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ToPocRMHIC MODES OF
THE CiLiCiAnN BASIN

II. FORMULATION

Integration of the momentum and continuity equationsg
for incompressible fluig motion over the depth results in

the governing hydrodynamic equations that we choose to in-

vestigate in thias atudy.

2.1 The governing Equations

A uniformly rotating two-layer fluid in a channel of
variable depth is assumed on an f-plane in the northern hem-
isphere. The motion in each layer is assumed to be hydro-

static and independent of the vertical coordinate(fig. 2.1),

The linear momentum and continuity equations are:

au Ry - 1

é-fl+ Ik x U,= - -‘—;—}Vp' {(2.1.1)

al P 1

é_t2+ fk x U, = - -S)-sz (2.1.2)
2

(2.1.3)

an i
SE* Vel 0,= 0 (2.1.4)
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where the aubacripts 1 and 2 denote the upper and lower lay-

er, respectively.

The hydrostatic preasure in each layer is given by

p = g&(n, - z) (2.1.5)

$8(M =N+ H,) ¢ 9g(n,- H - 2) (2.1.6)

P,

Equations (2.1.1-2.1.4) are non-dimensionalized by intro-

ducing the following scaling relations:

ujNU y 1=1,2

o
pmUg o j=1,2
U W
My~ —2
€ (2.1.9)
fu W
Ny o
s/
(x, 7)o W

where W, HO are the characteristic length and depth scales,

respectively. Uo is the characteristic velocity scale, and
A?=gz-9' is the density difference between layers. For
the Cilician Basin located at 36% latitute, the Coriolis

parameter is given as f = B.55 x 1077 radian.sec_l.
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Introducting (2.1.5), (2.1.6) and (2.1.7) into
{(2.1.1-2.1.4) the non-dimensional form of the momentum and

continuity equations are

aU ~ -
5f1+ k x 0= _vn1 (2.1.8)
au ~ -
W, % x 0= -Vnz-V(nr%?n,) (2.1.9)
2
ssglg_s,g%+ V., 6,2 © (2.1.10)
8,99 + V.8,T,= 0 (2.1.11)
fl wl rzwl
F &= d & =

n,and n, are disturbances of free surtface and interface. I
and H, the mean layer thickness reapectively, and Uj’ i= 1,2

the average velocity in each layer.

We now introduce new variables in the following form:

i-1,-1
do- 1,0 1,0,
- 4L,
A=, (2.1.12)
Ho= Hy + 10,
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and reduce equations (2.1.8)-(2.1.9) using {2.1.10) in the
following steps:

Combining {2.1.8) and (2.1.9) after multiplying each

by the layer thicknesses H, and H, yields

o
=1

-

+ k x & = -ilVA- 1,Vn (2.1.13)

[s1]
ot

Taking the divergence of (2.1.13) and utilizing (2.1.10),
{2.1.11) and (2.1.12) we have

A

~beFEr - ¥ (Vx @) = -V.(0V A+ 11,90) (2.1.14)

Differentiating (2.1.14) yields

J Fal
S V@V BN -53A C k2 vk (2.1.15)

Whereas the curl of (2.1.13) gives

w0
nﬂm
o

vxr‘n-seg—éﬂhi.(ic xTA) + Vi, .(k xVn) (2.1.16)

Eliminating @ Dbetween (2.1.15) and (2.1.16), we obtain

the following equation for variables hand n:

- [V-(HVM 1Lvn) - sEL(A)J - Vi (k xVN)

-V, (k xV) = O (2.1.17)
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T

2
where &(.) = EL%%I + 1(.) .

