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CHAPTER 1

A REVIEW OF BASIC EQUATIONS

1.1 Continuity and Momentum Equations

The continuity and momentum equations were developed in DO-1 (¢f. equations 2.23.a,b and 3.56):

Dp

2P pVi=0 1.1
5y TV (1.1}
Di .~ 1 i 1

DU oG xi=g—-Vp+-V-d=§+-V-@ (1.2)
Dt P p p

where p, p, and 4@ are the density, pressure and velocity of the fluid respectively, {1 the earths
angular velocity, d the deviatoric stress tensor and § the gravitation vector related to the gravity
g by

=G -QxQx7 (1.3)

including the correction resulting from the centrifugal acceleration at any 7 measured from the
center of the earth. The stress tensor ¢ is given by

o = —pI+d (14)

where I = §;; is the identity matrix (tensor).
1.2 Thermodynamics
1.2.1 The Energy Equation

Because homogeneous fluids were studied earlier, in DO-I, the density p was taken to be constant.
In this course, we study stratified fluids with p = plz,y,2,t) in general, so that the two equations
(1.1) and (1.2) are not sufficient to solve for the three unknowns #, p,and p. Therefore, we must
use additional equations, reflecting the energy balances.

The First Law of Thermodynamics is an energy conservation statement,

dfr dH dW
o 1.5
dt dt dt ( )

expressing the fact that the rate of change of total energy (Er) is balanced by the rate at which
heat { H) is supplied to the fluid and the rate of which work {W ) is doune on the fluid by extraneous

sonrces. The total energy for a material volume V' bounded by surface S is defined as

ET :/ pedV (16(1)
vV

(1]
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where

ce—e+ —i-1U—

w2y

¥ (1.6.5)

¢

B o—

is the total energy per unit mass, including the internal energy (or specific enthalpy) e, the kinetic
energy (second term) and the potential energy (third term) components. Here # is a position vector

with respect to an arbitrary datum (Z increasing in the opposite sense to § results in positive
contribution to the potential energy)

The first term in {1.5)is be expressed follows, making use of the Leibnitz’ rule, the divergence
theorem and the continuity equations (1.1)

dEr  d
TR y pe dV

dpe / L.
—— + € -7 dS
/v ot sp
a
= /v (T?%E +V-peﬂ') dVv
:/ Pﬁ+6%+fpv-ﬁ+fﬁ-Vp+pﬁ'V()dV (1.7)
v\ ot at
De
= | p—dv
.75
Dp
— +pV-idld
+/V€(Dt +p u) Vv
De
= | p=Sav.
/v P 4V
On the other hand, we define the total input of heat into a fluid element as
H
d—:/ deV—/g’r’-ﬁdS

:/(pQqu”)dV,
Vv

H

fl

(1.8)

where () is the rate of internal heating (per unit mass) and (-¢) the heat flux (per unit area). The
quantity —¢-4 is the flux (per unit area) entering the fluid volume V through the enclosing surface
5, opposite to the direction of the outward normal .

The rate of work done by the surrounding on the fluid is due to the surface stresses & = ¢ - 71 (ref.
to DO-I} applied on the enclosing surface S to deform it with veloeity «

dw =
—-—w-:/Z-ﬂ'ds:/((rvﬁ')-ﬁd.ﬁ‘
dt s §

—/(&-n}-r“zfl.ﬁ':/ V(i o)dV
S Vv

(2]
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By making use of the momentum equation (1.2), the integrand of (1.9) can then be written as
V-(ﬁ-a):ﬁ-(V-a)%—o-(V-ﬁ)

Di ~
:pﬁ-(—u+29xﬁf—§‘)+a-(v-ﬁ)

Dt
, (1.10)
R A (IR

whereas the last term of (1.10) is equivalent to (cf. 1.1 and 1.4)

0. V-d=-pV -d+(d-V)-i
pDp (1.11)

= P
th+p

where ® = (d-V)-# represent the heat generated (mechanical energy dissipated) by viscous friction.

The diffusive (conductive) heat flux is expressed by Fourier’ s Law which relates the flux to the
local temperature gradient through the linear relation (e.g. Batchelor, 1967)

= —-KVT (1.12)

with the heat flowing from high temperature to low temperature. The constant proportionality K
i called the thermal conductivity. Substituting (1.10) and (1.11) into (1.9} and combining (1.6),
(1.7) and {1.9) yields the thermodynamic energy equation

De pDp 1
S - =L ==V KV ¢ 1.13

Note that the mechanical energy equation (1.10), v.e.

D /1
- a-Gg-F)Y=1¢- . 1.14
Di (Qu i—g m) Z-{V-0o)} { )

describes the couservation of mechanical energy.

1.2.2 Equilibrium Thermodynamics

We will now employ concepts from classical (equilibrium) thermodynamics to further develop our
equations. The classical theory describes the equilibrium states of uniform matter, in which all
local mechanical, physical and thermal quantities are independent of position and time, e.g. a
homogeneous fluid at rest. The non-equilibrium states are not sufficiently described by the ther-
modynamic theory, but ohservation shows that the equilibrium theory 1s approximately valid in
practice {for example in the case of inhomogeneous fluids), since the departure from equilibrium

does not greatly influence the relations between thermodynamic quantities.

[3]
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The equilibrium thermodynamic state of a fluid with fized composition (i.e. constituents with fixed
mixing ratios) is determined by at least three parameters of state, which are the temperature T,
pressure p and density p. From now on, we will define the specific volume

=

1
S (1.15)

for convenience. The state is therefore defined by the relation between any three of these parameters
of state, i.e.

flp,v,T)=0. (1.16)

Note that the equation of state defines a surface with respect to the 7, v, T coordinates, and can
alternately be written as

p=fAT) or T = fy(p,v) or v= fs(p,T). (1.17¢.d)

Next, we consider the thermodynamic equation (1.13) and denote the right hand side, which stands

for the rate of heat added to the fluid through diffusion, internal heating or frictional dissipation,
as

1 . _ o~ Dq
;V-AVT+Q+¢:Q = & (1.18}

and making use of (1.15}, equation (1.13) takes the following form:

De Dv  Dg 119
Dt "Dt T Dt (1.19)

Since we are considering an equilibrinm state (T=const. and, i=const.}), V- KVT = 0 and

® =(d-V)- & =0, the only contribution to (1.18) comes from the uniform internal heat rate Q,
e

Dq n
D—t—Q (1.20)

If ¢=0, in addition to the other terms making up (1.18), the fluid is essentially said to be adiabatic,
i.e. there is no heat exchange. In any case, we can write (1.19) alternatively as

de+pbv = ég (1.21)

where ée is the change in specific internal energy, —pdv is the work done by compression leading
to a change in volume, and §¢ is the heat added.

[4]
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The above differentials are valid in the equilibrium case, since no temporal or spatial variations
are present. The notation é is then interpreted as the total chang? in the state of the fluid as a
whole. Equation (1.21) describes reversible changes between neighoring states, i.e. the net change
in interna) evergy de is cancelled out when returning to the original state. However, in general, for
a finite change, whether the process is reversible or irreversible is determined by the path taken,
since the net change follows a contour in the p, v, T space, or by showing the integral in p — v plane
{indicator diagram), we have:

P

ﬂ,dr‘( axrS
T~

1

Note the state equation f(p,v,T) = 0 defines a surface in p, v, T coordinates for fluids of fixed

composition. Then,
%de_—%pdm’{—fdQ (1.22)

but since p is not a function of v alone (i.e. p = p(v,T)), the integral depends on the path. If
the process is isothermal p = p(v) only (since T'=const.), then the first term on the r.h.s. of (1.22)
vanishes, or if the process is adiabatic the second term on the r.h.s. vanishes, yielding reversible
changes in each mutually exclusive case. When the path is a special combination of these, the
process may still be reversible, as shown below:

f ' Mo

}gofi@rma-ﬂ (’,‘AMJ,(
\\‘L’ adiabeln C/ﬁu.al,

w
Reversible processes :
Pl Pl . v

B
k\\\\‘g or \%E- N
~—

._f‘{hb.‘h\c 750 havmad A P
pd S0V and Q=0 U bV

Another possibility for reversible change occurs when the first term cancels the second term on the

r.h.s., i.e. in the case of compressional healing.

[5]
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A practical quantity of importance is the specific heat C of the fluid, i.e. the amount of heat given
to unit mass of Huid per unit change in temperature during a small reversible change:

bq

= = 1.23
=37 (1.23)
The specific heat is a function of the conditions under which the reversible change takes place, i.e.

this change can be in any direction starting from point A4 in the above figure.

Using the chain rule to express the change in the state variable ¢ with respect to the other state
veriables in (1.21), we have:

0 ( .
bg = -E dp + f)—e év + pdu. (1.24)
opJ ., v »
On the ofter hand, the temperature differential based on the equation of state (1.16) can be written
as
oT oT
=1 —1 § — ] 6 1.25
(ap),,“(av)p ’ (1.25)
where the subscripts denote differention at constant values of the subscripts (e.g. (%) denotes

change in temperature with respect to pressure, while keeping the density p or specific volume »
constant ). Therefore (1.23) is expressed as

¢ = (g_;)véﬁ W_i (1.26)

»
ary T
(a—p)vép+ (‘é“;)pé’t)
which depends on the ratio 8p/8v or on the choice of direction during change from point A. Two

well-defined constants, specifying changes parallel to the axes of the p—v diagram are the principal
specific heats. The specific heat at constant pressure is

[0 _ [ de dv )
ORI

and the specific heat at constant volume is

_{6Q _{ Oe e
o = (ﬁ)mo _ (a_T) (1.27.5)

It 1n and 2 are the unit normal vectors perpendicular to the isothermal line (67 = 0) and to
the adiabatic line (6Q) = 0) respectively in the above figure, and if their components in p and o

directions are defined as m = W, 1), = (ny, ), then we can write

[6]
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_(fQy  _ nel0@yes

Cp = (E’f) 5p=0 T (6T, 0s (1.28.0)
- (% _ Tp $Q)mas

= (6T>5U:0 T my (6T mar (1.28.5)

Since —my/my, and —n.,/n, are the gradients of the isothermal and adiabatic lines respectively,
the ratio of the principal specific heats is found to be

(%) 10ea ()
€p ny/ny N0/ sg=0 _ \9P/s7_0

R W B
4v / s1=0 v ) 5Q=0

The specific entropy is another equilibrium property of the fluid. The Second Law of Thermody-
namics relates the specific entropy s to the other state variables. In a reversible transition from
one equilibrium state to another, the change in entropy is proportional to the heat supplied to the
fluid. The constant of proportionality, which should in principle be a function of state, depends
only on temperature, the dependence chosen as 1/T"

(1.29)

Tés = bq. {1.30}
This relation defines the absolute scale for temperature, i.e. T is in degrees Kelvin. An adiabatic,
reversible change (§g = 0) is therefore also isentropic (§s = 0).

