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CHAPTER 1

ROTATING, HOMOGENEOUS, INCOMPRESSIBLE FLUIDS

1.1. The Equations Governing the Motion of a Fluid

In the first course of this series (Dynamical Oceanography I - Basic Fluid Dynamics, hereafter
referenced as DOI), the governing equations which can be simplified for a homogeneous (p =
constant), incompressible (Dp/Dt = 0) fluid in a rotating, non-inertial frame of reference were
derived. These equations are

V.-ia=10 (1.)IDOT - 3.1.b]

and

D'q = 9
f§+2nxﬁ:4le+va (1.2}[DOT - 3.56]
P

As a side product of these governing equations, an equation for the vorticity balance was also
derived. Simplifying again for homogencous, incompressible fluids this equation reads:

D4
Dt

=3, Vii+uvVi3, (1.3)[DOI — 3.68)

where Wy = & +20Q is the absolute vorticity. In relation to vorticity balance, an equation governing
the circulation around a closed curve was also derived. For a homogeneous fluid this equation is

dl . dS
— =y [ VG i dS - 202 {(1.4)[DOT —~ 3.80]
dt g dt

where ' is the circulation around the closed curve (7 enclosing the surface S, and S, is the projection
of the surface S on the plane perpendicular to the angular velocity vector §2. The above result stated
the Kelvin's circulation theorem.

Finally, Bernoulli’s theorem was stated for a steady flow of a homogeneous incompressible fluid,
based on

VH=dxd,+vVii {(1.5.4)[DOT — 3.83.q]
where
| S A U N
H = I il Q(Q x a7 (§ % F). {1.5.0)[DOT — 3.83.0]
2 p

Note that p' represents the fluid pressurein (1.5.1), while the notation p in equation(1.2) represents
the modificd pressure, replacing the last three terms of (1.5.h).

(1]
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The above will be considered as the basic equations in this course, since our subject will only cover
the motion of homogeneous, incompressible fluids with respect to a rotating frame of reference.
We will elaborate the effects of rotation, leading to important new beahaviour in geophysical fluids
(.. the fluid systems on a rotating earth). The effects due to density inhomogeneity of the fluid
(stratification) are deliberately omitted in this course, and will be studied later in the third course
in these series (Stratified Fluids).

1.2. The Restoring Effect of Corioclis Forces

The effects of rotation are expressed by the Coriolis term {(second term in equation 1.2), since the
centrifugal force has already been included in the modified pressure p of equation (1.2). We will now
demonstrate novel effects in rotating fluid motion arising due to this apparently minor modification
of the governing equations. One of the most important of these effects is the elasticity created
in rotating fluid motion. This effect is important, because the presence of a restoring mechanism

allows particular types of wave motions to be supported.
1.2.1. Inertial Motion

To see the restoring mechanism of the Coriolis term in more detail, consider an inviscid fuid (v =0}

with vanishing pressure gradients (Vp = 0). Equation (1.2) becomes

D

E‘ = —Zﬁ X ﬁ,‘, {IG)

t.e. the fluid acceleration is balanced only by the restoring Coriolis force (per unit mass) —2Q x 7.
Without loss of generality, we assume that the angular velocity vector is aligned with the z-axis
in a Cartesian coordinate system (z,y, z) with unit vectors (i,j,ﬁ'), ie, Q= Qk. Then, the only
component of velocity i = (u, v, w) contributing to the right hand side of {1.6) is &), = (w,v,0) in
the plane perpendicular 1o € = ch), so that i can be replaced by @),. The direction of the restoring

force ix at right angles to the lateral component of fluid velocity i@y, and its sense is to the right of

' —
é /uh
A : .

b

this vector:

For a uniform flow in infinite domain, the nonlinear advection terms can be neglected, so that {1.6)
hecomes

[2]
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0 iy
dt

+ 20U x @, =0 (1.7)
Cross multiplying with —2Qk and adding with the time derivative of the above equation yields

0261 § 9
— + (2%, =0 (1.8)
dt-
This equation has sinusoidal solutions (harmonic motion), analogous to a spring-mass system. For
example, we can use the initial conditions:

i (0) = Uy (1.9.q)
DU 0y = 20k x 1, (1.9.5)
it
The solution follows as
£y = g cos 29 — k x Ug sin 20t {1.10)

The components (u, v), of the velocity #), = (. n,0) are

= {5 cos(20 - ) (1.11.a)
v = —/sin(20 — «) (1.11.6)
where «v is the angle that the initial velocity vector I, makes with the x-axis, and [/ = ”[70”.

3 .
Up (=9 =

T/l W
L uhQ{’A{:{‘Z

r§\bl’

For small amplitude motions, the displacements (2, y) of a material point {fluld particle) with

respect to its initial position (rg, 7o) can be obtained by integrating (1.1 L.a,h) with respect to time:

[3]
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U :

{r —up) = z%[sin(;?ﬂr. — ) + sin q] {1.12.a)
Uy .

(y =y} = E[rr_:s(‘zﬂf, — ) — cos ] (1.12.5)

These can be combined by eliminating ¢ between (1.12.a,h), to yield

(e 2+~ y)? = (%) (1.13)

where x., . are appropriate constants determined from (1.12).

in the above solutions. both the sense of rotation of the velocity vector i), and the trajectory
(r(t), (y(£}) i (1.12) are in the clockwise direction. Each particle rotates clockwise, and comes to
its initial position after one incrtial period 7; = ;—g”l = §. This inertial motion demonstrates the
restoring effects of the Coriolis foree. Because it arises due to the inertia, without any external
(surface or body) forces, this motion is considered to be a free oscillation in a rotating fluid,
corresponding to a natural frequency of 20).

1.2.2. "Elasticity" in Retating Fluids
The previous example on inertial motion illustrates the restoring mechanism rotating fluids. Since
particles displayed return to their initial positions after one characteristic {inertial) period, the

fluid acts as if it has some special forn of clasticivy, whereby particles are forced into closed circular
trajectories,

To further demonstrate the elastic hehavior, consider a closed material curve ¢ whose projection
in the lateral plane (L to Q) is (')
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Suppose that a motion is generated in the fluid such that it will cause a positive rate of expansion

in the lateral plane, i.c. with

du  du
vh'?_.!.‘h:(.)—’r-{-£>0.

This outward motion along the material curve (' is going to give rise to Coriolis forces in the
ciockwise direction along the curve since the induced force is to the right hand side of the motion
{in the northern hemisphere). This is also seen exactly by equation (1.4) (Kelvin’s theorem) since
an increase in the projected area 5, enclosed by curve (' leads to a negative contribution to the
circulation. On the other hand, clockwise motion along the material curve will give rise to Coriolis

forees in the inward direction (i.e. with ¥, - i), < 0) then the material line ¢! will then tend to

contract.
tfr WWL\? - -

- CO!’:J['S
*/‘\/afbékn_fafﬂ“

é_ _-— - - E)‘V‘lﬂj.'?ﬂ

o— [ LT
+ = ) T2 ! 2.0

Thus the fluid is seen to resist elastically to any motion that would cause displacement of fuid

elements leading to a change in the projection of an are enclosed hy a curve of such elements.

The refative importance of Coriolis effects is determined by the inverse of the Rossby number
Ry = Uy /Ly§2y measuring the ratio of Coriolis terms to other inertial terms (cf. equation [DOI -
+.4]). When Ro << 1, the elasticity effect of rotation is expected to be dominant.

1.2.2. 3Steady Flow at Small Rossby Number (Geostrophic Flow)

When the flow is steady (4 ,’.‘ = 0), inviserd (v = 0), and if the Rosshy munber Bo << 1, then the
nonlinear term @ - Vi is negligibly small compared to the Coriolis term 20 % w). o this limit the
momentum equation (1.2} hecomes

Wxi=~-=-Np (1.14)
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Without loss of generality we can let € = Q& he aligned with the z-axis of a Cartesian coordinate
system {x,y, z) with unit vectors (i, j, k), such that

Nr |
20k x 1= ——Vp. (1.15)
P

The continuity equation

V=0 (1.16)

complements the momentum equation. Iy principle (1.15) and (1.16) should be sufficient to solve

for the unknowns @ and p. However, it turns out that the so-called geostrophie motion by these
equations have some very special characteristics.

First, by taking the curl of (1.15} we can show that
: 1

VXEXxil=--—-VxVp=0 117
X ko 507 x Vp (1.17)

by virtue of (DOI-1.27.i). Theu, by making use of (DOI1-1.27.d) the Lh.s. is

Vxhkxa=kV-i-k.vi=o, (1.18)
of which, the first terni on the /.5 vanishes by {1.16). Then {1.18) states that

ii\,"Vl_.',‘:(.)i:O (1.19)

/z

expressing the fact that the velocity field has to he two-dimensional; @ = (2, y) only. On the other
hand, (I.15) dictates that

20 (k x ﬁ,)+lfl--vp:0 (1.20)
, P

so that p = p(a,y) only.

The above results, namely that none of the flow variablos depend on the vertical coordinate 2 alone,

indicates that the flow is essentially two-dimensional and oceurs in the (,y) plane.

By virtue of the above results, (1.15) and (1.16) can equivalently be written as

; 1
2O % r_ff;,' = A“V;‘,P (12])
Iy
T, il = 0, (1.22)

where i, = (u,v,0} s the velocity vector in the lateral plane and ¥V, = (-ﬁ 5 0) 15 the pradient.
LI e M
operator in the same plane.

