

H4.SMR/986-7

ICTP - URSI - ITU/BDT WORKSHOP ON THE USE OF RADIO FOR DIGITAL COMMUNICATIONS IN **DEVELOPING COUNTRIES**

(17 - 28 February, 1997)

Spread Spectrum Techniques and **Applications**

M.P. Fitton

Centre for Communications Research University of Bristol Bristol UNITED KINGDOM

Spread Spectrum Techniques and Applications

M.P. Fitton,
Centre for Communications Research,
University of Bristol

University of Bristol

Summary of Spread Spectrum Techniques

- Spread Spectrum and Code Division Multiple Access (CDMA)
- Direct Sequence Spread Spectrum

Fundamentals

Commence of the second second

Improvement Techniques (RAKE receiver, soft handover)

Problems (near-far effect)

Frequency Hopping Spread Spectrum

Fundamentals

Propagation and Implementation Issues

Comparison of DS and FH-SS

Spread Spectrum

Research

Direct-Sequence Spread Spectrum (DS/SS)

$$s(t) = d(t) c(t) \cos 2 \iint_{C} t$$
$$= d(t) \cos 2 \iint_{C} t c(t)$$

University of Bristol

Centre for

Communications

Research

PN Spreading Code for DS-SS Systems

Spreading Code Generation

- Pseudo Random Binary Sequence
 - Maximal Length Shift Register Sequences
 - Primitive Polynomials > Feedback Taps
- Basic Code Properties
 - Good Auto-Correlation Properties
 - Good Run-length Distribution
 - N Registers yield 2^N-1 length sequence

Iniversity of Bristol

Dentre for Dommunications Research

Auto-correlation of m-sequence

Power Spectral Density

Jniversity of Bristol

Centre for Communications Research

Direct-Sequence Transmitter

Direct-Sequence Receiver

Iniversity of Bristol

Centre for Communications

Research

Processing Gain in DS-SS Systems

Centre for Communications
Research
Processing Gain in DS-SS Systems

Multiple Access in the Code Domain

- Multiple m-sequences
 - Poor index of discrimination
- Perferred Pairs of m-sequences, eg: Gold & Kasami
 - Good Auto-Correlation Properties
 - Low Cross-Correlation Properties
 - Code set limited
- Use of long codes
 - Multiple code offsets of master code
 - Requires sync (good for cellular)

niversity of Bristol

Centre for Communications Research

Multi_user DS/SS System - CDMA

DS-CDMA Capacity Enhancements

- Note Capacity is Self Interference Limited
- Enhancement Techniques
 - Voice Activity Detection
 - Sectorised Antennas
 - Diversity Signal Processing
 - Macro-Diversity during handover
- Impact of Cellular Operation
 - Frequency Reuse Efficiency

Iniversity of Bristol

Centre for Communications Research

Handover

Centre for Communications
Research

Effect of diversity handover on system capacity

100%

80%

80%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

1

Analysis

∑ = 2dB

reduction of mobile

transmission power

University of Bristol

Simulation

%- 2dD

DS-CDMA & the Mobile Channel

University of Bristol

Centre for Communications Research

Direct Sequence Rake Reception

(i) Rake Receiver

(ii) Exploitation of Power Delay Profile

MULTIPATH EXPLOITATION

Resolvable Multipath Components

$$L \leqslant \frac{T_m}{T_c} + 1$$

T_m- Total Multipath Delay Spread

T_c - Spreading Code Chip Duration

Path Diversity

University of Bristol

Centre for Communications Research

URBAN: BIT ERROR RATE

- Log-normal Rayleigh Channel
- Maximal Ratio Combining, L Diversity Paths

- Half Rate Convolutional Code
- Soft Decision Decoding

 $E_s/N_r(dB)$

University of Bristol

90

Near-Far Blocking

Tx1: Wanted Transmitter
Tx2: Unwanted Transmitter
Rx: Reference Receiver

Blocking of Tx1 transmission due to high level IMD from Tx2

University of Bristol

Centre for Communications Research

Near-far Effect

- Signals arriving at BS are at different power levels due to path loss, shadowing and multipath fading.
- This is the near-far problem and requires careful power control to ensure that all signals arrive at the same power level.
- If this is not achieved, the performance will be seriously degraded.
- DS-CDMA schemes generally employ a combination of open and closed loop power control to minimise this effect.
- Near-far resistant techniques can be employed effectively to mitigate this problem.