Note that in an irreversible change ¢ is defined by (1.18), so that even if the process is adiabatic
(V. KVT + pQ = 0), the heat dissipation @ (conversion of mechanical energy to heat) is always
positive, 8¢ > 0, and since the absolute temperature T is also defined to be positive (T' > 0), we
artive at the result that entropy must always increase (45 > 0} in irreversible changes.

It follows from (1.21) and (1.30) that
de = Tés — pbv. (1.31)
This is a different way of expressing the Second Law of Thermodynamics.

(7]
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Other dependent properties (state variables) can be defined, to describe equilibrium thermodynamic
changes in a fluid. These are the specific enthalpy, i, the Helmholtz free energy (Helinholtz function),
f, and the Gibbs’ function g, defined respectively in the following:

h=e+pv
f=e-Ts (1.32.a — ¢)
g=ec+pv—"Ts

The above balances of these quantities (i.e. energy transforms} imply "equilibrium”. Differentiating
the energy transforms yields the following relations:

0h = Tés + vép
of = —pbv — s6T . (1.33a — ¢}
bg = vép — 56T

From (1.31) it follows that

de de de de _
— (=] = - — ={ == =1T. 1.34a,b
(6v)63=0 (av)s P (63)61;—0 (as)u ( ¢ )

Differentiating {1.34a,b) in reverse order, we obtain two versions of the cross-derivatives of e:

0% [0 [0e _foT
o~ e (55) ), (50).
0% |9 foe _ dp
g~ Lo (30).), =~ (%),

Since (1.35.a) and (1.35.h) should be equal, it follows that

dp\ aT -
(a_;)uw - (%>s (1.36.a)

This equality is the first one of the Mazwell’s thermodynamic relations. The other three Maxwell

relations can be obtained by applying reciprocal differentiation to the energy transforms (1.33.a —¢)
to yield '

(1.354,b)

- (93) (1.36.b — d)
an )y

Qﬁ
v/ ¢

AN TN
ol o] Qs
SIS
N

k=)

il

RS
S
[nd

i
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Alternative expressions can be written for the specific heat, making use of (1.30):

L_6Q [ bs ,,
ot p() a0

so that the definition of the principal specific heats {1.27.a,b) are modified to become

vt (%), (3.

Regarding s to be a function of 7' and v only, (related by the state equation (i.e. fo(s,T,v) = 0),

we can derive
s 83 )

Differentiating with respect to T at constant p and multiplying by T yields

T(g%) T(g,;) +T(%)T(%’;)p. (1.40)

Making repeated use of the Maxwell relations (1.36), we obtain

—rc)
(%), ().
(%) (3. (5), '

-7 (3), (5),
We may now regard s as a function of the other state variables T' and p, so that
ds ds
bs = T §
’ (BT) * (f}p) g
cp . dv
_sr_ (22
T 7 (a;r) 0P,
P
and define the coefficient of thermal expansion of the fluid
1/ o 1/ dp
Lo Loy L L fory 1.43
ey (@T)p /) ((‘?T)p (1.43)

[9)

(1.42)
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so that (1.42) can now be written as

Tés = cpoT ~ arvTép. {1.44)

1.2.3 The Different Forms of the Thermodynamic Equation

In earlier sections, we have derived the thermodynamic equation (1.13)

De _»Dp

=%, 1.45
Dt p? Dt @ (1.45)

where the r.h.s. has been defined as @* = %V <KVT +(Q + ®) (1.18). Using the definition v = %,
this equation was also written as (1.19)

De Dv
— — = Q. 1.46
o: TP = 9 (1.46)
By making use of {1.31), we could also write it as
Ds
T—=0" 1.47
= (147)

or, using (1.44}), the quation would take the following form:

— arTv=L = @ (1.48.0)

or

DT aTTP_}Z :Q*’ (1496)

“Di T T, Di
where (J* represents the non-isentropic sources of heat due to the combined effects of diffusion,
internal heating and frictional heating, with rate @™ = Dp/Dt. Note that the last equation (1.49)
Is more convenient because it is in terms of the measurable quantities p, p and T. The first term is
the heat storage in the fluid proportional to its heat capacity (specific heat), and the second term
represents the heat storage due to compressional effects.

The relative importance of the two terms on the Lh.s. is measured by the ratio

e, 6T
ozl sp

which can be interpreted (using equations 1.43 and 1.41) as

[ 10]
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I Y (Q}l) (Q_uﬁ) oT
varTép (S_;)pTép T ey — ey \Ov /) \OT , 0P
du 1 150
, (3,07 (1.50)

Cp — Cy [ 8y ’
’ (3:)’1*6})

measuring the relative roles of changes in volume due to temperature and pressure changes by
themselves, which has then been multiplied by the factor ¢,/(c, — ¢,). We note that (cf. 1.43)

(g—;> = Qv (1.51)

and define the Bulk Modulus of Elasticity M of the fluid as

[

5
Moo tP op

_’UE —pg

(1.52.q)
which is dependent on the nature of the state changes. For isothermal changes

ap &p
_ — hi sl 1.52.b
Mr U(@v)T p((Sp)T (1.52.8)

The bulk modulus is related to the sound velocity ¢, through

My = pe,t. (1.52.¢)

Combining (1.151), (1.152.5, ¢} and noting that v = ¢, /e, (cf. 1.29), equation {1.50) is then written

as

- epdT S QTMTE
varTdp -1 &p (1.53)

i e 26T

= arcs" —.

=177 %

1.2.4 The Relative Roles of Compression in the Atmosphere and the Ocean

The ratio (1.53) measures the relative roles of the two terms on the Lh.s. of (1.48), i.e. the ratio
of the heat storage due to specific heat to the heat storage due to cowpression.

If the atmosphere is assummed to be an ideal gas with y=1.4, the coefficient on the r.h.s. will be
¥/(y — 1) = 3.5. The maximum change in temperature from the surface of the earth to the top
of the troposphere is 67" = 100°K& = 100°C, where the pressure change is §p=1000mb=16=10° Pa
=10%kg m~1 572 Typical values for the sound speed is 300m s~1, for the coefficient of thermal
expansion is a7 = 3.4 x 10720/ — 17", and for the density of air is p = 1.2kg m™>.

Putting these typical values in (1.33) yields

(1]
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cpdT ‘ ) 3 4 100
———— =35 2 Ax 107 x99 x 10" x — =,
varl'ép P X L2 x 3 x 10°

so that the two terms on the Lh.s. of (1.48) are equally important in the atmosphere.

For ocean water at typical conditions, ¢p and ¢, values are not too different, yielding a typical ratio
of v=0.997, or v/(v — 1)= 3 x 10>. The density value is close to p = 10%kg/m3, and the coefficient
of expansion for ocean water is usually close to the pure water value of ar = 1.52107%/°K. The
speed of sound is typically around ¢, = 1500m/s, and the temperature difference from the surface
to the bottom in deep basins of the ocean is on the order of §T = 10°C or more, within a pressure
range of about ép=1000 db = 100 b = 107 Pa. With these values we obtain

ey 6T

. 10
———— =3 x 10* x 10° x 1.52107% x 2.25 x 10° x — = 10%,
oo Top 07 x 10 dz107* x X 07

showing that the effects of compressional heating (second term of 1.48) are minimal, compared to
specific-heat storage in the ocean.

Therefore we can write two versions of the thermodynamic equation. For the atmosphere

DT aryT Dp 1 .
— T Y .KV ¢ 1.54
T o Di pv KVT +(Q + &) (1.54}
and for the ocean
DT 1 . =

We can now use the equations of state for the individual fluids to complement and simplify these
equations further, which is done in the following,

1.2.5 The Thermodynamic Equation for the Atmosphere

Let us first review the governing equations. We have the continuity and momentum equations (1.1
and 1.2} involving three unknowns p, p, and @. To supplement these, we derived the thermodynamic
equation {1.54), which introduced an additional variable T. To close the system, we still need to
supplement another equation. This will be the equation of state

flp.p.T) = 0. (1.56)

In the real atmosphere, we still have another difficulty, mainly due to wet-processes, i.e. the

influence of humidity, which introduces an additional new variable into the equations.

If we define the specific humidity
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with p, the density of vapor, and p, the density of dry air, ¢ is then the concentration of vapor
in the atmosphere. In this case, the ideal gas law, which constitutes the equation of state for the
atmosphere becomes

f(pavaaJ) =0 (1580,)

or

p=pR(1+0.610)T = pRT., (1.58.0)

where the virtual temperature 7, the absorbs the effects of humidity. Since we have introduced an
additional variable, o, into the equations, we must write another equation to complete the system,

expressing the conservation law for concentration o, expressed as

Da
—_— = ‘I"a' by 1.
by =V KeVo+ (1.59)

(where K, is the diffusivity of moisture); typically valid for small concentrations of ¢ < 1. However,
in the atmosphere this is often not true since the vapor may become saturated {¢ = 1} and
precipitation occurs, i.e., a phase change occurs from vapor to water, releasing latent heat added
as a source function in the therinodynamic equation, and acting as a sink term in the conservation
of vapor, signified by ¥ in (1.59). But this becomes a highly nonlinear process, with a need for the
switching on/off the source/sink terms when necessary.

The humidity effects are often ignored to avoid the above difficulties. It is then assumed that the
atmosphere is an ideal gas with fixed composition satisfying the equation of state

p=pRT, {1.60)

where

R:Cp—(-'u (161)

is the universal gas constant. The coefficient of thermal expansion becomes (cf. 1.43)

o= 1 ?ﬁ) __13_(1)
T Tp\OT) T T paT \RT/,

1.62
- p 11 ( )
U pRT T T
so that the thermodynamic equation (1.54) takes the following form
DT I Dp - oo
CPE_;E_Q : (1.63)

[13]
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Furthermore, taking the logarithms of both sides in (1.60) gives

Inp=Inp+InT+1InR (1.64.a)

followed by differertiation yields

1Dp 1Dp , 1DT

=L . 1.64.6
p Dt p Dt + T Dt ( )
Substituting (1.65) into (1.63) gives
DI _pDp_ p DT _ .
Dt pt Dt T Dt ’
then, making use of (1.60) and (1.61) yields
DT p Dp
B et APPTY 1.65
“Di Pt Dt ¢ (1.65)

5till another form of the thermodynamic equation could be obtained by eliminating DT /Dt from
(1.63) and (1.65)

— 5T Ty = @ (1.66)

v =2 - 141 (1.67)

for on ideal gas.

We can now define the potential temperature

p R/ec, P (1_%J
G:T(i) :T(—*) (1.68.a)
P P

where p. is an arbitrary (constant) reference pressure (e.g. using the sea-level pressure, p,=1013
mb).

