E. Pietrosemoli

University of Merida Merida VENEZUELA

Introduction to Computer Network Technology

Prepared by: Alvise Nobile
Presented by:
Ermanno Pietrosemoli

Introduction

Interprocessor distance	Processors located in same	Example
0.1 m	Circuit board	Data flow machine
1 m	System	Multicomputer
10 m	Room]]
100 m	Building	Local area network
1 km	Campus]]
10 km	City	Metropolitan area network
100 km	Country	Wide area network
1,000 km	Continent	Ande alea Herwork
10,000 km	Planet	The internet

Summary of Course

- ◆ Networking computers: networks and protocols
- ◆ Ethernet: the traditional Ethernet network: coaxial cables, repeaters
- ◆ The modern variants of Ethernet: twisted pair, fiber optics
- ◆ Bridging, switching, Ethernet-based backbones
- ◆ Recent developments

Basic topologies

◆ Broadcast networks

◆ Point-to-point networks

Basic Topologies

- ♦ Broadcast
 - Typical of LAN
 - Bus

- ♦ Point-to-point
 - typical of WAN

LAN's protocols

- Each host has a unique address
- ◆ Every message contains addresses of sender and of destination
- Every host listens for messages addressed to himself

- ◆ Problems:
 - crowding
 - » break messages in small packets
 - » segment network
 - contention
 - » MAC protocols
 - inter-networking
 - » beyond broadcast

COMPLEXITY!

An answer to complexity: layering

- ◆ Complex communication task: exchanging a mail message
- ◆ Top layer takes care of message (addresses, etc.), assuming it can speak reliably with a peer at the destination
- ◆ Actually, it asks for this service to a lower layer, which handles data transfer with its remote peer
- ◆ This layer in turn asks service to a a lower layer, which handles telephone lines...

An answer to complexity: Layered protocols

The TCP/IP

Layers involved in this lecture

- ◆ Network layer: carries messages from any host to any other host, even passing through intermediate nodes: we can ignore
- ◆ Data link layer: specifies how data are passed from one node to another with which it can speak directly. Format, error checking, etc.
- ◆ Physical layer: between a host and a cable.

Combination

Combination

Application: telnet	Application: File Server	Application: NFS
Transport: TCP		Transport: UDP
IP	IPX	IP
	Ethernet	_

Combination

Coexistence of multiple protocol stacks

LAN standards

- ◆ Ethernet
 - » Born in 1980 from DEC, Intel, Xerox, revised 1985
 - » Standardized by IEEE

By far the most popular

- ◆ IEEE standardization: family of protocols
 - 802.3 Ethernet
 - 802.5 Token Ring
 - 802.2 Logical Link control

– ...

LAN Interconnections

- ◆ REPEATER Physical Level
- ◆ BRIDGE Data Link Level
- ◆ ROUTER Network Layer
- ◆ GATEWAY Above network Layers

 The term Router is often also used to denote gateways
- ◆ Combinations: BROUTERS

The Ethernet Frame

Preamble	Destination address	Source address	Length/ Protocol	Data + padding	CRC
8 bytes	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes
	. Covered by CRC				

The Ethernet MAC protocol (CSMA/CD)

- ◆ Wait until cable free
- Start transmitting; listen while transmitting
- ◆ If received ≠ transmitted, stop: collision!
 - wait random time
 - try again
 - if fail again, wait longer random time
 - after 16 failures, give up

CSMA/CD: implications

- ◆ Collisions are normal
- ◆ Collisions detected only during transmission:
 - A packet, trasmitted from the farthest station immediately before my packet gets there, must arrive here before I complete my transmission
 - Relation between propagation speed of signal, transmission speed, minimum frame size, and maximum network length

CSMA/CD: implications

- -L[m] < 2 P[m/s] S[b] / T[b/s]
- $-P \cong 0.7 c \cong 2.1*10^8 \text{ m/s}$
- $-T = 10^7 \text{ b/s}$
- -S = 576 b (Ethernet Spec)
- \bullet L < ~ 5.5 km (station to station!)
 - Actual limits stricter on all media: delays of electronics

The Ethernet physical layers

- ◆ Originally only 'thick coax defined'
- ♦ many more defined in IEEE 802.3
 framework
- mixing possible and cheap due to identical frame format and MAC

The origin: 10base5 ("thick", "yellow cable")