Direct-Sequence Spread Spectrum (DS/SS)

ADVANTAGES

- Easy code generation
- Simple synthesiser single RF carrier
- Anti-jam margin (20 30 dB)
- Selective addressing (CDMA)
- Message privacy / security
- Difficult to intercept (LPI)
- Coherent demodulation possible

Jniversity of Bristol

Dentre for Dommunications Research

DISADVANTAGES

- Synchronisation difficult
- Poor near-far performance
- Stringent clock stability required
- Continuous bandwidth required
- Spread bandwidth practically limited to 10-20 MHz

Frequency Hopping

University of Bristol

Centre for Communications Research

The Effects of Frequency Hopping

THE PROPERTY OF THE PROPERTY O

- inherent *frequency* diversity
- interference diversity

Hop Rates in a FH System

- Fast Frequency Hopping
 - data symbol spread over several hop frequencies
 - symbol diversity
 - very resistant to jamming and interference, often used in military systems
- Slow Frequency Hopping
 - several data symbols on each hop frequencies
 - codeword diversity
 - less complex hopping synthesiser required

Jniversity of Bristol

Centre for Communications Research

FH Propagation Characteristics

Typical Received Envelope

The Frequency Hopped Channel

Hopping cdf with Rician best-fit curve

- Average channel properties (cdf) unchanged
- Improvement in *instantaneous* channel properties

University of Bristol

Centre for Communications Research

Mean Fade Duration

- Hopping improves the instantaneous channel characteristics => reduces burst errors
- Spacing between adjacent hop frames must provide uncorrelated fading
- Diminishing returns for hop bin separation >> coherence bandwidth

Level Crossing Rate

University of Bristol

Centre for Communications Research

FH Propagation Summary

- Long term, average statistics unchanged (such as cumulative distribution)
- Hopping improves instantaneous channel statistics (such as level crossing rate and mean fade duration)
- Trade-off between improved performance and hardware complexit
- Diminishing returns for increasing system bandwidth

FH Implementation Issues: Services Offered

- Required Services (PCS)
 - Voice (8 kbps normal, 64 kbps high quality)
 - Video (64 kbps)
 - Data (up to 2 Mbps)
- Conventional FH is inherently narrowband
 - => Data Rate limited by intersymbol interference
- Methods for combating wideband fading in FH
 Inherent advantage of FH: burst errors randomised

 - Equalisation
 - Frequency Hopped Multi-Carrier

University of Bristol

Centre for Communications Research

FH Implementation Issues: Modulation Scheme

- Coherent or Differential?
- Traditionally FSK
- Linear Modulation Techniques

Constellation Diagram

Frequency Hopping - Coding & Interleaving

Centre for Communications Research

FH Implementation Issues: Coding and Interleaving

- Interleave over many hop frames to randomise burst errors
- Maximum delay for intelligible speech is approx. 40msec
 Hop rate must be high enough to provide uncorrelated symbols in a codeword
- Conventional coding (BCH or half-rate convolutional)
- Coded modulation (trellis or block)
 - coding is combined with modulation to improve performance

· "我们们就是一种联系的过去式和过去分词,是这种爱好。" 默切的 in the second

Concatenated Coding

FH Implementation Issues: Multiple Access

- Within cell, each mobile has the same code, with a fixed offset => no intra-cell interference
- Adjacent cells use mutually orthogonal hopping codes
 => minimal inter-cell interference
- One-cell repeat pattern

University of Bristol

Centre for Communications Research

BER - with & without FH

Communications
Research

$\pi/4$ -QPSK Frequency Hopping Transmitter

Centre for Communications Research

$\pi/4$ -QPSK Frequency Hopping Receiver

Current FH Systems

System	Hop Rate (hps)	Modulation Scheme	Data Rate	Channel Bandwidth	Capacity
Geotek	150 hps	Coherent π/4 QPSK	15 kbps using 3 TDM slots 5 kbps vocoder	25 kHz	160
Motorola	500 hps	Coherent QPSK	500 kbps using 10 TDM slots 32 kbps vocoder	400 kHz	20
CCR	500 hps	π/4 DQPSK	20 kbps using 8 kbps vocoder	16 kHz	21

All systems employ half-rate convolutional coding, with interleaving < 40 msec</p>

Frequency Hopping CDMA in PCS

ADVANTAGES

- Frequency diversity randomizes channel => improved instantaneous characteristics
- Interference diversity and easy synchronisation => robust air interface technique
- Narrowband technology => lower hardware complexity

University of Bristol

Centre for Communications Research

Frequency Hopping CDMA in PCS

DISADVANTAGES

- ☑ Sophisticated hopping synthesiser required
- ☑ Spectral containment requires controlled turn-on/off
- Coherent demodulation difficult
- ☑ Possible data rate limitations

Capacity Comparison

University of Bristol

Centre for Communications Research

Overall Comparison

Capacity

 Possible advantage with DS due to ability to support mixed services.

Hardware

- Cost, size and power consumption evenly matched.

Flexibility

 Support of mixed cells and multiple operators possible advantage of FH (near-far resistant).

QoS

- Soft handover advantage of DS.
- EMC is a possible problem with slow FH?