By making use of the ideal gas law (1.60), we can also write the potential temperature as

(1-3) 1y YA
g P _ .2 (1.68.h)
R P P

where c, is a constant. Logarithmic differentiation of (1.69) yields

[ 14]
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R yis
Inf=InT—- —1Inp+ —Inp.
Cp Cp

and

1D§ 1DT RI1Dp

e = = - — = (1.69)
8Dt T Dt c,pDt
Multiplying this expression by pe,T results in
pe, T DO . DT Dp
5 Dt ""Di T D
and comparing with (1.63) we can write
Do 0
— = —". 1.70
Dt T (1.70)
We can also make use of (1.47),
Ds
T'— =@, 1.71
2-q (L71)

to interpret the last equation.

An adiabatic atmosphere (Q* = 0) is also an isentropic one (és = 0) by virtue of (1.71). For the
isentropic or adiabatic case (1.70)
Dg
— = { 1.72
T (1.72)
states that # should be conserved following a fiuid particle, i.e. #=constant, in which case (1.68)

yields a simple relation between temperature and pressure, i.e. corresponding to compressional
heating:

Rjey
T:9(£> . (1.73)

px:
1.2.6 Thermedynamic Equation for the Ocean

We have noted that the compressibility effects are, in general, negligible in the ocean, by showing
that the ratio [y/(y — D)]parciéT/ép is on the order of 10°. However, in the deep ocean, the
ratio can be smaller and in fact can be an O(1) quantity, if we note that the temporal and spatial

variations of temperature (6T or —%—1}) are small. Thus the two terms on the Lh.s. of (1.49) can be
of comparable magnitude,

Dr TD
A S (1.74)



[ E Ozsoy - DO-IIT - Stratified Fluid Dynarmics ]

but in the deep ocean the non-adiabatic term ¢” can be neglected, (}* = 0.

If we define potential temperature as

v
B:T—/ ol (1.75)
ro PCp

with py is a reference pressure(say pressure at the sea surface pp ~ 0), then the material derivative
of (1.74) is

D8 DI Dp D /‘” aTTd

Dt Dt Dt Dp J,, pep (1.76)
_ DT arTDp |
- Dt pe, Dt
Comparing (1.76) with (1.74) we have
bs_ Q" (1.77)
Dt cp
and since * = 0 in the deep ocean,
D
— =0, 1.78
B (1.78)

or # should be conserved (i.e. #=const.=6y) which then gives a relation between temperature and

pressure through (1.75). Assuming hydrostatic pressure (with z pointing upwards)

ap
g = P9 (1.79)

then yields

]
T:90+/ aTpo
Pa

C
o Por (1.80)
= 6 - / IO gy
o Op
or differentiating with respect to z
T
R L (1.81)
dz e,
The solution to (1.81) is
T = Tpe Ve NEm50) (1.82)
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indicating an exponential increase in temperature with depth. For typical values of g = 10m 572,

ap = 1.5 x 107°C " and ¢, = 4.2 x 10°Jkg °C~" | the rate of increase is characterized by

gap 10x 1.5x 1074
ep  4.2x10

=0.3%x 107%m!

i.e. a one percent increase in temperature takes place at a depth of about Az = 30km below
the level z5. Since the deepest part of the ocean has a depth of about 10 km, the increase in

temperature due to compressibility of sea-water is less than 1 % everywhere.

Since we have assumed isentropic conditions, we can use the isentropic relation for the speed of

sound
< dp
R s d 1.83
‘ (Bp)s (1:83)
or
Dp 2 Dp
- e 1.84
Dt % Dt 0 (1.84)

P
Azp_/ %dp (1.85)
P
which can be shown to satisfy (1.84)

DA _Dp _DpD [ 1

=== —d

Dt~ Dt DiDp), 2" (1.86)
_Dp 1 Dp_ )
T Dt e Dt

by virtue of (1.84); i.e. the potential density A is also conserved. Making use of the hydrostatic
equation {1.79) yields

“p
px:ﬁ.o——/ ngdz (1.87)
zq Cs
or
dp g
LA 1.88.
Ep L (1.88.a)
or
— 7 s - r—z -
p=pg—¢e Lo 2 e nrizma) {1.88.5)
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for the deep water density variation due to compressibility. Typical values for the ocean of the rate
of increase are

g 10 -5, —1
- = ———=0.4x%x10
e (1500)2 "

.€. a one percent increase in in-situ density due to compressibility occurs over a depth range of

2.5 km.

Having shown the negligible influence of compressibility in the ocean, we return to the simplified

version of the thermodynamics equation (1.55). Dividing by ¢,, and neglecting Q* + ¢ ~ 0, we
have

Dr

— = V. gk VT 1.89

==V sy (1:59)
which is known as the heat diffusion equation, kit = K/pe, defined as the diffusivity of heat. Again
we have introduced an additiona] equation for a new variable T, in addition to the continuity and
momentum equations which involve the unknowns p, p, 4. To close the system, we must invoke the

equation of state. If we assume the ocean is of fixed composition, then f(p,p,T) closes the system.

However, the ocean density is actually determined by salinity as well as temperature, since the
ocean water is actually of fixed composition. The salts dissolved in water are of fixed composition
but the solution is not, the total concentration of salts determining the salinity. Therefore the
equation of state for sea-water is of the form

flo.p, T, 5) = 0. (1.90)

Since the compressibility of seawater is negligible, the role of pressure in determining (1.90) is of
minor importance. On the other hand, the actual empirical form of (1.90) is highly non-linear,
which can be linearized around some central values Ty, Sq, po:

P=poll —ap(T - To)+ (5 - Sp)) (L.9t)

We therefore have in extra variable S in our equations. To complete the system now, we need to
write a conservation law for salinity (i.e. a diffusion equation):

Dy
— =V . ksVS. 1.92
D1 A4 n_c.VS ( )

The solutions for @, p, p, T, § can therefore be obtained from the complete set of equations (1.1),

(1.2}, (1.89), and (1.92).

The diffusivities k7 and kg are, generally speaking, not equal in the ocean. However, if they are
assumed to be equal or if the effect of salinity in the equation of state is neglected altogether, then
it is possible to combine (1.89) and (1.90) in {1.91) vielding

(18]
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Dp
— =V &V 1.93
D1 KVp (1.93)

where & = KT = K,.

Note that equation (1.93) is quite different in form and meaning form the continuity equation
(1.1), although both equations involve conservation statements for p. In the continuity equation
Dp/ Dt stands for density changes due to either compressibility or inhomogeneity effects, which
create a divergence of velocity, whereas compressibility is neglected in the thermodynamic equation,
leading to equation (1.93) relating density changes to diffusions of heat and salt. Also note that
by introducing (1.93), the equations (1.89) (1.91) and (1.92) become redundant. This is because
equation (1.93) complements continuity and momentum equations (1.1, 1.2) to yield three equations
for three unknowns p, p, i.

As aresult, we will use versions of the thermodynamic equation (1.66) or (1.70) for the atmosphere,
and (1.93) for the ocean in further derivations in Chapter 2.

1.3 Vorticity Dynamics

We will review vorticity dynamics in rotating, stratified fluids, which was partially examined in
DO-I.

The relative vorticity of a fluid is defined as

F=Vxi (1.94)

with respect to the inertial {rotating) coordinates. Since the velocity in the absolute (fixed) coor-
dinate system is given by (DO-1)

—

SRR (1.95)

with € representing earth’s angular velocity and 7 the position vector in the rotating system, an
absolute velocity can likewise be defined:

Q= Vxd+VxOx7 (1.96)

by virtue of vector differentiation rules given in DO-1.

By making use of vector identities, the momentum equation (1.2) is first written as

di 1

EJrEV{i-ﬁ)—&’xVxﬂ%—‘zﬁxﬂ:j—

Vp+ F (1.97)

o |

where F = %V +d is the net frictional force. Taking the curl of the modified momentum equation
(1.97}, and using the definition (1.94) and vector identities of DO-1 it can be shown that & satisfies

[19]



[ E. Ozsoy - DO-1II - Stratified Fluid Dynamics |

o ) . .
g—j+V>< (&+2Q)xi:—V;pr+\7xF (1.98)

Noting that € is constant and using equation {1.96), this can also be stated as

—gtf‘-+V><(ﬁA><f£_):—V‘%pr+Vxﬁ (1.99)

Upon making use of vector identities the second term is expanded, resulting in the equation

Dés 93 .
wA=df*J—A+1I-VG.3A:LJA-Vﬁ—@AV‘ﬁ—leVerVxF (1.100)
Dt Jt p

Equations (1.98), (1.99) and (1.100) are different forms of the vorticity equation. In equation
(1.100) the L.h.s. is the material derivative of absolute vorticity. The r.h.s. includes effects of vor-
tex stretching(first term), vorticity changes due to compressibility(second term), vorticity changes

induced in stratified fluids (third term) and torques generated by friction forces (fourth term). Here,
the third term can be written as

1 l
-V-xVp= —=Vpx Vp (1.101)
p p

and in the absence of the other effects (vortex stretching, compressibility and friction) this is
the only term which induces changes in the vorticity of a stratified fluid. If either the fluid is
homogeneous (Vp = 0), or if the fluid is stratified such that the density and pressure gradients are
in the same direction every where (p = p(p)), then the above term also vanishes and the absolute
vorticity &4 is conserved (vorticity can not be created or destroyed). If either condition is not
satisfied the overfurning tendency of a stratified fluid is represented by (1.101).