- ◆ 10(Mbits/sec)base(band modulation)500meters)
- ◆ Coaxial cable, 50 ohms
- ◆ 1 cm thick, minimum curvature radius ~ 40 cm

10base5 scheme

10base2("thin","black cable")

- ◆ Coax, 50 ohms (RG 58)
- '2' for 200 meters: actually, 185 m max
- ◆ about 6.4 mm thick, curvature radius ~ 3 cm
- ◆ attachement: "T" connectors

The 10base2 connection

Pro's and con's of 10base2

- ◆ PRO
 - Extremely cheap
 - » 0.3\$/meter, 10\$/attachement
 - » 30 attachements per cable
 - Very easy to install
- ◆ CON
 - Limited size
 - » 185 mt/cable
 - Vulnerable:
 - » bus down to desktop
 - » intrusive attachement
 - » intrinsecally vulnerable cable

Combining Ethernet segments

- ◆ Limitations of length depend from attenuation of signal
- multiple segments can be combined in a single network using repeaters
 - repeaters regenerate signal and forward it
 - they do not detect or filter collisions
 - they introduce a delay, therefore one can use a limited number of them

Ethernet topology with repeaters

◆ Arbitrary tree, subject to maximum distance limitations

◆ Segments don't need to be of same type

The 10baseFL

- ◆ First definition (FOIRL) in original Ethernet, as a way to interconnect repeaters
- ♦ Later, 10baseF
 - up to 2000 m (more in some implementations)
 - multi-mode fiber (single mode implementations exist)
 - external or integrated transceiver; if external, uses standard AUI interface

10baseF: topology

- ◆ Fiber optics intrinsically point-to-point

 one receiving, one transmitting fiber
- ◆ Broadcast nature of Ethernet satisfied through multi-point repeater (hub)

10baseF: limits and 5-4-3 rule

- ◆ When 5 segments, inter-repeater fiber optics segments limited to 500 m
- ◆ when 4 segments, inter-repeater fiber optics segments limited to 1000 m
- ◆ when 3 segments (2 repeaters), interrepeater fiber optics segment up to 2000 m
- ◆ DTE/repeater up to 400 m
- ◆ Total diameter ~2.8 km
- ◆ non-standard up to 4 km

Pro's and con's of 10baseF

- Pro's
 - large distance
 - immunity to electromagnetic disturbance
 - no grounding problems (backbone!)
- ◆ Con's
 - High cost
 - » 1-10 \$/meter
 - » attachement 2-3 times as expensive as 10baseT or 10base2/external

The 10baseT (Twisted pair)

- ◆ Standard published in 1989
- ◆ The most popular version at present
- ◆ Based on Twisted Pair (Usually Unshielded Twisted Pair, UTP)
 - Uses existing telephone cabling, if of very good quality
 - cables compatible with almost every other LAN protocol

10baseT: the twisted pair

- Two copper wires, twisted together to reduce e.m. interference.
 - Constant inter-wire distance and twist rate define quality
- UTP cable, usually 4 pairs

10 base T: topology

- ◆ 10baseT is NOT a broadcast medium:
 - signals carried on a pair
 - 1 pair for transmitting, 1 for receiving ⇒ pointto-point link!
- ◆ To recover broadcast Ethernet protocol, star topology and central "repeating hub"

10baseT: topology

The hub retransmits on all his ports (except input one) every input Collisions as usual detected only by hosts, never by hub Hub extends jam, like repeaters

10baseT: connections

- ◆ 4-pairs unshielded twisted pair (Category 3 or higher)
- ♦ 2 pairs used by the protocol
- ◆ 2 pairs not used (yes, available for telephone; no, not for another LAN connection)
- ◆ Connectors: 8 pins RJ-45 (telephone type)
 - pins 1-2 for (transmit) and 3-6 (receive)
 - standard connection: pairs 1-2, 3-6, 4-5, 7-8

10baseT: connections

- ◆ Cable category: measures transmission quality. Refers to cables, connectors, jacks, patch cords, etc.
- ◆ based on attenuation, cross-talk, etc.
- ◆ Category 3 : up to Ethernet
- ◆ Category 5 : up to Fast Ethernet, ATM (155 Mb/sec)

10baseT hubs

- ◆ Ethernet repeaters: regenerate the signal and forward it
- ◆ Collision detect only at DTE
- ◆ Line integrity check: every 1/60 second, hub sends test signal on all ports; if no response, port deactivated (LED)
 - different pairs for receiving and transmitting: one-way failure would cause no busy and collision detect, network flooding...