[6]
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The result, that the rotating flow at the limit Ro — 1 must be two dimensional, is known as the

Taylor- Proudman theorem. Consider the flow bounded by two rigid surfaces

b=z fi{a, =00 =z~ fo(a,y) = 0. {1.23.a,0)

feo

/’/.
T —
-
- 7_\/ pt = O

X

Since the flow is two-dimensional, any fluid column that is initially vertical will remain vertical.
However, while moving, the net height of the column & would have to adjust itself to the distance

of separation between the two surfaces, requiring that

[)({)1 B D‘I)'_] _ (1 24
DL De T 24)
Since Py, P, are material surfaces according the (DOI-1.41). Substituting (1.23.a,b):
DPy _ ,
=u-VO0, =1, -V, i —w=0 onz=] (1.25.a)
Dt
CAERRETE N 0 1.25.0
=u-VO, =0, Vi fy —w=10, onz=7/,
T i 2=y Vyfy —u . on s (1.25.h)
Subtracting(1.25.h) from (1.25.a) and since @), = i, (x, y) only, we have
w |::f; - l:: . = ﬂ:h . lv'(fl - f.’)
=y - Vh (1.26)
_ Db
S m
On the other hand, since w = w(ex, y) only (%% = 0, the vertical velocity w at the upper surface

can not be different from that at the Jower surface, ic. the Lh.s of (1.26) must vanish, so that

1ih

This result indicates that any moving flnid column must preserve its height in geostrophic motion,

.. the fleid column moves along a very special trajectory that would make h=constant. In a

[7)
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closed container, this would mean that fluid columns could only move along closed contours having
h=const, if such closed contours exist. If there are no such closed contours, geostrophic motion

would not be possible
. L2
C'/o&(-/ :ﬁ\_B
(u"‘ A }Dw

Closed
basm

S(:((Pci
5,3 d £y

If a mound was placed it an otherwise constant depth motion, would bypass the mound.

s s

r'-*'/‘ /
1

7>

X /7 //S Mmmcl \ 7/
A A

N R
G Vi s

—

'—tcvr Vi€

Such columns which are identified with their constant thicknesses in geostrophic motion are called
Taylor columns, since Taylor was the first 10 discover them. The flow modelled by equations (1.15)
and (1.16) [equivalently (1.21} and (1.22}] is called geostrophic flow. 1t is a steady approximation

to the gaverning equations for inviscid, homogeneous, incompressible rotating Quids in the limit

Ro — 0.

Since we have shown that the statements in equivalent to the statement in (1.22), one of the two

equations is redundant, ie. it s dependent on the other equation and does not supply additional

information. Therefore, it is impossible 1o solve Lhe two equations simultaneously, illustrating the

fact that geostrophic flow is indeterminate or degeneratoe,

Since there are two unknowns 7wl P (121 and {1.22) it is only possible to infer one of

these fields from given values of the other fiold. For example i pressure is given we can infer the

(8]
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velocity distribution, or vice versa. This is what is usnally done in interpreting weather charts or

interpreting hydrographic fields in oceanchraphy.

On the other hand, it can immediately be seen that geostrophic flow is in fact degenerate or
indeterminate, ¢.c. while such a flow would exist, it is impossible to obtain a "solution™ to equations.
This is seen if pressure is eliminated from (1.21), by first rearranging such that

, 1
207, = —k % Vp
p

then taking divergence of both sides

1 . _
Vi = e (h .
i) zgz,;\— (k% V)

Utilizing [DOJ-1.27.c and 1.27.3], the above equation is equivalent to

1.

V-ﬁ,‘_:—_—fﬁ-(v,‘! XV/I]J)EU. {127)
205

.o, the same thing as equation (1.22).

Equation {1.21) can be put into the form

|
— % ¥
2!2{') * vh])

PR (1.28)
= A X Ny m

so that the velocity vector s perpendicular to the pressure gradient, and its sense is such that

Ty,

i

it takes high pressore to its right hand side. In fact, ¥ = (%;P] acts as the stream functlion

[0
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for the two dimensional flow; comparing (1.28) with [DOI-2.34]. Around low-pressure centers L,
the flow is cyelonic, i.c. it rotates in the anti-clockwise sense; and around high pressure centers
H it is anti-cyelonie (i.c., rotation in clockwise sense). We must finaliy note that, to remove the
geostrophic indeterminacy, we must include other effects in the dynamics, such as friction, unsteady
variations, etc. The inclusion of these effocts can be in the form of small corrections if Ro << 1,

but nevertheless they would render the equations determinate.

[10]
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CHAPTER 2

SHALLOW WATER THEORY

2.1. The Tangent Plane Approximation

Since we are dealing with motions on a spherical ecarth we need to use equations (1.1) and (1.2)
written in spherical coordinates.However, these are often complicated, and therefore their solutions
would be difficult. In order to overcome this difficulty we often employ the "tangent plane *
approximation. We envision the motions to take place on a plane that is tangent to the earth near
the region of interest. This is a feasible approximation if the horizontal domain of interest is only

a small portion of the earth’s surface area:
—

The selected plane is tangent to the earth at paints O, which has a latitude angle of é.

The Cartesian coordinates on this tangent plane are chosen such that x, y axes point in the east
and north directions,and the z-axis points in the vertical direction {perpendicular to the tangent
plane}. We can conveniently decompose tie velocity veetor @ = (i, v, w) and the angular velocity
vector §} = (§2,, 50, €2} as loltows:

i = iy, + wh (2.1.a)
Q= + 2.k (2.1.b)
where
wy o= {u, n) {2.1.¢)
Q= (2,,52,) (2.1.d)

Now the Coriolis terms in equation(1.2) can be written as

AV ST

Q(Q/l + Q._l'h.') x (i, + m.'i:]
= 2000 @, 4 263, % i@, + 260, % hw

[11]

(2.2)
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Next, we note that hecause of the selected orientation of axes,

= 0,5 = Qeos ¢)J0. = Qsin o

where € =| Q [, s0 that (2.2) hecomes

A x i = 200k X iy, 4 20,5 % iy + 29,7 x Fw

= (2Qsin¢Yk x @, + (2 cos ) (wr — ?.',/::)

We can now substitute this form

(2.4)

£

4
’
I
N !

into oquat'Lonr; (1.2). First we utilize the definition of the ”del”

operator decomposed into horizontal and vertical components:

where

v = vh+/l-_'i (2.5)

e

d i &)
T o AL
" (().J: (')y) fr‘).r + Jr')y '

to write the horizontal and vertical components ol {(1.2);

i,
o

and

s

- . iy, . i ) i,
g Ny, 4 'UTI' + (2wsin )l x @y, + (Qwcos )i = ——Vuptw (V,TLTL';‘ + 5 ,: ) (2.6.a)
iz P



[ £ Ozsoy - DO-IT - Rotating Fluid Dynamics |

dw ) I dp ’ 0w
-E;_; + i, - Vi + w% — (2weoslu = _;d_]: + v (V;lw + FE) (2.6.5)
The continuity equation (1.1) can also be written as
- Jw ‘
Vo il + - = 0 (2_7)

The equations {3.6.a.b) and (3.7} constitute the governing equations written in tangent plane

coordinates.

We can therefore make use of this fact in simplifying our equations. The so-called shallow-water
approximation (A <1} arises from the fact that the oceans and the atmosphere have essentially

a small thickness as compared to the earth’s radius.

We therefore consider a typical motion sketehed below: L
)

z2
) ,q ) ____&/.‘,z:al(k,‘jl{”)
; *‘ ...... - F—dc - B
— —— - . N I —W\TL_: — e 4\
x [ L\—.__, y
h i
. ¢ ,
A i
/
The lower surface = = —h(x,y) deseribes the bottom topography in the ocean or (i.e., the sea-

bottom topography in the ocean or the earth’s surface topography in the case of the atmosphere).
The upper surface = = pla,y £} deseribes the displacement of the sea-surface (or an equiva-
lent,imaginary "tropospheric upper surface™ in the atmosphere) as a result of the motion, The
magnitude of this displacement is charaeterized by the scale iy, which is typically small as com-

pared to the total depth fHy:
2.2. Shallow Water Approximations
2.2.1. GScaling of the equations (A cursory Examination)

A common feature of geophysical motions {i.c.. the oceanic and atmospheric flows) is that they are
too often characterized by horizontal length sealos that are muel larger than the vertical scales. For
example,the largest depth to be found in the worlds oceans is about 10 k. Similarly the thickness

ol the tropasphere {the lowest atmospheric layer in which most of the weather processes take piace)

[13]
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is also of the order of 10 Am. The horizontal scale of a typical domain of study extends from 100
km (meso-scale) to 1000 km {synoptic scale) or more. Therefore if Ly represents the horizontal

length scale and Hg represents the vertical length scale, the dimensionless ratio A (aspect ratio} is
typically:

H, .
A= L—Uzouo-‘)—c)(lo—-’)« L, (2.8)
0
[}
=20 e 2.9
"= < (2.9)

In order to non-dimensionalize equations (2.6.a,h) and (2.7) for a cursory examination, we choose
the following scales :

(2, y) ~ Lo
z~ Hy
t~Ty
iy = (u,0) ~ Uy (2.10.a — f)

ty .
W o~ Ug
Lo

P~ pyHa

The vertical velocity scale is selected as {ag/ Lo) 17y since the vertical motien should be proportional
to the displacement of the upper surface = = 5{a, 5, {), whose scale is ag To give it correct dimensions
we «livide by the time scate Lo/Uy. Tle pressure seale is selected as pgHg, since the symbol p
represents the maodified pressure.

l = :
p=p —pi-F— E;)LSZX;FF (2.11)

(ref. equation [DOI-3.55}), where p' stands for fluid pressure. Since 7= —gk, p = O(pgz).