After multlplylng equation (2,1.10) by - H* and equation
(2.1.11) by H_ and adding these, we obtain

V.0 - Lo, - 0, -9, - SEH_Ha_E -5 -3 (2.1.18)

Now, tet L (.) operate on erquation (2.1.18)
- il 1
L0 « - Gels i Loy + S d-Lon]

s —%‘H'VL(U.) ~\z§§§--£(ﬁz) (2.1.19)

It is straightforward to show that some manipulation of

(2.1.8) leads to

O = - 2:VA k xVa (2.1.20)

and of (2.1.19) leads to

" a ~ a ~
L .-a—E-VkaVA-a—FVnrkan (2.1.21)
It can also be shown that the sub.traction of (2.1.8) from

(2.1.9) yields

it " kx0a -Yn- (2.1.22)
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Firat by taking the curl of (2.1.22) and then the derivative

of the divergence of the same equation one can slso obtain

Lv.0) = - 275 (2.1.23)

Now, making use of (2.1.20), (2.1.21) and (2.1.23) in
(2.1.19) results in the following equaticn.

[ ‘S-rr?n,L(”) & L) - Vi 0y L vaL9)

00 o g, L § vae T x 7
-V—ﬁf% xVA—E“!A-Ean=0 (2.1.24)

Multiplying (2.1.24) by H, and substracting from (2.1.17)

yields

%;[ V. (L,VA) +S,L(n)] -V, .k x¥2= 0 (2.1.25)

Equations (2.1.17) and (2.1.25) constitute, two
coupled differential equations for solving Aand n. PThe
¢coupled equations (2.1.17) and (2.1.25) will be used to
model the free motions in a uniform channel geometry. The
depth variations are assumed to be present in only the

c¢roas-channel direction (x), while the depth variations
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in the along channel direction are neglected.

The Cilician Basin can quite closely be modelled by such a

goometry since the channel is almost straight with the more
significant depth varistions taking place across the basin.
The length of the channel L 1s typically three times larger
than its width W to allow sufficient distance for uniform

propagation along the basin.

For propsgating wave solutions in the along channel

direction {Y¥), we assume solutions of the forn

)1 = L(X)ei(kymwt)

(2.1.26)
n - N(x)ed(kr-we) (2.1.27)
j= O3 00et(Rywe) 5 (2.1.28)

where w is the wave frequency, k the long channel wave num-
ber and L{x), N{(x) and ﬁj(x) are amplitude functions. The

vector velocity amplitude has components Uj = (uj, Vj) in

each layer, j=1,2

The dimensional frequency w' and wavenumber k'

are
respectively related to the dimenasionless frequency and
wavenumber by
w' o= fw
(2.1.29)
k' = k/W

The horizontal length scale W is taken to be the dis-
tance between south coast of Turkey and north coast of
Cyprus. In figure (2.1 ) the channel width has a typical
value of W = 100 km. Substituting (2.1.26) and (2.1.27) into

equations (2.1.17) and (2.1.25) yields the following

equations:

2 T
L g, 2Ly o (2.1.30)

N
CH 0N N S IR NE RN R SRR )

(2 H, fég‘—;z) N-o0 (2.1.31)

in which the upper layer is assumed to be of constant thick-

ness ( H, = constant ).

Phe normal velocity components U, and U, at the bound-

aries x = 0,1 must satisfy the boundary conditions
Uy = i.Ul =0 on x = 0,1 (2.1.32)
= T s = = 2.1.
Us = .Uy = 0 on x = 0,1 ( 33)

The velocity in each layer is given by (2.1.20) and (2.1.21).
the velocity amplitudes are likewise obtained by substitution
from (2.1.26)-(2.1.28). The boundary conditions (2.1.31) and

(2.1.3%2) are equivalent to rejuire the x-component velocity
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Uj =0, J =1,2 in the relations (ef, 2.1,20 and 2,1.21)
which yield

£l
1
=
pl
[
o
Q
2
=
(]
o
-

{2.1.34)

on x

&
[
|~
=
"
[

0,1 (2.1.35)

88 boundary conditions for (2.1.30) and (2.1.31).