Pro's and con's of 10baseT

- Pro's
 - Robust (one cable failure does not break network)
 - Flexible if cabling structure is good
- ♦ Con's
 - Moderately expensive (one cable and a hub port per host)
 - If no pre-existing cabling, initial investments are high
 - Limited distance

Bridges

- ♦ Until now, broadcast
 - All traffic (even local one) passed from one segment to another
 - Collisions passed from one segment to another
- ◆ How to keep local traffic in the local segment?

Bridges

- ◆ Do not propagate collisions
 - No number limit, no limit on total network size
- ◆ Introduce larger delay than repeaters (receive whole packet, then start transmitting)
- ◆ More complex (protocol handling!)
- ◆ More expensive (~1000 US\$)
 - Complex electronics can serve more than 2 ports: multiport bridges ~200-300 \$/port

Bridges: example

- ◆ Backbone
 - keeps traffic local
 - » A-B, C-D traffic on their segment
 - » A-C on both segments and on backbone

Bridges: example

◆ No point if traffic non-local: for instance only one server and most traffic with server

Switched Ethernet

- ◆ Development of bridges: multi-port bridges, called "Ethernet switches"
- ◆ "Collapsed Backbone": the switch acts as a backbone
- ◆ Very high bandwith (backplane of switch) > 1Gb/s
- ◆ Usually supports only 10baseT and 10baseF

Ethernet switches

- Classical bridge operation("store and forward")
- ◆ To reduce delay (and safety):
 - Cut-through (start forwarding as soon as destination address read, i.e. 64+48 bits ~ 0.1us)
- » Problem: collision fragments are propagated!
- Alternative: start transmitting after 64 bytes (no collision fragment so long!) delay ~ 50 us
- Often selectable at installation time

Ethernet switch: example

Ethernet switches: problems

- ◆ Overload of a channel
 - No flow control
 - "backpressure": create collisions on input port if destination port congested
 - » does not scale well

100 Mbit/s Ethernet

- ◆ Standardized on twisted-pair (100baseT) and on fiber (100baseFX)
- ◆ NO COAX
- ◆ 100 base TX, up to 100 meters, Category 5 UTP, 2 pairs (like 10baseT)
- ◆ 100base T4, up to 100 meters, Category 3,4,5, all 4 pairs
- ◆ 100baseFX, up to 400 meters, multimode fiber

Full Duplex Ethernet

- ◆ On fiber or twisted pair: why to worry about collisions?
 - Point-to-point
 - 1 wire per direction
- ◆ Ignore collisions:
 - double (and more) bandwidth
 - distance limited only by attenuation/crosstalk» up to 100 km using single-mode fiber

Full-duplex Ethernet

- ◆ Not standardized!
- ◆ Not very expensive
- ◆ Exists also for 100 Mbit/s Ethernet: great for backbone

Gbit networking

- ◆ 1000 Mbit/s Ethernet, standard end 1997
- ◆ Prototypes on fiber available, only for backbone (inter-switch)
- ◆ Full duplex

Alternatives to Ethernet

- ◆ ATM: effective, but still expensive
- ◆ Very high speed (25/625 Mb/s)
- ◆ Very different from old LAN protocols:
 - data broken in very small packets ("cells") of constant length (53 bytes)
 - 'virtual circuit' oriented:
 - » end node requests its ATM switch to open a call to other end-node
 - » connection gets an id, used by switches to route cells (cells do not contain end-node addresses)
 - » at end call is closed, connection's id freed

ATM

- ◆ Good for both data and voice/video
- ◆ Many aspects still under standardization
- ◆ Officially adopted by telecom operators for B-ISDN (Broadband-ISDN)
- ◆ Probably dominant technology in 10 years time
- ◆ can use same UTP and fiber cabling as Ethernet (no coax!)

Summary

- ◆ Layered protocols as ordering principle
- ◆ Ethernet as only local area solution
- ◆ Ethernet available on multiple physical media and multiple variants
- ◆ Combinations of Ethernet variants satisfactory now
- ◆ ATM coming soon

Where to get more information

- ◆ Computer Networks, by A. Tanenbaum, Prentice Hall, 1994, Third ed.
- ◆ TCP/IP Illustrated, Volumes 1-4, by R.Stevens, Addison Wesley, 1996+
- ◆ The collection of Data Communications, in the Library

			,
			, ,
			,
			1
			1
4 •			
1			