If we use the scales (2.10.a.f) in equations {(2.6.a,b) and {2.7), the non-dimensional equations can
be written as

(rz

)i i .
Ro (ET% -+ 'rT,'! . \_f’ﬂ:n -+ Jr ())“h) + (2 sin rf))!'c > t‘Ih + }Lz\('z(_‘():-i (,4"))'1'11
{

= Vi (W ) (2.120)
o2
iw ~ s st P ) N a2,
LA Ro ((-‘]“_— + Wy NV ;.',u'(_—‘i — (2eonlu = — “.() + ,H,/\Ez ATV w4+ ——(? w (2.12.h)
ot oz K i =2

[ 1]
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(‘).
Vo G+ pel =0 (2.13)

wlere the variables are all non-dimensional and the following non-dimensional parameters are
defined:

b= a2 A= f e = Lo
= Hy' = Ly’ T= [ To
Uv{) 5 v q
Ro= 2 gr= Y o9 2.14.0
°= Ly amg ¥ 7 0 (2.14.0=f)

Now we can use these non-dimensional parameters to estimate the relative orders of magnitude
of the various terms. We know that g < | and A <« 1. The parameter er is the ratio of the
length scale Ly to particle excurtion length {757y and is usually O(1). We can also assume that the
Rossby number Ro = O(1) or smailer. The Ekman number E can also be estimated as E = O(1)

or smaller, by using typical values. On the other hand, the parameters can be estimated as follows:

g oMy Uy Ly

5= - = 37 :
Iy UE QLy M, (2.15)
l ]
= F—l . H() " X

Where F= Uy /\/gH; is the Froude number. The Froude number is typically O(1) or smaller. We
therefore find that since A < 1.

Ho l
S = — - S ] 216
= 210

With these typical estimates of the parameters, it can be seen that in equation (2.12.b) the domi-

nating term is the vertical gradient of pressure. Neglecting all other terns, we therefore have

@ =0, (2.17)
Jz

t.e. the modified pressure pis tndependent of the vertical coordinate, p = pla, y, t) oniy.

If the same scales are nsed for a cursory examination of equation (2.12.4), it is first seen that the
cocflicient of the pressure gradient Lerm

SA=0(1) (2.18)

by virtue of (2.16). All the other terms are also of O(1}, except the term arising due to the
horizontal companent of earth’s angular speed which is multiplied by uA < 1. Therefore this term

el e o alee neolee i 7y . :
is neglected. If we also neglect the W term (e L) and the Vid), term (A2 < 1), the equation
becotnes:

(i)
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l)._‘L H ; 02 qx
RUCT%%+JWYMM)+Cmmmeﬁh——Sﬂhp+ElGT (2.19)
4 2
the dimensional equivalent of which is
l)‘_'a. N T 1 ()3
%%~+m,vmm,+uganmkxah:f—vqu/OTl (2.20)
)t p 22

The obvious result of equation (2.19) is that since p = ple,y,t) only (cf. equation 2.17) then
iy, = y(x,y,t) only {if frictional terms are neglected}, The situation similar to that found in
geostrophic flow, and the flow is essentially fuo-dimensional.

Finally we can observe that, to the same approximation (2.13) hecomes

Vi, =0 (2.21)
which implies that
i)z

and therefore w is also independent of depth w = w(x, y, t).

We have shown that the modificd pressure is independent, of = (cf. equation 2.17). The actual fluid

pressure can be found from (2.11). First noting that we can write madificd gravity or gravitation
(cf. [DOI-3.52]) as

F=d-0xQx7 (2.23)

we can write (2.11) as

l I~ -
P = p" + p ((}' F 4+ Z(SZ X x) - (Q < r})

Yoo - 2.24
=p +p (g - EQ x (0 x ) - .r) ( )
=p +pq-F

Now the tangent plane is actually perpendicalar to the gravitation vector ¢'. In fact the difference

between the § and §' vectors is only minar, arising due to centrifugal forees, If the earth had

aniform density, it would take the form of an ellipsoid where the tangent plane would be exactly

perpendicular to the ¢ vector. In this case. substitiing

§'=—q'k ,
) . (2.25)
F=uwi4yi+ ok

[ 16 ]
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in (2.24) gives

p=9p —pg'z (2.26)

By virtue of (2.17) the modified pressure p = plr,y,t), and therefore p is constant with respect
to z. Equation {2.26) is said to express hydrostalic pressure, since the pressure at any horizontal
position (x,y) and at any instant t depends on z as if it was for a static fluid. Note that in this
approximation, @, = i, (x,y,t), p=p{e,y,t), w=wlx, y, 1), the fluid motion is essentially two-
dimensional and bears much similarity to the characteristics of geostrophic motion. Fluid columns
which are initially vertical remain vertical more like Taylor columns. Since ?{—z" = 0 the total height
of these columns would not change. A fluid column moving over topography (if it does) would
therefore adjust its surface elevation such that

I = i + 1 = constant

Since the upper surface is adjusted accordingly it is not necessarily implied that the fluid should

follow constant botton depth (£) contours as it would in geostrophic fow with a rigid upper surface.

It seems that the above approximations are in fact too rigid and will be somewhat relaxed in
later sections. However, in spite of the excessive rigidity of the present approximation, some of its
features have been observed in the ocean. In recent vears satellite altimetry methods have allowed
the measurement of the oeean surface elevation from space. It has been often found that the surface
of the ocean takes almost the same shape as the underlying topography especially in the mid-ocean
regions. [U s not necessarily trie that H = i+ 4 = constant, but nevertheless the topography is

often "impressed” on the sea surface.
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2.2.2. Continuity of Surface Forces (Dynamic Boundary Conditions)

We will consider an element of the upper surface at = = y(z, y, t) and investigate the continuity of
surface forces across this surface, In short, we should jusist that the surface stress X (force per unit

area of the upper surface) be continuous across the surface

i |z=?j* = i Jz:n* (227)

where ™ =9 — 4, g™ = 5+ 4, such that § - 0; i.e. the surface stress just above the surface should
be balanced by that just below. We had seen in DOI Section 2.4 that the body forces could be
neglected if the fluid volume considered as infinite small in size. Another way to write (2.27) is to
state it as the jump condition

] 3=n
[2] -0 (2.28)
e

i.e., there will be no jump in the value of T across the surface,

In DOI Section 2.4 the surface stress vector & was expressed as the dot product of the stress tensor
with the normal vector

Sin)=a,n; =a-n (2.29[DOT — 2.4]
(cf. equation [DOI-1.15]). Here we take any arbitrary element of the surface oriented perpendicular
to the normal vector fand Z;(#) represents the i-th component of the stress on this surface element

X,),’

Tk

S0 == 3,5,)

2
J

X2

In a moving fluid the stress tensor & was then expressed as (DOT-Section 2.4.2)

A= —pdij +dy; (2.30)[DOT - 2.17]

[18]
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where d=d;; was the deviatoric stress Lensor expressed later in DOT Section 3.3 as

Ty1 T2 T3
a3 (2.31)[DOT — 3.22)

¥
!
T3t Taz T3y

whose off-diagonal elements are shear stresses arising only due to the motion of the fluid. Now

using (2.29) and (2.30) the components of the stress on the upper surface are then

L= {-pbi; +dijin; (2.32)

f

—pny +dign;

or in vector form

v = —pi+d -0 (2.33)

This vector has components in the x,y, z directions referred to 1,2, 3 in index notation. The z and

y-components of (2.33) are

Yo=—ph-i{d-d)-i= —pny + {dn)e (2.34.a)

Yy=pnaj+(don) - j= —pna + (dayng e (2.34.0}

Instead of writing the z-component of the vector ¥, we choose to write its component perpendicular
to the surface in direction n, since the vector 7 is a linear combination of the (%, 3, k) vectors. The

n-component is

Y= =pi-n4(don}-n= —pdingm, (2.34.¢)

In these equations the components of the normal veetor is

ny = (n-1i)
ny = (1)
ny = (0 - L) {2.35a - c)

Using (2.35a-c) and (2.31), {2.34a-¢) can he written as

Se=mopli )y Fal (i) T (0 Ji (k)

Sp=pli )+ (0 + Ty (0 JY A+ Ty (T k)

19
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E"_

ﬁ»quﬂﬁfdv+(ﬁJfa%+(M@fa;+2M»ﬂmnﬂnw+2mvﬂm-&aﬁ+ﬂﬁjﬂﬁ%ﬁw

(2.36a — ¢)

where use has been made of the symmetry property of the deviatoric stress tensor, di; = dj;.