Now, consider some special quantity ¢ that is conserved following a fluid particle

De 9
_—= = i - = 1.102
hi =9 TA-VE=0 (1.102)

For example the quantity € could be salinity, or temperature if diffusion, friction or internal sources,

are neglected, or it could be anything else that is conserved, Through the use of vector identities
involving V8, 34, and i

VO X (Sp % @) = (34 V)T — (@ VOIS,

Substituting from (1.102) yields:

VO x (34 x @) = —%gaA — (T4 VO (1.103)

[20]
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If equation (1.99} is multiplied with V& and (1.103) is used together with vector identities, it can
be written as

.9 1 —
Ve —2 4V QA% (G, V)| = ww-(v; x Vp)+ VO-(V x F). (1.104)

Further use of vector identities yields

D(34 - V8)

1 .
5 +(L3A-V9)V-7I:—VG-(V;XVp)—}-VG-(VXF). (1.105)

Now, making use of the continuity equation (1.1} and dividing by p the equation takes the form :

D |:L:JA - Vf)]

=lve'[—vl><vp+vXﬁ (1.106)
Dt P p

p

which is known as Ertel’s theorem. Neglecting the frictional effects, the Lh.s. bracketed quantity
must be conserved if one of the following conditions is satisfied: either 8, p and p are related, or
p is constant (homogeneous fluids) or V# and Vp are co-planar vectors. If the flow is inviscid and
incompressible but stratified (satisfying V-4 = 0 or Dp/Dt = 0, by virtue of 1.1), p can replace 4
in equation (1.102) and (1.106). The r.h.s. of {1.106) vanishes, yielding

D &4 -Vp
—_— | el =0 1.107
Dt [ P } ( )

Next, consider a material surface S enclosed by a material carve (' in a fluid. The quantity

I(t) :f i dF (1.108)
c
is defined as the circulotion in the non-inertial frame, and by virtue of Stokes” theorem (DO-I)
F(t):/Vxﬂ’iﬁ ds:/a:"ﬁ ds (1.109)
5 5

it is the vorticity flux passing through the surface S. It is also possible to define the circulation in
the absolute frame of reference as

TA(t) = jtf ﬂ'A-szl"(t)+}{ A x 7 dif (1.110)
C C

by virtue of {1.95). Through the use of vector identities, and the Stokes’ theoremnt, it can be shown
that the second term equals

j{ﬁxf‘-d?"_/VX(_QXF)%"L ds:f‘ZQ'ﬁ ds, (L.111)
[ g 5

[21]
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vielding

Ta(ty=T(¢) + /Zﬁ 7 ds

:/(G}+‘2§)-ﬁ ds:/aﬁA-ﬁ ds
5 )

where &4 is defined in (1.96). The integrand of the second term in (1.112) is the component of 2
normal to the surface §, or alternatively

(1.112)

/ 20 7 ds = 208, (1.113)
5

since the  vector is constant. Here, 2 ={ | and Sy is the projection of the surface .S on the plane
perpendicular to . The rate of change of 'y is

dl' 4 d . - Diy . f_. D
A cdiF = .d - —{d7), 1.114
dt dtﬁu’q ’ ]{C IR A Di 4" ( )

where the second termn can be shown to be

. D'F) 1% L
Ug-d{ — | == @ d(ig Hq)=0 (1.115)
fi g (m 2 )

since the integral is taken for a closed curve. Utilizing (1.112), (1.114) and (1.115)

dr Dy . __dS,
e it Y STy ps. 1.116
dt fc pr Y dt (1.116)

Now, since 14 satisfies (the momentum equation for 1)

Dily 1 .
=—F— -V F, 11T
Di =9Vt (L.117)
we have
dT’ l - ds .
—:j{rf-df‘—jg AVp-dF'—*-ﬁF-dF—‘zQ L (1.118)
dt c’ cP c di
Note that by expressing § = —Vé and utilizing the Stokes theorem once more,

fg-df:j{ qu-df‘://Vqut)-ﬁ ds = 0, (1.118)
(& C 5

so that {1.118) simplifies to the Kelvin's circulation theorem:

[22)
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E:—/leVp-ﬁdS-}—fF-'-d’F—‘ZQ%, (1.120)
dt s P c dt

through further use of the Stokes’ theorem and vector identities. The first term on the r.h.s. is the
contribution to the rate of change of circulation by the overturning tendency in a stratified fluid, the
second term is the contribution by tangential shear stresses and the third term is the contribution
by the changes in the projected area (representing conservation of angular momentum). These
respective terms represent, the effects of stratification, friction and rotation on the conservation
of circulation. In the absence of all three effects, Kelvin’s circulation theorem states that the

circulation is conserved: 1.e. an irrotational fluid will remain to be irrotational.

Let us now consider the first term on the r.h.s. of (1.120}, representing the creation or destruction
of circulation (or vorticity) in stratified fluids. For this term to vanish, either of the following
conditions must be met :

i} the fluid is homogeneous (i.e. p= constant), then Vp = 0,

ii) the fluid is barotropic (i.e. pressure is a function of density, p = p(p)), then the corresponding
term becomes

1 1 1
—V—pr:—2Vprp=—2@Vprp:(}.
P P p* Op

If the fluid is in both inhomogeneous (stratified) and baroclinic (not barotropic), then the overturn-
ing term in (1.120) contributes to the vorticity dynamics (ref. equation 1.53).
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CHAPTER 2

QUASIGEOSTROPHIC THEORY

2.1 The Existence of a "Basic State"

In developing the quasi-geostrophic theory, we will assume that the motions in the atmosphere
and ocean occurs as perturbations to a basic state which is described by a static balance of the
forces acting on the fluids. Therefore the basic state is one corresponding to the fluids being at
rest (4 = 0) and to a steady-state (% = 0) As a result, (Dt = 0) for all variables and presumably
the basic state would only result in vertical variations in the state variables such as state p, T and

p- Let us now investigate if such a state would actually exist. The equations governing the basic
state are then

1 - —~

;Vp-i-QxQxF—g“:U (2.1.a)
ViT =0 (2.1.0)
= p(p':T) (2'1'6)

where the first equation is the momentum eq” (1.2) with (1.3} substituted and the second one is the
thermodynamic equation corresponding to either (1.54) or (1.55) for the atmosphere and the ocean
respectively (assuming constant K): The last equation is the equation of state for either fluid when
the effects of moisture in the atmosphere and salinity in the ocean respectively are neglected we
should investigate the corresponding solutions on the earth in spherical coordinates. However, for
the purpose of demonstration, an analogous situation on a rotating table is sufficient, and choice
of coordinates is immaterial in investigating the basic state. Consider { = Q& and § § = —gk where
k is the unit vector in z-direction (along the axis od rotation}, yielding

Vp = pQ*7 4+ pgk (2.2)

Taking curl of (.2) yields

OV x pF+ gV x pk =0 (2.3)

which can be written in cylindrical coordinates (r, 8, z) as

P 2P

2.4
95, 5, =V (2.4)

The equation (2.1.b) satisfied by the temperature becomes

FT 19 or N 1 9*T
gz T dr dr r? 30?

_ (2.5)

[24]
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Now, since density is a function of temperature, it would be impossible to obtain solutions (2.4)
and (2.5) stimultaneously. For instance, solution to {2.4) would be of the form

Q2,r2 .
p=r(:- ) (26)

and consequently by virtue of (2.1.c)

2.2
T:T(Z_QT)_ (2.7)
2g

The functional form contradicts with (2.5) to which it can not be solution. The contradiction in
this simple model shows that the static equilibrium can not be achieved in a rotating-stratified
fluid. Some convection (motion) is necessary in the steady state, so that @ # 0. However, if the
fluid is assumed to be isentropic (@* = 0), then equations (1.54) and {1.55) become

DT arT Dp 0
» Dt p Dt

DT

Dt

(8.a)
=0 (8.5)

for the atmosphere and ocean respectively and with the assumptions of @ = 0 (static}), % =140
(steady) fluids these equations vanish completely, so that the only remaining equation is (2.4), and
the solution (2.6) is then acceptable. On the other hand, since the centrifugal forces are often much

smaller than gravity, the horizontal changes in density may be much smaller than that occurs in
the vertical i.e.

022
2g

< z (2.9}

So that (.6} and {.7) reduces to

Ty

p=oplz) and T =T(2). {2.10.a,b)

For example,

T =T +az (2.11)
is on exact solution of (2.5).

As a result we can assume a basic - state in which the state variables are functions of z only,
if we neglect centrifugal acceleration as compared to gravity. Furthermore, since we will assume
isentropic fluids later in the development static equilibrium can exist in the fluids, under these

assumptions. We thus assume hasic state variables of the form p,.(z), p,(2), T.(z), ete. and as we

[25]
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have shown above we can take #, = 0 in this state. Since there is no motion, and only vertical

variations, these variations are the result of gravitation which is the anly force acting on the fluid.
Therefore { ) yields

I .
—Vp, =7 (2.12)
pr
Since we will make tangent-plane approximations we take g = —gk where k is the unit vector in
z-direction, yielding
dp- )
dp., = g (2.13)

which is the relation for "hydrostatic pressure” which exists in the basic state.

2.2 Scale Heights

Considering simple models we can estimate the vertical variation and vertical scales of change of
the state variables.

For the atmosphere, we can use the ideal gas law pr = prRT:. Logarithmic differentiation yields

1 dp, 1 dp. 1dT,
_ 2.14
pr dz  py dz + T, dz ( )

and substituting (2.13) then gives

1dp, g . 1 dT,
prdz  RT ' T, dz

(2.15)

We can obtain a simple relation for an isothermal atmosphere (T, = T =constant) from (.15),
yielding

pr = poe(Fm ) Hs (2.16)

where H, = RT/g is the density scale height. For typical values of B = 2.9 x 10°cm2s—2o 1,

T = 293°K,g = 98lems™, H, = 9%m which is almost the same order as the thickness of the
troposphere.

For the ocean, we can obtained a simple relation in the isentropic case (potential density 5=0). By
virtue of (1.88.a)

— i
pr(z) = poe gf;o 7 e~ (3m20)/H, (2.17)

where H; = & /g is the density scale height, ¢, is the average speed of sound (Cs=constant). For
typical values of ¢, = 1500ms~! and ¢ = 9.81ms™*, we obtain H, = 200km. Since the deepest
part of the ocean is only about 10 km the hasic-state density change in the vertical is in fact shown

[26]
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to be negligible. We can therefore use the approximation on the r.h.s. of (2.17), and equivalently,

write the density scale height H; as

1 dp,\ 7
H, = (_p_ d”z) (2.18)

where H, is typically 10 km for the atmosphere and 200 km for the ocean as seen from the above
simplified models.

2.3 Perturbation Egquations

Considering the motions in the geophysical fluids to be perturbations on the basic state, we can
write each variable as

p p"(z) ﬁ(xﬂyazat)
p pri2) pz,y,z,t)
T =1 Tr(z) } +% T(z,y,z2.t) (2.19)
: 6.5) [ | 02,y 20
i iz, y, z.t)

Neglecting frictional forces and writing the momentum equation (1.2) on a tangent plane results in

o dily, 1
AL, A v P w3 | Fkx @ = —=Vap, (2.21.a)
at Oz Iz
dw Jw 1 dp .

i - Rt A 2.21.b
o T Vaw + g 59: Y { )

The first equation is the horizontal component of (1.2} and the second equation represents the

vertical component of the same equation. The horizontal gradient operator V, = (a—aii a%) and

the horizontal velocity vector i) = {u,v) has been introduced such that

@ = iy + wk (2.22.a)

is the three dimensional velocity vector and

; 0 b e
V=it (2.22.b)

is the three dimensional gradient. It has also been assumed that ¢ = —gk, and f = 2Qsin¢ is
the Coriolis parameter, the only contribution to (2.21.a) coming from fk x i, and the vertical
components of Coriolis forces being neglected since they are much smaller than ¢ (see DOII notes).