The above equations are simplified considerably if

we make the change of the variables

M=La+N {2.1.36)

which by virtue of (2.1,26), (2.1.27) and (2.1.12) is equiv-

alent to

nﬂ(lw%dm=nd=munﬁwwngp (2.1.37)

With (2.1.36) and Il - W+ I, equations (2.1.30), (2.1.31),

(2.1.34) and (2.1.35) take the following form

(2.1.38)

P4
L. - k'L + 511%:!—1 (M-L) = 0 (2.1.39)

a2

M- 0 on x = 0,1 (2.1.,40)

L -kn_o on x = 0,1 (2.1.41)
x W

where the subscript x denotes differentiation.

The velocity amplitude components can be obtained by
substitution of (2.,1.26-2.1.28) into (2.1.20) and (2.1.21).

Making use of (2.1.38) the components in each layer are cal-

culated from:

Uy= gty (iwLl -ikL) (2.1.42)

¥y = T:%a (L -wkL) (2.1.43)
1. .

Up= = (1wM -ikM) (2.1.84)
1

Vo= o (M, -wki) (2.1.45)

2.2 Approximate Solution for Free Modes in a Channel with

Exponential Depth Profile

The system (2.1.38-2.1.41) for an exponential bottom
with a vertical wall at x-=0 has been discussed by several
in the context of shelf waves. Considering a channel with an
exponential bottom profile, approximate solutions wi th

I, «<il, will be used here to demostrate certain characteristics



of free motions. The solutions were further used for checking

the conaistency of numerical sclutions.

We consider the free oscillations in a channel of

width 1, where the lower layer depth is specified as

i, () = &2 P (2.2.1)

2b

such that 1,{0) = e~ and H,(1) = 1. With substitutions

A (x) = }'IL

b (1-w?
R (2.2.2)
&[l—wlz

He = =,

£1=

equations {2.1.38 - 2.1.41) can be written as

L,-¥L+y(n1) =0 (2.2.3)
M+ TM - (K «+ Ar sl pIM + (U -§) L =0 (2.2.4)
L -AL =0 (2.2.9)
MX—)\M=O {(2.2.6)

In seeking an approximate solution to (2.2.3 - 2.3.8)

we make the assumptiong
L&l 81 g i
» since H&H, B, M, since 5, §,

W : -
ith these approximations, the eigenvalue problem is simplji-

fied to

2
Lix ~ KL +y(M-L) = 0

(2.2.7)
Mex * 2bM - (k +2bA) M = O (2.2.8)
M- AM =0 . onx = 0,1 (2.2.9)
L ~AL =0 on x = 0,] (2.2.10)

where r -2b has been substituted by virtue of (2.7.1) and

(2.2.2). Note that (2.2.B) is now uncoupled from (2.2.7)
The general solution of gqualbions (2.2.7 - 2.2.10)
are obtained as
1
L0 = dye™® oaelaX g eMix o mpx 11)
M(x) = c,e™* c,e"z¥ (2.2.12)

for which the characteristic equations are
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1 -k -p=0 (2.2.13)

m’ + 2bm - (K2+2bA) - O (2.2.14)

and the roots are

L= 7K+ )l « 3q (2.2.15)
M= -b F/b2+ ks 2bA = -b 3p (2.2.16)

The boundary conditions {2.2.9) yield two linear homo-

goenous equations for ¢, and C,, i.e.

(m=A) C+ (my-2) C= 0 (2.2.17)
e™ (m-}) ¢, + e"2(m,-A) C,= 0 (2.2.18)

A nontrivial solution of (2.2.17) and (2.2.18) requires by

‘making use ol (2.2.16) that

(m-3) (m-}2) e 2sinhp = 0 (2.2.19)

The only nontrival case satisfying (2.2.19) occurs when p
has an imaginsry value, i.e., p=ip* (pP' is real),

satisfying

Si!lhp =iSiIlp':0

ol (2.2.20)
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where n is an integer, Since in (2.2.16)

p= bk +2bA = ip (2.2.21)

and
(P*F = - (B 412 +2bX) = (all) (2.2.22)

by virtue of (2.2.20), the dispersion relation is obtained

as

2bk

Wosr——
b?+k? +(nll ¥

n=1,2,%,... (2.2.23)