Defining the surface = = y(r, y. t) by the equation

b =z—nlz,yt)=10

and its gracdient by

In order to shorten the expressions, lot

o 2 a8 2
s=yi (L) L (2
i ay

Now, the components of the unit normal vertor # are

- . l ()F} L 1 ()1] o
iy =eo (af)= o= ik
() Sde (-l Say’ - &)

Whiclh, upon substituting into (2.36a-c) yield

. L ik 1 iy I ély
Vo= =L - | —— - —_— .
- (H i):r:) P (.5' ('):J:) T (.S‘ iy Toy T

(2.38.a)

(2.39)

(2.40)

(241a —¢)

(2.41a)

(2.41h)

(2.-1 1(:)
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We can now use the scales introduced in Section {2.2.1), namely that (&, y) ~ Ly and 5 ~ ag. Then,
we find that

I _ (“_"> :0(”” ”0) =0 < 1

o Ly FU ' E)-

5 5 A9n
[.—“Il — O\ < 1 (2.42a — ¢)
dy

S =14Vl = VI+20032) ~ 1= 0(})

Since the O(uA) terins are very small, neglecting these and setting S=1 in equations {2.41a-c) to

the same order used in shallow water approximations yields:

!
¢

Sy T Ty
Y= —ptoal. (2.43a — ¢)

In the last equation (2.43.c} o’ stands for the vertical normal stress component (4.¢., stress pointing
- " -

in direction z on the (x,y) plane) arising only due to the motion of the fluid. In fact

—pta=a.. (2.44)

15 the total normal stress. This term is usually small as compared to the fluid pressure (o), < p)
at the surface and can be neglected altogether:

SH _z ",“ (2.45)

After these simplifications, the continuity of surface forees across the surface in (2.28) requires

[Tr/}i:jj =1 (24()(1, - C}
—,.+t

i.c. the horizontal components of the vertical shear and the fluid pressure must be continuous
across the surface. At the surface of the ocean the shear stress oceur due Lo the stresses applied by

wind. Assuming that the wind only applies horizontal forces (a horizontal vector 719)) defined as

7 = P R L L

=yt ) ] (2.47)

and writing the fluid shear in terms of the velocity gradient a boundary condition is found:

[21]
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PELIN T (2.48)

The pressure at the sea surface is the atmospheric pressure P = p |+ so that (2.46.c) implies
another surface boundary condition:

Plemy-=pt¥ (2.49)

At the sea bottom similar conditions may be applied, the mean bottom surface is assumed to be
horizontal (constant depth) with slowly varying small undulations superimposed:

Z A

h(x,y)

fe.. again assuming aa/Lo = pA < 1, so that the shear stresses must be continuous. Defining
similarly a bottom stress vector:

we can write

gy, .
P = A (251)
gz

It is shown in the above derivations that horizontal components of vertical shear and the pressure

is transmitted into the fluid purely when the shallow water approximation g < 1 lolds, i.e. when
the surface across wlhich these forces are transmitted is almost flat.

2.2.3. Hydrostatic Pressure

We can now combine {2.26} and {2.49) since {7 is coustant by virtne of (2.17). At the surface

Plomg-=p" = pg'n~ = p! (2.52)

[22]
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so that

Pl yt) = 7’:?,;,,” +pg'nT {x y,t) (2.53)

Substituting into (2.26) yields

p=p @y 0+ palnla,y,t) - 2) (2.54)

where prime and minus signs have heen dropped and will not be used hereafter.

The above expression (2.54) simply states hydrostatic pressure, i.c. that the pressure at any depth
—z is the weight per unit area of the overlying fluid plus the atmospheric pressure. This is true for
any horizontal position {x,y) and instant f.

Furthermore, by using (2.53), the horizontal pressure gradients appearing in equation (2.6.a) appear
as

| I
—=Vip = —=Viph + gV (2.55)
P p

i.e. horizontal pressure gradients are partly cansed by gradients in the atmospleric pressure or
may be manifested as the gradients of the undulations in the upper surface. The latter of these,
.. the surface elevation gradients impose a horizontal pressure gradient in the fluid through the
action of gravity.

2.2.4, Kinematic Boundary Conditions

In addition to the dynamic boundary conditions reviewed in Section 2.2.2, we can derive kinematic

boaudary conditions utilizing the lact that the upper and lower surfaces of the fluid are material
surfaces, i.¢.

[)(f)1 [7)0’)-)
g, 2 2.564, b
R TR (2.56a, )

where

thy = T + ];p{_r" ;7;') = (257(1, b)

describe these surfaces. Substituting (2.57) into (2.26) gives

dy .
T Nt e =0 on = =ylr,yt) (2.58.a)
(
iy Vb =0 on 2= —hiry) (2.58.0)

[ 23]
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or equivalently

7
W0 | omy= :_)? F il Lemy Vi (2.59.q)

W le=—n= _T‘Eh ]::—h 'vhh (2596)

2.2.5. Shallow Water Equations

In Section 2.2.1 we used estimated scales for a cursory examination of the governing equations.
Then, making the approximations ¢ = 0, A = 0 and 5 = Ro/(F*A) = o0, §X = O(1} resulted
in purely two-dimensional equations, with all fow variables becoming independent of the vertical
coordinate. However we saw that this was not very realistic, and it was concluded that the assunp-
tions used were rather restrictive. We now relax these assumptions a little, especially with regard

to vertical velocity. The vertical velocity scale chosen was

g = pAlly
as compared to the horizontal velocity scale of

i~
so that

Hr

= O(pA) {2.60)

1 ’Th |
where it was assied that jo<€ |, A< 1.
Sinee we did not have any prior knowledge of the vertical veloeity scale we choose the ahove scales

arbitrarily. However if we re-consider equation(2.1:3)

duw

vh . 'f_""h + i =0

iz
we see that if the horizontal divergence is to be balanced by the vertical gradient term, we should
have po= O(1) or that « ~ (A7) = ()(%)l!f(,). i.c. vertical velocity should be smaller than the
horizontal velocity by only the ratio Hy /Lo of depth to horizontal scale of motion. This essentially
means that perhaps we should have scaled vertical velocity as w ~ (Ho/Lo)Uy at the beginning.
In actaality, vertical velocity is at most balaneed by the horizontal divergence is to be balanced by

the horizontal divergence as indicated above, or somewhat smaller, so it
o< O, (2.61)

[21]
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in other words, in the previous scaling we assumed both of the two small parameters g, A — 0
without stating which one of these two parameters is actually smaller. Here we assume A € u
by virtue of (2.61). With approximation (2.61) and the other previous approximations in Section
2.2.1, the non dimensional equations {2.12 ab) and (2.13) can be simplified accurate to O(A) as
follows:

diiy, iy, T . 2 D%l
Ro ETT + iy Vi oo —— 0 + (2sing)k X iy = —SAVp+ E ) (2.62.a)
E z?
dp
0= —s— 2.62.0
L (2.62.)
dw 5 -
Vi iy + noT = 0 {2.63)
The dimensionless equivalents of the above are .
31i), Hili, - 3T, ,
S T Va0 Sk = kvhw v (2.63.a)
ot dz i)z?
dp .
— =10 (2.63.b)
iz
i)
V- T+ —)‘—” =0 (2.64)
where the Cloriolis paramcter f has been defined as
f =20sino. (2.65)
Note that equations (2.63a,)and (2.64) can alternatively he written as
Dy, il 9y
I_;Lfl fA % 1, = (di + iV, + fk X U, = ——\—w+ 7 ():' (2.66.¢)
iy e
—L =0 (2.66.5)
i)
Voa=0 (2.67)

Equation (2.66.h) indicates that the former approximation (that modified pressuve is independent
of z) in Section 2.2.1 and 2.2.3 are still valid, That is the flnid pressure is hydrostatic, even with
the new form of approximations. Earlier arguments have shown that the horizontal velocity iy, is

also expected to he approvimately uniforn in the vertical:

Wy, iy, (e, ) {2.68)
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More exactly, we can decompose horizontal velocity into two components: one having no dependence
on z, and the other with a dependence on z:

T,y 2, t) = iy (e, g, 0) 4 i (e, 2, 8) (2.69)
where w0, is the vertically averaged horizontal velocity

H

- 1
thy, = e, y, 2, 0dz, 2.70)
/ h+7.?/::_h wle,y )z, (

and i s the deviation from this average velocily,

Using these approximations we can now integrate the governing equations (2.66) and (2.67) verti-
cally to derive equations for the vertically averaged component «,,. First, we integrate the continuity
equation (2.67) or {2.64), to yield

TERR)!
/ Vi cdpds 0 o0y —w oz o= 0. (2.71)

ffay)
since the limits of integration are functions of (, 5}, the Leibnitz’ rule (DOI-1.44.a} is used to write

N
Vi - / Updz — iy, ooy Vo — iy Jomn Vo 4w [y, —w o= 0.

—h

We can now insert the kinematic houndary conditions (2.59 a,h) and the definition (2.70) in the
above, to yield

- )
Ny )y, + LU =0.
(

Defining the total depth

H=h+n (2.72)

Liis result becomes

gl - 5
— + Vy  (ITu,) =0. (2.73)
i

Similarly, the momentumn equation is integrate. However, first. we make some manipulations in
equation (2.66.a),

The identity [DOI-1.28] will he of some use:

Vo(dob)=a(V -0 +b (Vo (D01 - 1254
- - § — .45
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[Proof:
V-(('[ol_') = F‘—(—)—(L b
e
f)J, e, du da;
dx; r)r,
WV )+ (Vo) 1)
b, da;é;
du, +9; di

=a(V-0)+ (b- V)a.