The continuity equation hecomes

dp . 0 _ 0 e
5 + Vi piln + a—zpw =0 {2.23)

[27]
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in the same notation.
Next we need to complement the above equations with thermodynamic counterparts. For the

atmosphere we prefer to use the thermodynamics equation (1.70)

ot a0 0
=~ L i - f S I 2.24
gy T Vil - won c,,TQ (2.24)

with an equation of state (1.68.h)

pl/'T
I (2.25)
p
where ', = p,(lﬁ%)/‘q is a constant

For the ocean we will prefer to use the version of thermodynamic equation written in terms of
density, i.e. (1.93), vielding

dp

a7+ ih Vap+ w2 = g (2:26)

9z

where R* = V - kVp is the diffusive (non-isentropic) term. This form of the equation is directly
expressed in density, so that the addition of an equation of state is not needed for the ocean.

In the following developments, we will neglect the non-isentropic terms setting @~ = R* = 0 in
(2.24) and (2.26).

We can now substitute (2.19) into the above equations. Equation {2.11.a) becomes, {dropping the
(}» notation),
0% L L 7578 s - .
(pr+ P 5 + 8- Vit we + fhxi}==V(p +p) = -Vp (2.27)

Since pr = p.{z) alone,

The vertical momentum equation {2.21.b) vields

0w Cdw u_' p) -
(pr + P){E + - Vuw+ w 5> } = o {pr +p)g (2.98)

I

I
Xl
I
=
=S

where use has been made of the hydrostatic equation (2.13).

Since py = py(z) only, the continuity equation {2.23) simplifies to

dp 2 d
a—";-l-ﬁ~v,5+(p?.+ﬁ)v-ﬁ+ %prw—}—g—zﬁw:() (2.29)

The thermodynamic equation for the atmaosphere (2.24) hecomes

[28]
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o] .98 89
- TR 7T — = 2.30
6t+u ve+waz+w32 0 ( )

and the equation of state {2.25) can be written as

(6. +6) = Cu(pr + ) Mpr +5)7 (2.31)

For the ocean (2.26) takes the form

dp, dp
£ - 2.31
32+waz 0 (2:31)

op

5t Vptw

2.4 Order of Magnitude Analysis

In order to scale our equations, we select the scales

I~ L, z~ H, tw%
i~U, w~adlU, f~fo
Pr ~ Po,  Pr ™ Po, G_'r"’go
P~ Puy P~ P &~ 8.,

(2.32.a - k)

Here, we select the time scale as the time of travel of particle with speed U over a length scale L.
Alternatively

1 foL) 1
W) =7 (233
where fo is the scale for the Coriolis parameter and

U

§= —
foL

(2.34)

is the Rossby number. The meaning of (2.33) is then, that the time scale of the motion is much
larger than the inertial period 2x/ fo, when § < 1.

The inherent assumption in the scaling of the vertical is that the vertical velocity is smaller than

the horizontal velocity by the ratio of the small parameter

A=H/L (2.35)

such that A < 1 (shallow water A approximation). In fact, This salinity argument can directly be
obtained from in the homogeneous case the continuity equation (2.23). However, in rotating fluids
the vertical motion is decompled from the horizontal, and therefore the vertical cf. DOII velocities
on the fluid are induced by external processes of either ekman pumping or bottom topography.
Considering the bottom topography alone, the vertical velocity induced should be of the order

[ 29 ]
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w=0 (U%l) = 0 (aAl) (2.36)

where & = hy/H is the small parameter (a < 1) representing the ratio of the bottom topographic
amplitude to the total depth. As we have done earlier in the derivation of homogeneous quasi-
geostrophic theory we take a < 1, although the case of & = O(1) can be recovered as a limiting
case of the theory to be derived (as in the homogeneous case, cf DQ-1I). We also known that vertical
motions are suppressed in rotating fluids, so that we replace the small parameter « with 8, yielding,

w~ §AU (2.37)
A final dimensionless parameter which appears after scaling is the (external) divergence parameter

272 L\?
g = ng_H - (E) (2.38)

where R =,/ % the radius of deformation.

The scales of pressure, density and temperature are detained as follows. Assuming perturhations

to be small, for instance p, < py, and the same follows for the other variables. Scaling (2.27) by
(2.32 a-k) and (2.37) yields

- - " - h — P ~ 9
Uy + 4 Vi 46 wii,)+ fkxd=-— Vp {2.39
(& ) foU L{popr + pup) )

so that the Coriolis term balances the pressure gradient to 0(1), yielding

P~ pofol L (2.40)

On the other hand, the hydrostatic balance of (2.13) yields

Po~ pogH (2.41)
So that (2.40) and (2.41) yield
'L
pe ~ pogH I L = b (2.42)
gl
Similarly, scaling (2.28) yields
dw Ow 1 fL2 35 p.Lg
Ad (— -{-'&'-Vm+6w—) = {— = 2} (2.43)
dt 82 (PT‘ + ‘i—;ﬁ) Ul oz pg(f

130
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Since the left hand side is small, the right hand side terms must be balanced (hydrostatic pressure
in perturbation field} yielding

fUL

e I = b 2.44
p G| 10 = Horo (2.44)

By similar arguments the potential temperature salinity is

&, ~ pbby (2.45)

Since p and @ are related. In fact, we can scale (2.31) with the above, yielding

= C. H)U - -
(6, +6u8) = (ongieo) (pr + 6up)"/™ (pr + 61)7" (2.46)

1-1 .
We note that the constant ¢, = p. * /R, where p, is an arbitrary reference pressure. Selecting
p. = pogH = py, the constant in (2.46) is evaluated as

1—-1 _ 1.1
exlpogH)' 7 po T (pogH)M (pogH)' T3
pobo R potly po Ry (2.47)
g
R6,

On the other hand, we can establish a relation between the arbitrary scales 8y, pg and pg, by using
the relation (2.25), i.e.

1-+ 3
g P "' pe g
J = _ 94

R po poR R

(2.48)

So that the constant in (2.46) i.e. the right band side of (2.48) becomes =1, yielding (in 2.46)

- h A AN
l+éu— ] = (1 + 6p—) (l + 6y—) (2.49)
A, 1, Pr

Since du < 1, we can expand the terms in Taylor Series, yielding
] 1. 7
(lw_) (H_ML_“)(]_ML_..)
91” ¥ 7r Pr

so that to O(dp} we can write

I

PPN Lt

L

[31]
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b _1p_4 (2.51)
0 ypr o
Similarly expanding the ideal gas law p = pRT and scaling as Tp ~ Ty, T ~ T, = dulp,
Po(pr+ 6up) = poRTo (pr + 6p1p) (T + 6uT) (2.52)
and noting that py = pg RT,, to O{é)1) we obtain

p_p T

-~ =4 = 2.52

Pr Pr T, ( )
These relations establish the conversion between perturbation variables g, 5, # and T.
Finally note that we scaled f ~ fo, y ~ L in (2.32) So that the tangent plane approximation

f=f(1+8y) (2.52)
becomes (scaling 3 ~ ),
f=1+4(BL)By (2.53)

in nondimensional variables. The dimensionaless parameter JyL can be estimated from

BoL = cot ¢y (Rio) (2.54)

where ¢q is the latitude and R is the radius of the earth. In mid - latitudes cot ¢pp ~ O(1). Taking
Ry = 6000km, and L = 100km (ocean) or 1000km {atmosphere), we find B4 L = 0{1072 — 1071)
We assume this small parameter to be the same order as the Rossby number 8L ~ §, so that

f=1+468y

(2.55)
is the appropriately scaled tangent plane function.

Making use of (2.32.a - k), (2.34), (2.35), (2.37), (2.38), (2.40), (2.41), (2.42), (2.44). (2.45), (2.51)
and (2.55). We can now scale the equations (2.27) - (2.31) as follows:

[ 32)
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(pr +0up)é d_u + @ Vi + tﬁ'u,*g}E + (pr +6up)(1+ sy)k x &= -Vp
ot dz
. dw o Jw op
252 i = o -
(pr + 0up)A”8 {az + (@ V)w+éwaz} 5, P

ap g . @
bl L T Vb pw s + (pr+ b)Y+ b pw = 0
ot z z

) 9 ? (2.56a — f)
99+ﬁ.vé+6wa—9+lw39’:0

dt 0z u 0Oz

b 15 b

T

a—fﬁ-ﬁ-v,ﬁ‘i‘éw%ﬂ-iw%t:o

The first three equations are the momentum and continuity equations which are valid for both the
ocean and the atmosphere. The thermodynamic equations for the atmosphere are given by (2.56
d,e) and the corresponding equation for the ocean is {2.56 f).

2.4 Scale Analysis

Now, let as look at the typical values of the small parameters é, A and p. Taking fo = 107*s71,

g=10ms™ and U = 1m/s, L = 100km, H = 10°m for the ocean and U = 10m/s, L = 1000km,
H = 10%m for the atmosphere, we can have typically

6~ 1071
A~ 1072
p~10"1 —107?

for both fluids, i.e.

p= 0(8) - 0(6*)

‘= o) (2.57)

so that § is the largest of the small parameters. In fact, if we take slightly lower velocities or larger
horizontal scales this parameter may become é§ = O{1). Note also that the parameters appear in
groups of 8, u,dp, or &A, the latter being always smaller. Therefore we decide to keep only those
terms with O{4) in the equations, yielding:

[ 33 ]
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6pr{11’,+f£-v11+/51%xﬁ}+prfc><ﬁ=_v;3

op

0= -3~
& 9

V. i+ ——(pw)=0

"J’p,az(pw)
o6 . 100 (2.58.a — f)
e L g VO + =y =
grtu Vit gy =0
9 _1p _p
b vpr  pr
0 - ., ldp,
i TEVAE L w=0

Note that in equation (2.56.e} we have kept those terms with O (%) > 1, O(1), and O(é) terms. We
have, purposefully divided the equation by i beforehand, because otherwise neglecting pf the terms
of O(u) ~ O(6%) and O(ué) terms would yield w = 0, which would be dynamically inconsistent.