It can be verified that the integer value n=0 should
not be included in the modes, since this results in p'=0 or
m=-b as a single root, for which the solution would not

satisfy the boundary conditions.
To obtain the eigenfunction M(x), the equations

(2.2.21) and (2,2.16) are substituted in (2.2.12) to give

M(x) = e PX (g, eltlx o o-inflx, (2.2.28)

The relation between C, and C, are given by (2.2.17) as

(-b+infl-})
(~b-inll-2)

¢, = -C

(2.2.25)
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Now introducing

- bk - (n)
P (nh) (2.2.26)
q = 2[)[1“
and utilizing (2.2.22), we obtain
—bx. .
M{x) = Ce {psinnll x+qcosnllx) (2.2.27)
where C is an arbitrary constant such that
0o 2% _ 20 (2.2.28)
q-1ip q+ip

To obtain the eigenfunction L{x), we first write

(2.2.11) as

- (- T
L(x) = A,élx + Aje 4% . B,e BX ginnllx + B, e DX osnllx
(2.2.29)
by making use of (2.2.15), (2.2.16) and (2.2.21). 'he inho-

mogenous part of L, i.e.,

L(x) = B:ewbx sinnllx + B;e_bx cosrll x (2.2.30)

should satisfy equation (2.2.7). Substituting (2.2.30) and

(2.2.27) iunto equation(2.2.7), we obtain

B:[bz—(nﬂ)l+2bnﬂ—(kz+l“)] +H,C = 0 (2.2.31)

B;[bl-(nﬂf—2bnﬂ—(k1+pl)] +HC,= 0 (2.2.32)

On the other hand, the boundary conditions (2.2.5) applied
for (2.2.29) yield,

A,@-3) + A, €q-}) + B,(~b+nN)

1]
<

(2.2.3%)

A @-2) + A, €Q=A) + By(~benfl)

[F}
o

{2.2.34)

Solving (2.2.31 - 2.2.34) for the unknown coefficients,
utilizing (2.2.28) yields:

p
By = - PPy
r+q
B, = - ELE e
r-q (2.2.35)
((-1F e P-e )k
Ay, = C
q-2A
((-1)" e"P-e )k
Az = C
q+)
where
T s prj (2.2.36)
and
_ Lnl=A)aly (2.2.37)
2shq(r-q)
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Therefore the eigenfunction L(x) can be calculated
from (2.2,29) as

L) =0 [ LM e e yax (1] o6t | qx

Q-2) (q+x)
- %%8 e-bxsinnnx - %%% e_bxcosn"x ] (2.2.38)

The velocity amplitude components can be obtained by

substitution of (2.2.27) and (2.2.38) into (2.1.42-

2.1.45) . The components in each layer are calculated from:

U = - ¢ [ (wq—k)l\eqx - (wq#k)Bﬁ_qx
L-w
co™ X ((w(]_-:bi-b‘nﬂ)f-Ek)sinnﬂx + Lw(—Enﬂ»«Fb)H-'k)coanﬂx):]
(2.2.39)
1 qx ~gx
= == ¢ [ (a-kw aed% = (quky IBe™d
1-w

-b " .
+ e x((Eb+bnﬂ+Ekw)81nnﬂx + (-Enn+Fb+ka)cosnﬂx)]

(2.2.40)

30

u, = i . C. e"bx[(w(—bp—qnﬂ)wkp)sinnnx

1-w?
+ (w(—bq+pnﬂ)-kq)cosnﬂx} (2.2.41)
V, = l_.¢ -e'bx[((—bp—qnﬂ)-kwp)sinnﬂx
1-w?
+ ((—b1+pnﬂ)~kwq)cosnﬂx3 (2.2.42)
h
where (-1} o boo=0)k
A=
qg-»
((-1) e™Pue Dk
B =
@ +A)
g BP
- T+q
L
r-q

2.% Burface and Internal Kelvin Wave Modes in a Channel

with Constant Depth

Surface and internal Kelvin wave modes for a constant
depth channel were used to obtain first approximations to
the respective dispersion curves in Lhe numerical calculationa

for the variable depth channel, since only small modifications
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in the dispersion curves of these modes.
Solutions for surface and internal Kelvin waves are

therefore briefly reviewed in this section.