= iy

= ;0 ——

Applying this identity to the second term on the left hand side of (2.66.a) gives

(i - V)iiy = V- (il 0 1) — 0, (V - @)

(2.74)
=V. (‘I_L'h o ?T)

where the second term on the r.hi.s. vanishes by virtue of (2.67}. The divergence of the dyadic
product @, o i in equation (2.74) is simply

0
dr;

K

i J d
- 1 —tw
dr (Ju " dz "

V. (udy o) = ¢, Up

, (2.75)
L g, o -
+ | ot —vt+ —vw )+ & (0)
i hy dz
- - é
=Wy - (il otly) + —— (T w).
Jz
Substituting (2.74) and {2.75) into equation (2.66.a) the momentum equation becomes
cHiy, . L ! i,
f—%% + Vldpotd)+ fhxiy =—-Vp!" = ¢Viun+ v d“,f . (2.76)
f

which will next be integrated verticallv. Nete that the variables pts) = 7)(5){:1:,3/,?3), n = n{x,y,t)

are constants with respect to vertical integration. Integrating Irom z = —/i to z = 7. we Lave

i ()1—‘ 7 . il H ) o ‘ﬂl Z=m
/ UL: dz +/ V(i o @ydz 4+ fhox / fpds = =%, )~ gHV g+ v [().u; ]
- ! —-h

—-h o iz

Using the definition (2.70) and substituting dyunamic houndary conditions (2.48) and (2.51) derived
in Section {2.2.2) we have

iy, " L !
Thhas 4 / V(i o @)ds+ [HEx Ty = 20,0 gl vyt (#SJ - r‘“ﬂ) (2T
at ] Iz P

i
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where, the definition v = /p has also been used. The integration of the first term on the left hand
side is carried out, using the Leibnitz’ rule [DOI-1.44.a]:

e gz, 9 o)
— = o (_'!" d:': — Uy 2= i
[fz(l‘.?:) ol N ./_u " L= ot

(2.78)
a - ay
T L
o i = ey —

The second term on the left hand side of {2.77) can similarly be integrated, this time making use
of (2.75):

G n g
/ Vo (dy oy )dz = / V- (4 0d,)dz + — (Hpw)dz

-k h —n Oz
N .
- - - - 2.79
=V / (i), o “h)dz - (“h o uh) ]z:r; Vin ( )
—h
- (ﬁ‘h o ﬁ“fl) |:=—f: 'vhh + T—L.Iz w |:=n 7&:h'w |."::—h .

Here, we can make use of the identity

(G0 @) b= (nu;)b; = aila,b;) = a(a-b) (2.80)

to write {2.79) as

o .
/ V(i otf)dz =V, - / (i o tp)dz
—f Joefy

~ ~ - - 2.31
- (‘ij( |.'::'|J)[”'l'), ’:;::,n 'V.’J"I) - (‘”’l’ﬁ. |::=~1’|)(“4h |:=—i'1. 'vhh) ( )
+ ’?«‘h ! ‘::?; ""rTﬂ‘) e |::—h .
Substituting (2.78) and (2.81), equation (2.77) takes the following form:
i iy, oL P
— + V- (ily, o iy )dz + fHE X ),
M I
iy - L . . g o
- 4”"”?)? - [“h(”'h - vh”)];:,; - [”h(”i: ' vh""”::—h + [“h“"],—;—?; - [T"'n'LTU]g:_,'l (282)
4=y

H [
= -l GH Yy — (7 - Fsh
I p

Note that a number of eancellations ocenr becanse of the kinematic boundary conditions {2.59.a)

and (2.59.b). The second term left Tand side can he [irther siimplified by utilizing (2.69} to write

[ 28]
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-1 n
/ (tin 0ty )dz = / (itn + iy Jolit, + i) )dz
J=h .

—h
" ¥
= / (ity o 1ig)dz + / (dy, oMy, )dz (2.83)
—h J—h
7 . n
+ / (1), o iy )dz + f (), o 10y, )dx=.
h —h

On the other hand, by virtue of (2.69) and (2.70)

N 7y )
] i dz = / Wz — iy, / iz
-1 . .

-4 —h

(2.84)
= ]’!t‘:.'j,ll - 1‘1"-;,11 = 0,
so that the second and third terms of (2.83) vanish, feaving
bl . _ n
/ (i), 0 up)dz = Huy, odly, + / (0], o i) }dz. (2.85)
- J—=h
Now, substituting (2.85) into (2.82) and defining a second order tensor
L AT (2.36)
[[ J_ fr h - N
the momentum equations become:
OV H @ o o P
e e, (Hino )+ fHE % i,
a y | (2.87)
= —gH Uy = "V = (7 AN) L e
P 4
The first two terms can be expanded by making use of [DOT-1.28a] as
()[I‘:":Iz : = -
TR + Vi (g 0 Hoiiy,)
it - OH ~ - -
- H%;’—i + ‘_"”("-)T b (S I+ (H7 V) i (2.88)
( ¢

iy, - - - [ -
= I{{ﬂ+fl-l4,'vfl.'1!4} +";"-h {(U+vh ' ”h}
it H

the second term of which vanishes by virtne of (.73}, Therefore, using (2.88) in (2.87), the
montentum equation becomes (dropping overbars and the subseript liereafter):
di o Ly, ! S L

AN fhxi = gV - =T (Tﬂ - ") + —V-HF, (2.89)
Jt P o f ‘

[29]
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supplemented by (2.74). written in the same manner as

%wwm:o (2.90)

Equations (2.89) and (2.90) are called the shallow water equations,

{n the momentum equation, the left hand side and the first term on the right hand side are familiar
terms. The second term (left hand side) represents the pressure gradient arising due to variations
of atmospheric pressure, and vanishes if it is uniformly distributed. The third term is the difference
in surface and bottom shear stresses distributed per nnit mass of the fiuid coluinn (divided by pH).
The hottom stresses can often be neglected and the remaining term represents forcing by wind
stress on the sea surface. The last term is a weighed divergence of a tensor F with a form similar
to that appearing in [DOI-3.8.4]. Therefore the tensor F defined in (2.86) is called Reynold’s stress
tensor. Since this term arises because of the vertical averaging of the ) o @) tensor, and since it
is expected that || < |ﬁh|, often it can he neglected.

2.2.6. Conservation Properties
2.2.6.1. Mass Conservation

Since H(x,y,t) = h{z,y) + n{r. y, 1), we can write contininity equation {2.90) as

o
4 V-Hi=0 291
gr TV (2:97)
or by regrouping the terms as
DH  dH
—— =+ - VH = -HV i
o T + i (2.92)

Here, the horizontal divergence of the horizontal velocity represents the relative rate of change of

the horizontal cross-sectional arca of a material element

_ 1 dA .
V.= T (2.93)

(30 ]
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so that {2.92) becomes

L DH 1dA D {
vl P £

)
i - A = Zoln(H A) =
i1 Di A i (”J'nﬂl r“ln(Hz«) 0 (2.94)

Equation (2.94) expresses the fact that the total volume HA of any fluid column is conserved. For
an increase to occur in total depth, there must be a corvesponding reduction in cross-sectional area
and vice versa.

We can also integrate the continuity equation (2.67) vertically to obtain vertical velocity,assuming
that the horizontal velocity @ is approximately independent of z:

-
wla,y. 2 t) = / ((,)'i’d: ~ (V@) 4 el ) (2.95)

where ¢ is a constant of integration with respect to z. In the above equation V - 4 stands for

Vi @y = Yy, - iy, but since subscripts have been dropped earlier, we choose this notation.

Equation (2.95} indicates that vertical velocity is approximately a linear function of z. In fact this
is the only possibility to be able to satisfy kinematic boundary conditions (2.59 a,b). Making use
of (2.59 b) the integration constant ¢ is evaluated and

w= —{z+ MV .0— i Vh, (2.96)

Substituting (2.92) and nothing that i = h{r, ), we can write

D=z 40 DH D
0 = = —_— = — 2.
ST " Dt i (2.97)

or

D /=4 h
e ={. 2.98
D ( H ) (2.9 )

This result (equation 2.98) shows that the vertical posttion of any material point measured relative
to z = —h and normalized by the total depth, i.e. (= + W)/ is conserved following the motion.

2

-2 Y (4,4 00

2=

. . (%rh)/H = 1
/\’éf—hfhj) T~

N_ h —(2 ‘*’/’J/H:Cuwg}

(QH“)/H

i
C

Consider the flow contained by vertical fixed side walls on a boundary ¢ enelosing a region A.

iy
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At the side-walls there will be no normal fluxes,

ien =9, (2.99)
Integration of {2.90) across the area 4 vields
iy " L. .
—dA =~ | V - HidA= - ¢ Hi idl (2.100)
A Ot A s

through the use of the divergence theorem [DOI-1.29]. For an open ocean, or a semi-enclosed basin,
this yields

g7
ﬁ] ndA =~ ?g H - ndl, (2.101.a)
at Jo

relating the mean sea-level to the volume flux through the open boundaries {i.e. a statement of
mass conservation).

On the other hand, for a totally enclosed hasin, (2.99) requires the right hand side of (2.100) to
vanish, so that

.
ol yaa=o. (2.101.0)
it

This equation states that the surface displacements integrated over the enclosed area should be
constant at all times.

2.2.6.2. Vorticity Conservation

Neglecting the last three terms of (2.89) and making use of the vector identity (DO 1-1.27.¢], namely

l
TV = V=i x Vi (2.102)

the simplified shallow water omentum equation can be re-written as

i l . - - .
5= -Vi{gny + S @)+ x (V xii+ fk) (2.103)
: :
Here the ™del™ operator is one that is horizontal ¥V = ¥, hecause the fields are only two-
dimensional; and @ = 4, is the horizontal velocity, with subseripts dropped earlier. The term

V ox i =V x ik, s the vertical component of the vorticity vector defined by

o G = (Y, i) =C (2.104)

so that substituting (2.104) into (2.103) and taking curl yields

Ok B
=7 = Vo (T X kG ) (2.105)

[32]
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The second term of (2.103) vanishes upon taking the curl. Expanding the right hand side of (2.105)
yields

k?)% = —7-VE{CH+ f) - ,I}(C-g- Ny - {2.106)
al
WD Vi p+ V-7 (2.107)

Substituting from {2.92) then gtves

DC+f) {{+ N DH ~ 0
Dt I Dt

(2.108)

or

DfCc+]
Df ( i ) . (2.109)

Equation (2.109) states that the potendial vorticily defined as %‘[ is conserved following any fluid

column. ¢ is often referred to as relafive vorticity | and f as planctary vorticity which together
make up the absolute vorticity ¢+ f. A fluid colemn wili preserve its initial relative vorticity only
if f and H are constant,

Integration of (2.103) along the boundary pives

,(—) e dif= - f N+ —l—fT Wy - dr+ % [ < (¢ + f)."\] -dr
at S Jeo 2 g

= fjéi'(q-ff)!;-ﬁxdﬁ (2.110)

- f (¢ ) -l
o

yielding a relation between the circulation ' = .7 for a closed path (7, and the flux of vorticity
through the houndaries.