The set of equations to be used for the atmosphere are (2.58.a — €), while the equations for the
ocean are (2.58.a — ¢} and (2.58.f). Let us now rewrite these equations, defining the new variables,

b=L
Pr
F;
r=1- 2.59.a ~
o ( a - c)
4
§ = -
B
We first divide (2.58.5) by p, to write
L%, 2 _y
prdz  p,
and rearrange to write this as
d (i) 18p, p p
e pr B P
29 PPy 2.60
0 oo ot (2.60)
or
g—(ﬁ + K(z}p+7r=0 (2.61)
where
. L d _
K(z)= —r (2.62)

pr o dz’

[ 34 ]
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Secondly, (2.58.¢) is written as

s=Lz)p—r (2.63)
where
1 p, .
L(z)= -, (2.64)
Y
Finally, noting that 8. and p, are functions of z only and defining

1 df,

_1 2.65
M) = (265)
equations (2.58.d} and (2.58.f) become
g 1 .
—+i-V)s+-—-Mzw= ‘ (2.66)
ot u“
(i+i-V) r - lA"(z)w:O (2.67)
it it

We can then write (2.58.a — f) as

5{%+ﬁ-w+ﬁy%xa}+iqxﬁ=—v¢
6 _
E—i—h(z)qﬁ-%'r—{)

Vi + 6ifa—(prw) =0
pr 0z

ds

dt

s=L{z)p—r

ar

. 1., _
—_()—t+u-\7r+ ;I\(z)w—()

(2.68.a — f)

1
+u-Vs+ —M{z)w=20
i

2.5 Brunt - Vaisala (Stratification) Parameter
2.5.1 The Atmosphere

We will now define the dimeusionless stratification parameter

S(z) = —— =2 = —M(z) (2.69)
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H 148,  H® gdp

- () ()" = (4 (e e
= SoN*(2)

where the stability or Brunt Vaisala Frequency is defined as

" — A72 Ar2 _9‘19:-
N (z):NON(z)_Edzr.

(2.71)

For typical values of H = 10*m, L = 10%m, f, = 10~*s~1 and Ny = 10%s7! for the atmosphere,

.%:(%02(%02:00) (2.72)

so that %M(z) = 5(z} = O(1) in equation (2.68.d).

We use the definition of potential temperature (2.25) for the basic state, and take logarithms of
both sides,

1
Iné. = ~Inp. —Inp. +1ne,, (2.73)
¥

so that (2.71) is evaluated as

dz Yp.dz  plod:

N,z(z) :gdlnﬂ:. _ g ldp. gdp)
(2.74)

where use has been mode of the hydrostatic relation (2.13). Non-dimensionalizing with the scales
N'~ No, pr~ po. pr ~ pogH, z ~ H yields

. 1V dp. 1p,
SoN¥(z)= -2 _ 2P
#o0N2) pr dz  yp, (2.75)
= K(2) - L(2)

Since ¢ < 1, if follows that

K(z)= —L(2) {2.76)

with this approximation it follows from {2.68.e) that

[ 36 ]
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s=L(z)p—1=—K(2)p—-r (2.77)

and comparing these with (2.68.a-e), the governing equations for the atmosphere become

6{(,)—1:+ﬂ'-\7'ﬁ+ﬂyfcxﬁ}+fcxﬁ’:vv¢

a
a¢
a_o =9
0z . (2.78.a — d)
V.-d+é—=—(p,w)=
i+ o az(p w) =10
% +-Vs+ SN (2w =0
2.5.2 The Ocean
We define the stratification parameter
11 dpy 1 . .
S(z)= ——— T = L ZK(z 9.79)
(2) o 9z p (2) (
which is in dimensional variables
H? g dpr 2
S = SN 2.80
$() = A (- L0 ) = sne) (250)
where N? is defined as
N®(z) = NEN?(z) = = L% (2.81)
0 pr dz

and

So = (%) (I}I‘J) (2.82)

Taking typical values of # = 10°m, L = 10°m, Ny = 10724571, fo = 1074571, we obtain Sy = O(1).
However by virtue of (2.79) '

K(z)= O(p) (2.83)

and we can neglect it in equation (2.68.b) yielding the following governing equations
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i : .
5{—u~+ﬁ-\7ﬁ’+ﬁ‘ykxﬂ’}+ X = -V

a1
d¢
- =T
0z s (2.84.a — d)
V.i+ 6(0—?(73—3(;),,11)) =1
or

a1 + - Vr— SN (2w =0

2.7 Quasigeostrophic Theory

Note that in the above derivations of the governing equations, we have arrived at the same final
set of equations for the atmosphere and the ocean. The only difference is in how we intrepret the
set of variables in the egqnations. The set of equations are basically the same, and if we take either
(2.78.a-d) or (2.84.a-d), they are both of the following form:

ot
d¢
5z °
V.d+ 6;1;3%@,41:) =
s

3 + - Vs + SoN3(2)w =0

6{9&+ﬁ-‘5’ﬁ+,@yéxi}+l§xﬁ:ngb

(2.85a — d)

In fact the above set corresponds to the set of equations (2.78.a-d) developed for the atmosphere.
We only need to replace the variable s with —r to obtain the set of equations {2.84.a-d) for the
ocean. The only difference between the equations for the atmosphere and the ocean in interpreting
the variable s = 3% as the normalised perturbation potential temperature for the atmosphere, and
the variable r = % as the normalised perturbation density in the case of the ocean. Further,
the Brunt-Vaisala stratification parameter is defined in terms of basic state potential temperature

(2.71) in the case of the atmosphere, and in terms of basic state density (2.8} in the case of the
ocearnl.

We also note that the limit of these equations for geostrophic flows (i.e. for Rossby number
0 = U/foL — 0) are degenerate, as we have seen for the homogenous fiuid case in DO-IL. This is
simply shown by taking delta = 0 in (2.85.a), yielding @ = & x V¢, which automatically satisties
{2.85.c} i.e. V-4 = 0. Since this means one of the above two equations is redundant, solutions to
the set can not be determined uniquely. This is called geostrophic degencracy.

We therefore seek solutions in power series expansions in the small parameter §, expanding the
variables as follows:

[ 38]
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i =i+ 0t + 6%y + ...
w =g + dwy + 62wy + ...
¢ =g+ b+ 82 + ...
s:so—l-és]-}-ézsz-{-...

(2.86a — d)

We then group like terms in equal powers of 4. The O(8°) equations are

]EX'EOZVQSO
00 _

iz 0
V- -tdg=10
360

B_Z + g - Vsg + SQN2(Z)TDO =0.

(2.87a — d)

which we have seen to be degenerate. To the next order, the O(4§') equations are

o
ot
¢y
9z
Vi + ﬁ:%(prwg) =0
831

—5-{ + ‘L_l':l . VSG + TI(} . V31 + SUNQ(Z)wl =0

+ug - Viig + Ayk x @ + k x i = -V,

:Sl

{2.88.a — d)

From the first order equation (2.87.a), we see that the first order velocity is related to a stream-
function vecuy = k x Vo, and we can then define first order vorticity as

So =V xilp =V xkx Vg = kVy. (2.89)
Alternatively we can define the scalar (two-dimensional flow) vorticity & such that & = k&g, and
therefore, &g = Vidy.

Note that the result (2.89) has been obtained by using the vector identities of DO-I, i.e. V x k%
Vo = (Vo - V)k — (k- V)Vo - VH(V - k) + k(V - Vo) = kV2 ¢y, yielding the last term because
all of the first three terms are zero.

Because the first order equations are indeterminate we must close the system by making use of the
second order equations. By taking the curl of equation (2.87.a),

OV x i i A
ﬁTj-“—“J,vaO.vao)wx (Buk x i)+ V x b x @ = ~V x Vo (2.90)

We then evaluate the individual terms as follows:

[39]
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1 , .
ty - Vig = %V(ﬁo . TI()) — Uy x V x g = §V|ﬁ‘0}2 +£ok X 1ip
1 . - R
V x (ﬁg : Vﬁg) = 5\7 X Viﬁoﬁ +V x Egk X Ifo =kV- (fgﬁg)
k(ilo - Vo + &V - i)
= kily - V&
V X Byk x iy = k- Viyiy = kByV - @y + ki - V iy
:éﬁﬂg
VXiCX?I] :.’;:V’&'l

Substituting in (2.90) yields

o . -
§+H0'Vfo+ﬁvo+v-ul=0a

and using (2.88.c),

a 19 )
(E + Ug - V) fg -+ ﬂ’t)g = p—a(prwg) (291)

r

From (2.87.b) and (2.87.d), we can write

J . o > Q
(E‘FU{) V) (%) +.90N2(z)w0 = 0, (292)
or
d . pr 0o .
W = — | — -V ~—= ], 2.93
Prito (at o ) (SUN2 82) (2.93)
and differentiating with respect to z gives
('?prwg () N () Pr C)(,‘bg 8ﬁ0 Pr d(f)o
= ti-V] = T2 - == — 2.94
0z (8t T ) 0z (som dz 7V SoN? 9z )7 (2.94)

where we note that the last term in fact vanishes because the vectors iy and Vg are orthogonal,

‘t_l:[) = im X qug

If we substitute (2.94) into (2.91), we have

d — i 1 () Pr 00’)0 - . P
(8! + ug - V) |:E() + p—?a (.S‘UNQ E—):l + fHog =0 (2(}))

and substituting @, = k x Vg, o = Vigy and v = dg/ O results in

L40]
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d . 2 L g (_pr o %A 2
(a-{-kxv(bo V) [V (po-{-wdz (SONZ 02):‘+1{ =0. (96)

We have obtained a single vorticity equation governing ¢g, which is the basis of quasigeostrophic

dynamics.

Once this equation is solved for ¢g, the solutions for py, Uo, wo, po, 6, and Ty can be obtained from:

‘ﬂ':() = fC X V(ﬁg
1 d 0o
Wy = — SoNz(Z)( + g - V)W
2= g
pr
bo Do (297e—f)
— =8 = ——
4, 0 dz
- 1 p,
p—DETt): —p—¢0—30
Pr v Pr
T ,
?2 =T = p—rﬁ’bo -~ 7o

The dimensional equivalents of the above equations are

(9- + L hxva- )[v%m f"iﬂW*“%]+mﬁ@@:o (2.98)
fo d a8
and
@y = fok x Vo
0%
950 = 52
g J .
Y= TN (57 T - V) 50 (2.9%a — ¢)
_tpr
0= 7pr¢° ‘0
To = —(?50—7'0.

r

If we define ¢ = ¢/ fo = o/ fopr, and note that

beta

81,[)0 _ (()

0 = (5 kX Tve V) )

then we could also write them as follows:

[41]
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I 13 p, 8 d .
(% +k x Vg - V) [vlwo + f0 f\’m .”’“ + foB ‘f"’ = (2.100)
and
PO _ foBrpg
P Pr
ﬁg = nl; X Vlj)()
o _ 0%y
. g 0z
__Jo (@ Ao (2.101.a — f)
Ry 2 (Bt TV )5,
Po_ 100 _ b
pr Ypr 6.
o _ o
T Pr pr
Note that (2.98) can also be written in the following form:
d 2 f(f d Pr 81[/'0 .
2L 22 -, 2.102
(dt+kxv% )[f0(1+ﬁy)+v ¢0+p1.32N2 5% 0 ( )

In the above equations the stratification parameter §(z) can be interpreted as follows. We note

5(2) = §eN¥(z) = (%ﬁoﬂ)) (%)2 (2.103)

and define an internal radius of deformation L,

Lo NeH i L JgTJ_ 1 gH aa \/*‘ng, (2.104)
fo g, fo . 0z " fo Jo

(with a new definition of reduced gravity g' = Eeﬁ%’g—) so that

2
S{z) = (%) , {2.103)

t.e. the stratification parameter is proportional to the ratio of the internal radius of deformation
to the horizontal scale.