2.%5.1 Surface Kelvin Wave Modes

Phe non-dimensional form of the momentum and conti-
nuity equations for a single layer (homogenous) fluid with

a constant depth (ll=1) are

3l . % x 6 - -yq (2.3.1)
§9% « V.U = 0 (2.3.2)

22
. where SE= EFH—
a5l

Taking the divergence and curl of (2.3.1) respectively, we
obtain

V.0 - k.Vx T = -V (2.3.3)

gE—VX 0+ kV.0-0 (2.3.4)

combining (2.3.3) and (2.3.4) and utilizing (2.%.2) yields
ai
(S5 U 53D - - v (2.3.5)

Substituting r1=N(x)ei(kV‘“t) into (2.3.%),

tion can be written as

N - (K +5(1-w")}N = 0O (2.3.6)

The normal velocity component U at the boundary x=0,1

must satisfy the boundary condition
U=130=0 on x=0,1 (2.3.7)
Operating on (2.%.1), one can derive

( éf? s 1Y0 = -Vn+ & xVn (2.%.8)

o

Making use of (2.%.8) in satisfying (2.3%.7) yields

(o]
=
Ed by

N= O on x=0,1 (2.3.9)

o
£

as boundary condition for (2.3.6). The general solution of

{(2.3.6) is

T (2.3.10)
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the above equa-



whers

o= K« (1-w2)s, (2.3.11)

and application of the boundary condition (2.3.10) at x=0,1

yYields two linear homogenous equations for A and B,

i.e.,

e - £) + B(-e- K5 - o (2.3.12)

adg - l\:-)edz + B(-0; - %)e-dl’-=0

Nontriviael solutions for A and B can be found only if

G- ) - By (o7l ey Lo

(2.3.13)
Phe only nontrivial sclution satisfying (2.3.13) occurs, for
d= 7 % (2.3.14)
80 that (2.3.11) yields the dispersion relation
we T 6k (2.3.15)

In terms of the dimensional frequency w' and the dimensiocnal

wavenumber k' (2.3,15) is equivalent to

Wes (@) 2 g (2.3.16)

2.3.2 Internal Kelvin Wave Modes

Assuming constant depths in equations (2.1.38) and

(2.1.39) and neglecting §, we obtain the following equations

M- kM- S iy Lo (2.3.19)
il

L, kL - 80w iy 2o (2.3.18)
il

substracting (2.3.17) from (2.3.18) with the change of

variables

N = M_-T (2.3.19)

and introducing

bie k2 - (1-w2)s, (2.3.20)
H,H,
‘and
o=+ H,= 1 (2.3.21)

We obtain

N -DnN =0 (2.3.22)

The boundary conditionsz to be employed (cf. 2.1.40 and

2.1.41) are

oY
=4
z

N =20 on x =0,1 (2.3.23)

a7}
<
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The general solution of equation (2.3.22) is

(2.3%.24)

and apolication of the boundary conditions at x=0,1 ylelds

two linear homogenous equations, for which nontrivial solu-

tions can be found only if

(- 5y (b - K e PPy Lo (2.3.25)

The only nontrivial case satiafying (2.3.24) occurdg when

_ Kk ;
b|= + W (2'j'26)
and (2.3.26) yields the dispersion relation
— 1/
woa F(H L, /8) Tk (2.3.27)

In dimensional terms (primed variables) this is equivalent

to

W' o= i ﬁ%i.g ity YA (2.%.28)
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Figure 1.2 The bathymetfy'of the Cilician basin between

the northern coast of Cyprus and southern coast

of Turkey.
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Figure 4.4 I['ree surface and interface detormations (n,,n.J,
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1"igure 4.5 Continued (d) .
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