Similarly, if equation (2.106) is integrated over the area 4 enclosed by the closed curve € and if
the divergence theorem [DOL-1.29] 15 wsed, we obtain

:T),/C’H = / Vo fidd = - 96 (C+ fru-ndA. (2.111)
S A J A e

Note that the Lh.s. of either equation (2.110) or (2.111) are equal by Stokes’ theorem [DOI-3.71
and 3.72], written in the present context. The average vorticity in 4 is equal to the circulation of

¢, and changes only by fluxes of vorticity across the bounelary (.

33 ]
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Consider now, a region enclosed by side-walls on boundary ', where @ -7 = 0 (or % is parallel to
dr); in this case, the r.fus, of (2.110) or (2.111) vanish:

i/ ¢
—dhoiodr= = 14 = 0. 2.112
T f TREE 9 [4 {dAd =10 ( )

Since there is no normal velocity across the solid boundary (* the circulation around any rigid

boundary, or equivalently, the area-averaged refative vorticity in an enclosed region A is conserved.

2.2.6.3. Energy conservation

To derive the energy conservation euation, again we consider a region 4 enclosed by a boundary
€. We first multiply (2.103) by H to obtain

S I .
Hi- % +H@ N ST Hi (G [ % T = —gH i - Yy (2.113)

where, the last term on the Lh.s vanishes becanse « -k x 7 = (0. We note, by making use of (2.92),
that

RV | l o ol 1
0 — = i ~T i = L g id iq.aY - Hi 2.114
Hi o 6).62[{” W= il mzHu TS S il (2.114)

so that (2.113) becomes (using 2.92 once again)

o1 |
57{51-117- 0+ ¥ {570 Hi) = —gHi- T
= gV .ylli+ gyV-Hi (2.115)
OH
= —agV - nHiua -
q naen = g ET!
Reorganizing (2.115),
U(IH“ T4 sgnt) = V(S @i H i (2.116)
g zHT 0+ Ega}-)_f -{(gu-u) i+ gy H 116

and, integrating over the domain A, using the divergence theorem [NO1-1.29] yields

a

1 N ! .
o A(;Hﬁ.’- 0+ %g?;')d,-fl = % (ErT w4 gnyHa - ndl, (2.117)

S

The individual tertns on the Lhs are defined as

|
NI :;Hﬁ- i,

2 - (2.118.0, b)
P —/ gz = —qgu-,

Jo 2

(3]
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representing the kinetic and potential energy per unit mass of the fluid column, so that (2.117)
states the conservation of total mechanic energy. For open or semi-enclosed domains, the total
energy in the region A changes by fluxes of kinetic and poteitial energy (the first and second terms
on the r.h.s respectively), across the houndary (.

For an enclosed domain, with -4 = 0 on the solid houndary €7, we have

% A([\'E-i- PE)YdA = 0. (2.119)

2.3. The f-plane and the ,jJ-plane Approximations

We already have assumed in Section 2.1 that the spherica geometry of earth can be reasonably
approximated by a tangent-planc fitted to the region of interest. It should be noted however that
the coriolis parameter

f= flh) = 20=zin ¢

is a function of the latitude angle ¢. With respect to a fixed point on the earth (at latitude angle
$o, where the tangent plane contacts the earth) the Coriolis parameter is expressed as

= 2Qsin(dy + D) = 20 (sin g cos Adp + com g sin Ag) (2.120)
If the angle A¢ (which measures deviations from ¢g) is small, we can approximate

AG? (Ag
(2(!) i f,)‘ e (2.121.a)

cosAg = 1-—

sin Agh = A — (

A 3 b
_;’) + (A;‘) . (2.121.h)

and, neglecting terms of O(A¢) and smaller. (2.120) approzimates to

f = fo =20sinay = constant. (2.122)
This approximation for f is referred to as the f-plane app rovimation. Since [ = fo is taken as

constant, the effects of the latitudinal change in the coriolis parameter are not incorporated in the
dynamics,

As the next level of approximation we can neglect terms of Q{A@*) and smaller, which yietds

F =29 (s og + A cos hy) (2.123)

and since angle Ad is small, it can be interchanged with

[35]
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Ap=2 (2.124)

'y

where 3 is the horizantal coordinate ou the tangent plane pointing towards the north and rg is the
earth’s radius, Then equation (2.123) becomes
I =Jfo+ oy (2.125)

where

= 282 cos = Jocot (2.126)

'y i

and fp is given by (2.122). The variation of the Coriolis parameter f with latitude has been
approximated by a linear function in (2,126}, in order o incorparate this variation in the equations.
This s called the F-plane approximation.

2.4. Simple Applications of the Potential Vorticity Conservation

Among the conservation laws derived in Section 2.2, the conservation of potential vorticity (equation
2.109) is one of the mast important and nseful results in understanding the fundamental behavior
of geophysical flows, We will consider sevoral simple applications to emphasize the use of potential
vorticity conservation. [First we write (2.100) as

i (C + Jo+ s”'?l) — 0

2.127
Dt 1 (2.127)

by making use of (2.125). i.e. including variations of the Coriolis parameter at the J-plane approx-
mmation level,
2.4.1. Geostrophic Flow

The geostrophic approximation (ef. Section 1.2.3) for shallow water equations (2,89} and (2.90) ex-
g Pl ]

cluding the forcing terms of the momentium equation and unsteady terms of the continuity equation

are:

Fhox it = -V (2.128.a)
VoHid=0 (2.128.0)

The conservation of vorticity can he re-derived for these equations, first by taking care of (2.128.a)

Vox flx T=—gVx Ty (2.129)

then expanding the left hand side as

PNk v i=0 (2.130)

[ 36 ]
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then utilizing (2.12%.h)

V-Hi=HV -i+i-VH =0 (2.131)

(2.130) can be written as

i Vf - {}ﬁ-vn ) (2.132)

or first dividing by H and collecting terms,

iV ({7) =0 (2.133)

Now, since the motion is steady. This is equivalent to writing

Dff Db+ 5y .
— | =] = —1° - = 2.134
Dt (H) it ( H ) v ( )

Note that the relative vorticity ¢ does not enter the conservation law (2.134). Since the inertial
terms have been neglected in (2.128.a). This does not actually imply that the vorticity is zero,
since through (2.128.a)

C=k Vxa=k vVx (ii-x\77,):vr,-v:(}’;+%v.vy,_%vn-vug?v%, (2.135)

and in the case that f = f, =constant, this reduces to

-

(= =V-y {2.136)

which is consistent with the definition of pressure (gn/fo) as stream function in geastrophic flow
{as shown in Section 1.2.3). In fact {2.128.a) or

= %is X Uy (2.137)
implies that
TV = %(f.- x V) - (Vi) = 0 (2.13%)

or the horizontal velocity is everywhere parallel to the isofines of the surface elevation 7, 1V = 0.
-~

w - Lv'""}
’ /A‘” ) S

v&'l [ 37]
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On the other hand, (2.134} implies that on an f-plane (3 =10, [ = fy) any material element must
move along isolines of /1 {total depth), since T%(_fg/[’[) = foti -V(I/H)=0

o)
e

~ H = Con Shand j_ J[_o 3
e = u-¥Y

Approximately speaking, /{ = h4+y~ h (y < fi), so that the above is equivalent to the requirement
that fluid columns more along bottom contours. The combination of the above two requirements
than imply that the isolines the surface displacement # and depth & are parallel to each other. In

fact, this can be shown exactly, by multiplying (2.138) by the factor fy/H? and subtracting from
(2.133):

fo
1?

w-N(H - ) = %0—_):7 Vh =, (2.139)

which requires that velocity is paratlel to bhathvmetric contours.

2.4.2. Flow over a topographic ridge (f-plane)

As asecond application consider the steady {but obviously not genstrophic) flow over a, ridge shaped
topographic barrier:

[ !
< —
N
f
€ - rF "

—( o (TR Y
Consider the flow to be independent of the v-coordinate (along the ri(lgc‘)‘ and let the incoming

velocity be also independent of Yy but assume it comes at an angle to the ridge with components

(rg, vg) such that the initial vorticity Co = 4

[ 48]
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Let the velocity components be {(uy, v} and the total depth be H, after the ridge. Let the total
depth on any point on the ridge be I, the velocity components be (u,v) and vorticity be ¢. Then
potential vorticity conservation requires (for an f-plane)

fo+CQle) o . 5 -
SRR constant (2.140)

Since velocity components should be independent of y everywhere

Cla) = du{r) (2.141)
o
so that from(2.140)
dv H
- — 1 2.142
C i fe(”l) ) ( )
which is integrated to yield
H - H
= + fn/ Ry (2.143)
— ii(]
The z-component of velovity is determined by the continuity equation (2.90), which is
J (wH)=10 (2.144)
—-— |1 = .
o
implying that
wH = gy (2.145)

Then, on the downstream side of the topographic barrier and sufliciently far from it (2.143) and
(2.145) give

f(]
o= g A 2.146.
= i, ( @)
H
"y = HUF(: = 1y (2.146.b)
where
A= / {hg — N dx. (2.146.¢)

(Ho = Hy by continuity). Note that if the surface displacement ¢ is neglected, (2.146.¢) is

[39]
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A~ / (ho — H)dz (2.147)

-
which is approximately the cross-sectional area of the ridge.