Comparing the internal radius of deformation Ly to external radius of deformation Ly = voH/ fo,

I f 1/2
L e _ (20‘93) | (2.106)

Le Vg 8, 9z

[42]
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Noting that

Hoo, N'H NGH

NEH?
2 _ 0
0. 0= g g N =)= gH

2.107
(MY (EV (B (2100
= f[] L gH = 0kt
with S = NoH/foL = O(1), and p = f¢L?/gH < 1, we thus show that
Ly 1/2 .
— = {pS) " < L. (2.108)
Lg
Equation (2.102) is a conservation law of the form
Dq
Jasth Q) 2.109.
Dt~ (2.109.0)
2 o
2 f§ 2 pr Ot ‘
- Jo 7 Fr 7 109.6
g = foll + By) + V7o + o 97 NE 02 (2.109.b)

where g is called the quasi-geostrophic quasi-potential vorticity. The individual terms of vorticity
are

f = fo(l + By) = planetaryvorticity

2
oy B2 o
v%bo-l_pir(‘)zf\’z 0z

(2.110.2,b)

= fluidvorticity.

The second term of (2.110.b) is termed as ‘thermal vorticily’ because it represents contribution to
vorticity resulting from stratification.

Note that equation {2.109) can be written in either of the following ways:

dg
a—‘t’+u0-vq:0
dg -
or g +kx Vi Vg =0 (2.111.a — ¢)

dq  Owo dq o g
o = — — =

gt 8z 0y dy 0z

We could also write the non-linear part of the quasigeostrophic vorticity equation using the Jacobian
of g and g, as follows:

Jbo,a) = | 5 oy 4 (2.112)
Or Oy

2.8 Quasigeostrophic, Barotropic Motions

[43]
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2.8.1 Barotropic Rossby Waves

To obtain the barotropic version of the quasigeostrophic vorticity equation, we simply neglect the
vertical derivative terms, yielding

(3 dve @ O D tbo
ot =

4]
— — — —— — 2
dz Oy 3y 69:) 1,Do-l—fm@

We can assume plane-wave solutions of this equation in the form of

TIJ{)IRE{AG kx+ly— wt)}

Substituting this solution, and evaluating terms, it is easy to show that

vwm:4ﬁ+ﬂwmtan:w%vww:m

leaving
J
V%0 + o
which then gives
{—(k? +12)(_iw)+f0/3(ik)}1l’u = 0. wave puum ber
Ve L
-

We thus have the dispersion relation for the waves, on - 2 Ko = (k, e)

__JoBk

k2 _+_ 12

We define :
¢ [é’{
20
foB =4, and & =ki+lj k

so that

REP=k*+08 k=fR.i, |

It
i
-

and then, the dispersion relation takes the form of

3’ K-
w=——cosa = B,
| |7
Note that if 4 = (}, we have w — 0, and no waves can exist. It is therefore clear that the waves are
supported by the presence of the beta-effect. Such waves are called Rossby waves.

[44]
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We now define a phase velocity vector

and we have

This shows one of the basic characteristics of Rossby waves. The zonal phase speed C is always
negative, so that the phase always propagates to the west (i.e. w > 0, k < Qorvicaversa). The
azimuthal phase speed C,, can be either positive or negative.

Conservation of potential vorticity requires that

(3 O & O O

g % Yd Ut ' 25 -
LTI 3y Byaz)(fo-l-ﬂy-*-v%) 0

or

d
(3+89) U460 = Fif +) =0

This requires that f+ £ =const. following the motion of material (fluid) elements. Consider zonally
oriented chains of fluid. If we then deform these into a sinusoidal form,

/

Meratiu

The velocity field at A’ will cause @ to go up, b to go down, and the velocity field at B’ will cause
b to go down, ¢ to go up, so that the entire wave will go towards the left {west). We can also think
of the flow pattern as a vortex street which self-advects to the west.

fro rm 3,-«}'% @ @

The group velocity (_'Fg is defined as



[ E. Ozsoy - DO-HI - Stratified Fluid Dynamics |
o= dw  Jw _i0w+06w
T \ak > or) T 'or T an
anl its components for Rossby waves can be calculated from the dispersion relation a- follows:
k¥4 12 . —_
i { 20if — R

(k2 - 17) < lf—~¥~=(. 7
ki

Cy, =20 ———
Dy !{(k2+12)2

2.8.2 Barotropic Rossby Waves in Basic Zonal Flows

Let us now consider the case when the Rossby waves are superposed on a basic state with a constant
zonal flow. Again, we start with the vorticity equation

o

=1{
dz ’

a ..
E(Vz%) + J (o, Vigg) + 8/

but, now, we separate the flow into a superposition of basic and perturbed states

Yo =¥ + et

such that ¢ < 1, and ¥ is a function of y only

ov
U= W, Uly) = ———.
(y), Uly) 5y
Substituting in the equation gives
g 2 2 2 r rad)
51V ‘P)+E—(V )+ J (¥ + ey, ¥ (‘D+€d}))++ﬁ —+ Bl =0

{n the above, the term #'0%/dz term drops out because ¥ = U(y) only. For example, expanding
the Jacobian,

. (¥ ] N )
T (¥ + e, V(W + ) = (—[,;—”‘—Ja V(W 4 ep) — (_;Jiﬂaa VA + )
_dVOviy ViV ov
C oz dy 8:17 Ay
A ) - el
+‘(amay -5 el dy)+ (oa g7 v ()IV*”
+E(0)

and dropping z derivatives applying to the ¥ terms,

[ 46 ]
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T U S aqx) )
= Vi —
J= (szva gV gy ) G

Substituting these into the vorticity equation and collecting equal powers of € gives

d o2 0 & oy 0 op 0¥ 0 CWJ} -
d(V\D)+e{dmaV\1’ 8Vt[) + - (V‘I’) [36 +E0.)+.. =0

To first order (O{¢")), we have

fij
—Vip =0,
ot v=
and since ¥ = ¥(y) is not a function of time, therefore the above is identically satisfied.
We note,
dy
bl A 4
by (y)
au
Vi = ——
(4 By
J _. *U
Bl v Y N i
dy 4 oy?

and therefore, to the next order (O(¢')), we obtain

P PUN O
S (Vo ( W) 5z

0 0
E(Vz )+ U=

This equation will serve as the vorticity equation for the perturbation streamfunction % on a basic
flow 7. We can simplify the notation by writing

o i 2 u@__
(dt+Ud )Vd+(ﬁ 0" =0

where

U' = o0*U/oy*

To obtain a plane wave solution for the above equation, let 4 = Re (Ae"(““y_“”), and substitu-
tion ylelds

(—iw + kUN—k* =)+ (3 = U"ik} = 0
or

[47]
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(B - U")k
S VA Ly
et

as the dispersion relation. To compare with the earlier case without the basic flow, we calculate
the zonal phase speed as follows:

W (3 -U"
Lo =M Y
s Ere t
The above is valid for any zonal basic flow U(y). For simplicity, suppose a uniform basic current
U = Up=constant, U" = 0. Then we see that the phase speed (', = 0 when Uy = §'/|R|?. With

|Z| = & = 27 /A;, where A, is the zonal wavelength, we find that this occurs when
/\r =X, = (27r)\,f Uo/ﬂ’

We will call A, wavelength of the standing Rossby wave, because when )\, = ), there is no propa-
gation,

For typical values of Uy ~ 25 m s7!, 3 = 1.6 x 10-13 ¢m ! s~ we find A, = 7000 km. The
Rossby waves propagate from west to east for Az < A,, and from east to west for A, > A,.

In mid-latitudes, (e.g. the European area) the observed wavelengths of storm systems are usually
less than 7000 kme, so the atmospheric waves often travel from west to east.

Note that for I/ =< 0 (easterly jets: e.g. the TEJ - Tropical Easterly Jet) putting U = ~ ¥, we
see that

g

CI:_k2+lz

- U(} <0

so that the propagation is always to the west. In the tropics such waves are often seen superposed
on the ‘easter)ies’.

2.8.3 Barotropic Instability

To study the stability of basic zonal flows we consider the non-dimensional version of the vorticity
equation developed in the last section:

d o 9 u O
T § i / - - —
(atuam)vyﬂg U")sl =0

where {7 = {/{y) is the zonal velocity profile.

y';f

—7 Uty
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o0



[ E. Ozsoy - DO-1II - Stratified Fluid Dynamics |

For simplicity, we will consider the idealized case of flows confined between two rigid vertical wails

at y = 0 and y = 1 (channel flow), where we apply the boundary conditions

34l
UQI,—Ui:O on y=20,1

ox

We try the solution (x,y,t) = P(y)e*(#=¢t} where ¢ = C, is the zonal phase speed. Substituting
into the equation,

: ; dzP 2 Ay
(—ike + Uik) 8—y2—kP + (8- U"kP =0,

or

The boundary conditions at the walls are

{P(O) =0,
P(1) = 0.

We now redefine the phase speed as ¢ = ¢, + i¢;. Allowing a complex phase speed will give us the
possibility of having a time dependent wave amplitude. In particular, a positive imaginary part
will give a growing wave:

P = P(y)e+kc‘-t€ik{z—c,t}'

Since & < 0 for Rossby waves, et*%! corresponds to a growing wave. We can thus investigate
stability by substituting this into the equation:

d2 ﬁ— [
Pl ' S TN L S u) =
Er R s el SR

or

d* ,  AB=UNYU = er) + dey]
L P =

Now, defining A = (8 — U"Y}U —¢;)and g = (5 - U )ey,

[ d? 12 A+ iu

e +m]f’—ov

and letting P = P. + F; alllows splitting the equation into real and imaginary parts:

[49]
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d? 5 A i
P, Fr=9

[d? * |U—c|?} U = o

d? A m

— = k2 P, P. =0
[dz IU—cP] T

which is then combined as

d* P, d* P, 7 .

— - - - P} + P} =0.
Ptdyg P’"dy2 |U—f2(’+ 3 =0

Integrating across the channel,

1 2 1 2 1
d* P, d* P H 2 2
Pi—dy — Pro———dy — 0 (Pl + P dy =0,
/0 42 Yy fo dy? Y /t; S ( r T 1) Y

and carrying out the integrations by parts

dP LdpP, dP, dP; YdP dP Lo ; .
Pi_“t]“‘/ T zd)—(Pr o noe rd)—/_Pf-f—de:O
( dy lo o dy dy y dy o o dy dy Y o U - Clz( %y

With boundary conditions P{0) = Pi(0) = 0, P-(1) = Pi(1) = 0, the first terms in the brackets
vanish, and the second terms in the brackets cancel each other, so that we are left with:

Yo
/(; |U—c|2(P3+Pi2)dy:O

oT

! P:4 P}
. & S § LI N G LN T G PP
|y - { B =

where gt = ¢; (/4 — U"} has been substituted. Note that the term in the braces is always positive,
and since ¢; # 0 {for unstable solutions), we observe that the only way an instability can occur is
if (3 = U") changes sign at least once in the domain 0 < y < L. Note that this is a necessary (but
not sufficient) condition for barotropic instubility. If the velocity profile U/(y) is such that the above
integral does not integrate to zero, we can still have stable solutions with ¢; = 0. If there was no
f-effect present, then, for an unstable solution, the necessary condition for instability is to have an
inflection point in U (y).

2.9 Quasi-geostrophic, Baroclinic Motions

2.9.1 Rossby Waves in Quasigeostrophic Stratified Fluids
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To study Rosshy waves in a quasigeostrophic stratified fluid, we first simply the equations a little,
for a simpler case where the z-dependent coefficients in the original vorticity equations are made

constant.

For this we consider the case with
S = SoN*® = constant = §,

and therefore the scale height defined in (2.18) is

1 ol
H '= ———"=gN?* = constant.
pr 0z

Taking H;!=constant, or § = §=constant, we can write

1 8 pr 9o B I 1 dpr 0o 82¢0
EEE?E_E{E dz 8z = 02? }
1 8% o 1 dgo

and then, the quasigeostrophic vorticity equation reads

o - W s B -‘2 & 2 5‘2 Yy g
{d ddg O d¢0i}{id¢o 1 o 3¢’0+0¢0}+ﬁd¢o:0.

5t 9z oy By 0z ) \§ 02 GH. 9z | 0xf ' O Bz

The above equation is now a simplified form of the more general equation with constant coeflicients.
Assume a plane wave solution of the form:

do = AeTs cos(kz + ly + mz — wt)

= Re {Aejﬁ:ei(kx-}-ly-}—mz—wt)} ‘

then, we calculate fluid vorticity

19%p 1 &0 I n 9%
TS5 922 SH, 0z 0z Oy}
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Therefore, the Jacobian of ¢g and ) vanishes:
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dr dy Oy dx

dr dy Ay Oz |

Do DQ) é)qbgé)Q__(l m? ){aﬂaﬂ a¢oa¢o}

With this simplification, we arrive at a linear equation

aQ
Bt + 4

do

Bz =0

which has to be satisfied by the proposed plane wave solution if

2
- ( L BTN 12) (—iw)do + Bik)py = 0,

4H:S S
or
k
T
s T anZs

The above is the dispersion relation for the Rossby waves. Note that it is very similar to the
barotropic Rossby wave dispersion relation, except for an addition of vertical wave number term
scaled by .§"1, and a constant terin.

2.9.2 The Boussinesq Approximations

Remember that before making the perturbation analysis leading to the quasigeostrophic approxi-
mation, we initially had the equations

o ) .
{5—3‘ +i- Vi + gyk x ﬁ'} +hxi=ve
Z
d¢
R
0z
1 9 '
Ved+bd———p. (2w =10
pr(2) bz" (2)
d ‘
Vs 4 SoN¥ (z)w = 0
Jt
with 6 = Lo = Rossby number, and

oL

We also had the simplified equation of state

O _Yb_p b _p T
b ypre o’ e o T,

Farther approximations could in fact be made with the following shortcut assutnptions:

[.‘32]
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First assume that the pertirbation density is much smaller than the basic state density,

e =po+ o)), (2

o
or more specifically, O(6?%) < %’9 < 0(8), and therefore we can take rho.(z) >~ py in the equations.

Secondly we assume the effect of compression is small on the perturbations, z.e., and neglect ;—_;L in
the state equations, so that they can become

replacing 6.(z), T-(z), p(2) by constants 8y, Ty, pg respectively, using the fact that deviations are
small.

We thus ignore the effects of basic state stratification and compression in the continuity, momen-
tum, and state equations, but keep the effects in the thermodynamic equation, where we lump
them in ¥2(z) ! The above are called Boussinesq approzimations. The heart of the Boussinesq

approximation is stating that stratification constitutes the restoring force in the dynamics, rather
than compression.

The Boussinesq version of the governing equations are thus

N 1
Ut + 4 -Vi+ fkxd=—Vp
£0

n_
dz gp
dw
Vit 2=
u-{-az 0
dp

Lo vi-2Nw =0
g
The corresponding Boussinesq version of the vorticity equation would be

d ;. , fs 09 31/)_
[a—t+(k><v¢)-v][ 1/+—(de )]+/38f£—0,

where

" Po\ 5 p
p=—|= 1T, and ¢ =
(TO) Pofo

have been used. An alternative form of the Boussinesq vorticity equation is

a . a 1 dy L
(5;+u.V)( u+f0) ~Ias )+,dv_0.
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Remember that in obtaining the vorticity equation, we made use of the following equations:

4 - d - 4 Pr ()(1)0
E (p‘PTUO) - (a‘t + u- V) E (—S,ON_Z T’j;_)

pr
a 1 3
(a—t + g - V)fo + ffug = p—rg(ﬁ’rwo)a

H

where £ = V?y,

In dimensional form, the second equation reads (dropping subscripts):

g _Jo @
(E)"E-FTL'V){‘!‘{J’U— Ea(ﬂer

and the Boussinesq version reads:

a dw
2.9.3 Physics Represented by Quasigeostrophic Equations

To leading order, the horizontal velocity is related to a streamfunction v = B/pofo, such that
@ ==k x V. Thsi means that at any vertical level of the atmosphere or the ocean {z =constant)
pressure patterns (isobars) serve as the streamlines.

0 D
- k - 7, b
§ u - U}L ) JF"T!_

Note that near ground in the atmosphere, and the surface or the bottom of the ocean, the ap-
proximation is not strictly valid, because friction affects the motion in the Ekman boundary layers
(thickness ~ 1km in the atmosphere and ~ 50m in the ocean)

The vorticity conservation

i

D¢ _ <Q+ﬁ-v)5 —ﬁv-i-fo?
Z

—Bv— foV -4

states that the vorticity £ = V% = k. (V x 1) is changed either by (i) the beta-effect (first term)
or (i) the divergence effect (second term)

(1) The beta-effect contributes to vorticity when fluid elements move to a position with different

planetary vorticity from their earlier ambjent value. For example, for v > 0 or northerly transport

[ 54]
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(fluid moving to a region with higher planetary vorticity}, we find that the fluid vorticity decreases
(DE/Dt < 0). Similarly, for v < 0 or southerly transport (fluid moving to a region with lower
planetary vorticity), we find that the fluid vorticity inreases (DE&/ Dt > 0).

R d P_+_<0 1u~<o
U’>o

p————

bt

(#1) The divergence effect changes the vorticity or equivalently the angular momentum of a finite
fluid volume. In the case of a fluid cylinder with fixed volume, we can see the following consequences:
When there is convergence (t.e., dw/dz > 0,0r V-i < 0), the fluid column gets thinner and rotates
faster, i.e. D&/ Dt > 0. Similarly, when there is divergence (t.e., dw/dz < 0, or V-4 > 0), the
fluid column gets fatter and rotates slower, i.e. DE/Dt < 0.

- Dﬁ-ﬁo . Dﬁt <O
3 3 be a ]

" ®

:}@# = E

(Lon v&}p\u

This is also called the ballerina effect, after a ballerina controlling its speed of rotation by extending

<L

or contracting her arms.

We can visualise the effect of top and bottom boundaries as follows. For simplicity, let us consider
flat boundaries, where vertical velocity has to vanish. In the case of ascending motion we must have
%—l;' < 0or V-@ > 0in the upper part, and the opposite in the lower part. As a result, vorticity
decreases %—E{ < 0 in the upper part, and increases in the lowpr part

w(z) s ?W )V 3>
) 1 w>( 0 ‘ﬁ{f o_ﬁ -

~
1 @““Vj’a‘f B (-- *'-.' — %_-E >O ) V A <0
: i w0 J%,ﬁ_ Z0

In the case of descending motion we must have the opposite case for upper lower parts, so that

vorticity increases in the upper part, and decreases in the lower part:

0, V. i<o

7
7k 2O

— e

c‘onv?{:;&%é‘—ff &= @%
W("t) { [
(-) —_ = — - — .
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Therefore, if the fluid is bounded between two horizontal surfaces, we expect phase shifts between
motions near top and bottom parts of the fluid motion. This slanting of motion results from
different rates of the change of vorticity at different vertical levels. While the vorticity of a wave
motion may be decreasing near the bottom it would tends-to increase near the top, and vica verse.

Finally, let us study the changes that occur in density during the motion. The thermodynamic
equation states that

Dp N2
Dt Pog b

This equation shows that the perturbation density tollowing a fluid particle changes only by vertical
motions and in relation to the basic state density stratification profile. In particular, for a flujd
parcel moving downward (w < 0), the density decreases % < 0 (i.e. temperature increases).
Similarly, for a fluid parcel moving upward (w > 0), the density increases %§ < 0 (i.e. temperature
decreases). (Note that this result runs contrary to the popular belief that a warming parcel would

ascend, and a cooling parcel would descend !)

What happens near the top and bottom boundaries 7 For eaxample, let us consider what happens

in the atmosphere near the ground, We first note that near the boundary w =~ 0, so that the above
thermodynamic equation yields

-~ —i-Vp.

Therefore, if there is a warming (af‘/at >0 or l;ti < 0) situation at a fixed position, we must Lave
- Vp >0, re, the vectors 7 and V5 must have components pointing in the same direction. But
since Vp must have a componeut towards north (it is usually warmer in the south than north),

this means that the flow also must have a component from south to north, r.e. we must have warm

advection, such as during the period be{ore an approaching cyclone.
(oo
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On the other hand if there is a cooling situation (9p/d¢ > 0), we must have 4 -V < 0, 1.e., the
vectors i and V3 must have components pointing in the opposite direction. This means that the

flow must have a component from north to south, 1.e. we must have cold advection, such as during

the period after a cyclone. ( COO(
v
\4

r‘/

o
q

——

4o

v y
Py = 4

2 «
55 ?O&ja&h}

One of the most basic relationships is that of thermal wind, simply combining the geostrophic and
hydrostatic relations:

ﬁ:kxvlf):chV(L>, £)Ez—p"g'

Jopo dz
yielding
gi _ 1 fch(@bver@z}————g kxvp=—LixvT
0z fopo P B oo fo P= pof )

Integrating in the vertical gives

'{E:'_‘Q** g /E‘XVTdZ

pofo Jo

where 1y 1s the velocity at 2 = 0.