The angle of incidence 8, and the angle of transiission #y, are given by

ty

tanfy = —, (2.148.a)
g
vy — 2
tanfy = ——1th (2.148.b)
]

s0 that the angle through which the velocity veetor turns upon passing the ridge (a = g — #;) can
be calculated from trigonometry:

tan fy — tan & _ wo{ fA/hg)
L+ tanbytand, — wi +of — va(fA[Hp)

tan o = tan(fy — #;) = (2.149)

Therefore, the flow will be deflected in a clock wise sense upon passing the ridge. Inmediately over
the ridge (2.142) can be approximated as

It
— 1

= fol = 1) (2.150)

ho

and since h <y, it is seen that a negative vorticity {¢ < 0) is imparted on the fluid by the ridge:

B
- = (
e ?(o
/‘ i \
| .

— i v’x__&_____

Since negative {anticvelonic) vorticity s often assaciated with high pressure centers {(as in the case
of atmospheric highs), we EXpech A pressure excess (4o, raised surface elevation) a top the ridge.

Excess pressures are often obsorved op top of miaintains in the atmosphere.
2.4.3. Flow over a depth discontinuity {-plane)

We consider a flow approaching a depth discontinuity in the zonal direction as shown:

(40 ]
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We consider the flow in a F—plane, and assume that the y—direction is aligned towards the north
(northern hemisphere). We assume that the surface displacement 7 is small compared to the total
depth (5 < Ho}, cansistent with a rigid lid approzimation. Therefore, the depths Hy, H; on two
sides are approximated by hg, hy respectively. In the g—plane potential vorticity conservation
recuires that

fo+8y+C _ fo+ B
I B Iy

(2.151)

where it has been assumed that the approaching flow has no vorticity (( = 0 for z < 0}, and yq
represents the y-position of any approacking fluid particle. The velocity (for x > 0) is no longer
uniform in the y-direction by virtue of {2,151}, and since the depth is constant in 2 > 0, the velocity
components satisfy

Ju )
Vo=t oy (2.152)
dae iy
At the depth discontinuity, we must have
) = 'lj,oh,u/h] (2.153)

required by continuity, because the flow is indepencdent of y in the region = < 0. By virtue of

(2.152) we can define a stream funetion ¢ such that

7=k % Vi (2.154)

which readily satisfies the continnity equation. On the other hand, vorticity can be expressed as

(=k -V xi=k VxhkxVe=vip (2.155)
Substituting in {2.151) vields

. . /
NTO 4y 4 fo = ]i—](fn + o). (2.156)
0n

The stream function innnediately near o = 0, approaching from + > 0 i siven by

i
= ———at =10 (2.157.a)
iy
s0 that
B ety = =it 3 {2.157.0)

[ ]
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since y = yo at z = 0. Now, substituting (2.157) into (2.156) we have

L ho —
Vi 4 pt = —fy — ( ’“0’ RSYA (2.158)
, to
where

pt = 8h, Jurhg

(2.159)
The solution of the linear equation (2.158) can be written as
hg—1h
¥ =~ P - Sl + ) (2.160)

where the second term represents a particular solution. Substituting the above form into (2.158),
we observe that F'(z) should satisfy

PPF .
‘ -+ piF =10 (2.161.a)
da?
The boundary conditions are obtained by requiring (2.157.a) at x=0
i) 3 :
U= (w|l_ :—F(U)*L-llh (2.161.9)
iy p*
and requiring that the y-component of velocity should vanish at x=0
o] ()"'| o= (eI (2.161.¢)
=0 — O r=0 13 o ra=( . . .
Noting that 3/p? = ug, and u, = ho/hi)ug, and denoting Ah = hg — hy, the above equations are
simply
&EF 3
++ —F =0
da? ttp
Al 21620 - ¢
F(0) = —r*uo (2.162.a — ¢)
!?.1
Froy=0

Integration of {2.162.a} with boundary conditions (2.162.a,1) vields

Al A ,
Fle) = ﬁ—lun cos u, (2.163.q)
I g

and, by substitution into (2.160), the full solution is obtained as follows

[92]



[ E. Ozsoy - DO-II - Rotating Fluid Dynamics |

1 x Al
L Ly R LA YLy (2.163.5)
g hy g 3 h

I

The solution is sketched above. For real valued p, (i.c., if ug > 0 in the northern hemisphere)
the solution is osciilatory in 2 > 0, with a wave length of 2w fp = 2m\jug/B. These waves,
resulting from restoring forces in a J—plane, are called Rossby weves. Note thet the amplitude
of the oscillatory part of {2.163) increases with latitude 3. Note also that if we were to calculate
an average position of a streamline for y > 0, by averaging the solution over one wavelength, we
observe that the streamline is displaced to the sonth by a net distance Ay = _{—;’%:—‘. At the step,
the jet is deflected anticyelonically Lo the south by vorticity conservation. and as it moves south,
gains vorticity by compensation of the decrease in planetary vorticity {3 effect), and eventually
has to turn back north when the initially negative fluid vorticity becomes positive, If the depth
increased rather than decreased across the step, Le. Ah < 0, then the jet would deflect north by
an equal amount, gain positive vorticity which would decrease by compensation against inreasing

planetary vorticity, and again form a wave motion with mean position of streamlines displaced to
the north.

. 7 - . . - .
Note that if p* < 0 (it ) < Oorif uy < 0 as ina westward flow, the solution would be exponentially
decaying after the step, and since the first derivatives would have to he matehed at the step, the
curvature of the solution would have 1o continue belore the step, and therefore the approaching

flow wauld feel the step belorehand, as shown helow,

Iz
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The nature of the westward and castward flows approaching a step are vastly different; which points

us to the basic assymetry in geophysical flows. All of these new features are direct results of the

3-effect.
2.4.4. Planetary waves

We have seen in the last Section that Rosshy waves are generated by a uniform flow impinging on

a north-south aligned depth discontinuity. This waves are a direct result of the variation of the
coriolis parameters with latitude,

It is easy to show, by setting 4 = 0 in the solutions of Section 2.4.3, that the wave motion ceases
to exist. Since only linear variations of f on a f-plane were considered to the lowest order, and
since the f-variation actually oceurs on a planetary scale, these waves are alternatively referred to
as planctary waves. Tlhese are not the only the waves that can he sustained in rotating flow, but

planetary waves are those waves resulting directly from latitude variation of the Coriolis effect.

The case of constant total depth, H = H,. is the simplest configuration to show the existence of
planetary waves. We shall also assume that, the total depth can be approximated by the still-water

depth hg, d.e., Hy = g+ 7 ~ hy since y < h {the rigid-lid approximation)., We can then use
(2.154) and {2.155), i.c.

7=k x Vi (2.154)

C = vj'(/" (2.155)

to express potential vorticity conservation via equation (2,127}

D {fotdy+cC 1D ,
— | — >y~ (5 Ve
Di ( Hy by D1 YY)
10, .
’;’ ‘,)’ (2.164)
= 5 (‘%V!r{! + (ko V) V(g 4 V)
SRR L L VR 1) =0
= — =V 4+ d— cx NV V(YY) =
he ot Wt b T { f

Here, we may introduce the definition of o Jacobian;

UGB 94 dB . .
J(A B) = ‘(,.)—JL_)T _ (T_(a =(hxVA) . VB=) VA4« VR, (2.165)
x oy ity e

. . . - R s e . . . e . ,
Setting A = 4, B = V30 (2.165) and compa ring with (2.164), the vorticity conservation equation
becommes:

A 1)_ 4l Vi) = 0. (2.166)
[P Ns
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Note that this is a nonlinear equation since the Jacobian (2.165) is nonlinear by definition. If this
equation is somehow linearized (assuming the Jacobian term is much smaller than the other terms),

it would read

i _, hp
_V".’r ’j—' :0 2.167
A (2.167)

Next we investigate the existence of a planc-wave solution of the form

‘lf.‘ — _If’[]‘:i(k‘;-{ktyﬁwt} — U-,OCiH(.p‘y,i}. (2168)

where k, { represent wave numberin the o, y directions respectively, and w represents the angular
frequeney of the motion. 8 = (La+ly—wt) is called the phasc of the wave motion; when 8 =constant

it follows that ¥ =constant. We sketch the wave motion at a fixed time, as follows:

Now, in substituting (2.168) into (2.167) we first note that

v_’u“ — _'J;'(J(!|:2 + !_’)(.r[l.gr+ly-w.f) — (fi,‘.l +.'l'.:.')u-\

and therefore the Jacobian term would identically vanish, although we have not made an a prior
assumption of finearity. 1t can also he verified 10 he trie by virtue of an important property of the
Jacobian: that if A and B are lncarly dependent, i, il B = F(A), then (2.165) yields

DA Df DA DADf DA

JCACBY = J(A. f(A) = L =5 2.169
VAR = T L) dr dA dy Dy 94 de (2.169)

Therefore, plane wave salutions of the form (2.16%) «do not contribute to the nonlinear terms, and

the nonfinear equation (2.166) is equivalent ta [2.167) in this special case.

Substituting (2.168) into (2.167) vields

[ 15]
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—dw(=k? =Y+ Bik =0

or

3k
/

k* 412 ( )
which is the dispersion relation for planetary waves. The phasc speed in the z and y directions are
respectively calculated as

w J f
(=Yo7 2.171.
T (2171.0)
w 3k
=Y P K 2,171
Co= 7= (2.171.b)

Note that "z < 0 for all possible values of k, {, the wave propagation is always in the negative

z-direction, i.e. towards the west. We also note that these waves can only exist if 3 £ 0, i.e., they
arise as a result of the f-effect.

We can also define a wave nuamber veetor 7 with components # = (k. 1}. The phase speed in the

direction of the wavenumber vector {or in the direction of plase propagation) is

|| k42 (R2412pr=_pg 2t ( )

Note that the phase-speed does not satisfy vector decomposition (1) since the resultant of (2.171.a,b)
does not satisfy (2.172). This means that the direction of wave propagation is not normal to the
wave fronts. It is also seen that the phase speed is maximum for westward propagating waves

(IRl = k& and zero for waves propagating in the north-south direction, f.e. wave patterns with
north-south orientation do not propagate.

Note that, although the nonfinear terms vanish lor any single plane-wave solution, the superposition

of a number of plane-waves does not necessarily constitute a solution for the nonlinear equation

(2.1G6).

The group wvelocity is the velocity of propagation of wave energy {i.c., ol wave packets), with
camponents defined as

il i
(= e 2 9173.0,b
NE il Hy al ( ia-a )

{(2.174.a)



[ £ Ozsoy - DO-11 - Rotating Fluid Dynamics |

, 213k
Clay = _(k! FWEIE (2.174.5)
It can be observed that althongh the phase vetocity in the z-direction is always negative (westward
phase propagation), the group velocity can be positive (& > {) or negative (k < [}, i.e. while the
wave Is propagating west it can transfer energy in either of the horizontal directions. It is useful to

construct a group velocily vector by using (2.173 a.h):

- Hw Ow
S v A S St - hui 217
Co= Ve =igr+77 (2.175)

where V. denotes gradient in the direction of the wavenumber vector .

Through definitions (2.172), the above can be madified to read as

= f

Gy = VR = BV C 4 OV R = RV + 2 7 (2.176)
a8

where (7 denotes phase speed (vector) in the direction of the wave number 7. Since (7 depends on £
by virtue of (2.172), /, and € differ in magnitude and direction. Such waves are called dispersive
waves, [Nondispersive waves are those for which phase speed is independent of wave number, or

for which group and phase velocities are equal].

Note that a Rosshy wave is that it is a fransvcrse wave. By making the rigid-lid assumption n =20,
and considering a constant depth case, the continuity equation (2.90) becomes

V.i=0. (2.177)
By substituting the plane-wave solution
= m)(,z(k.:ﬂ"l’i.‘—w!) — ,I()(‘i{ﬁ-‘Ffwf) (2178)
into (2.177}, it can be shown that
Koy =0, (2.179)

re., the fluid velocity @ is always perpendicular to the wave propagation direction 7. This is a very
important result, since it explains why the nonlinear terms i - Vil do not make aty contribution

for this type of wave, although we have not specificly made the fincarity assumption.
In order to interpret the physical reason for the westward propagation of Rossby waves, consider

the vorticity equation (2.167), which alternatively could be written as

ac
— i"’:] '.—
o = (2.170)

[47]



[ E. Ozsoy - DO-II - Rotating Fluid Dynamics |

According to this equation, a fluid particle with positive velocity in the y-direction (v > 0) will gain
negative vorticity, and a particle with v < 0 will gain positive vorticity. Therefore, if we consider
an initially straight line of fluid particles having zero initial vorticity, and displace this line to give

it a sinusoidal form, the resulting vorticity distribution could be sketeled as follows:

'1740

AN

.

TV

The train of vortices generated by the displacements will have a self induced velocity field carrying
the pattern towards west. By virtue of (2.171.a,b}, the solutions would he stationary for an observer
moving west with speed (7. Similarly, if the waves were superposed on an easterly current exactly
opposing C';, the resulting pattern would he stationary, This is the case for the north-south step
problem discussed earlier in Section 2.4.3, where the wave adjusts its structure (i.c., wavelength)

to a stationary pattern in order matel, the boundary conditions at the step.

fn the more general case of superposition of an easterly flowing current and planetary waves, whether
the waves would appear to he propagating to the east or west depends on whether or not the speed
of the current overcomes the westerly phase speed of the waves, For instance in the tropics, the
mean flow in the atmosphere is in a westerly direction (Measterlies™) so that atmospheric systems
which typically have higher phase speeds most often travel west. In the mid-latitudes there are
strong “westerlies™ (/.. easterly flowing moan currents) which often overcome the phase speed of

planetary waves, and therefore mid-latitude weathor systews are often observed moving east.
2.5. Small Amplitude Motions with a Free Surface

In the foregoing sections, we lave nsed e rigid-lid asswmiption (5 = 0). To see the effects of surface
displacement, we reconsider the shallow water equations (2.88) and (2.90) sinplified by neglecting
the forcing terms on the right hand side of {2.89). Furthermore, small amplitude motions will be

considered by neglecting the nonlinear terms. For example, we assume

in equation (2.89), and in the second term of (2.090) expressed as

V-Hﬁzv-uﬁ'-}-\_-hﬁ?.

[45]
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assuming that the nonlinear first term on the right hand side is much smaller than the second term
(17 < h). Then equations {2.89) and (2.90) are simplified to give

i

— ot fhox = gV, (2.181.a)
ot

) ~

o + Vil = 0. (2.181.0)

These are linear equations from which the unknowns @ and 7 can be solved. We also assume that
| !
f = fo=constant. In order to eliminate one of the unknowns, say @, from the equations, we can

multiply (2.178.a) by /1, and take first the divergence, and then, the curl of this equation, yielding

%v it — fl -V x hil = —gV - hVy (2.182.q)
ot

o L -

-_(r)-{V X hi+ fEV -hi = —gVh x Vy (2.182.5)

Note that use has been made of the vector identities [DOI-1.27.b,c,d). Then, ¥V x hi is eliminated
from {2.181.a,b), yielding

(())f_) + -fg) Vil = —y{%v -h¥y + j! -Vhox ¥l (2.183)
s {

Utilization of {2.178.h) eliminates ¥ - i from the above equations:

9 2 .
'-()T (_()‘ra+f_) ?]—_f,'v-hv”} —gfHh, ) =0, (‘2.184)
RIS

where the Jacobian J(%h, 0} s defined throngh (2.165). The last equation is essentially a wave

equation for n and is inuch similar to the wave equation

').3? [
((TI — (3T, (2.185)

(which occurs only if f = 0, h = hy=constant), where
(-'[;‘ = {]/I[}. (2186)
o being the phase speed of wave solutions that can be obtained for the simple case (2.185}. Once

77 1s obtained as solition of the equation (2.18:4). the veloeity field can be obtained from (2.181.a),

or following some manipulation. from the following equation:

i SY i) -
(U?Jk_f ) rr,_—_q(m\_’u—jk XT’?/). (2.187)

[ 1]
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2.5.1. Plane Waves for Constant Depth

Consider free oscillations in the case of a constant depth 7t = hy. Further, assume plane wave
solutions for {2.184), of the form

0= Li?{v;(](?i{kx+1”_“")} = R{noe!tFF-wihy, (2.188)

Substitution of (2,188} into {2.184) gives

lwny[ff —w? + ‘(jh.o(!\.'? + 12)] =1 (2.189)

which is a dispersion relation for these waves. Letting & = [7] be the magnitude of the wave number
vector £ = (k,1), the above equation is simplified to

W=t/ 1 ke (2.190)

where (' is given by (2.186). Since the wave frequency w depends on s, the waves are dispersive.

For each value of the wave number x there are two waves with opposite phase speeds of

(2.191)

In the non-rotating case of f = (), (" = (o = £/ghy, and the waves propagate with the classical
shallow water wave speed, in a non-dispersive mode. Therefore, we can see that rotation introduces
dispersion, as well as increasing the wave speed. Also by virtue of {2.190}, it is clear that all possible
wave frequencies [w| must exceed f, correxponding to super-inertial frequencies {Jw! > f). The

velocity field can be abtained by sithstituting

@ = R 5oy (2.192)

and (2.188) into {2.187), yielding

) i

(fF = )ile = —glwi — ifk x B)no. (2.193)

The right hand side has two terms: one parailel and the other perpendicular to the & vector. For
w 2 K {(gravity waves) e above equation reduces Lo

~ i - .

ity ™ —ink (21()4)
and the particle velocity is parallel to the wavenuimber vector, e, the motion is a longitudinea
wave. An the general case, equation {2.193) indicates that the velocity vector makes an angle
with the propagation direction. This more general case of motion is called an inertia-gravity wave,

[50 ]



[ E. (5:30;:} - DO-1I - Rototing Fluid Dynamics |

characterized by a mixture of longitudinal and transverse modes. The vector @ can be decomposed

into two components iy = (uo,, vo,) such that (using 2.193),

G gwlR| -
o, = ity - E = _mvm, {2.195.a)
kxi . gflf
o, = iy - |F|f :*ff.ff_ . (2.195.5)

Substituting from (2.190), and using w/u = Cy = Vqhe, one obtains

[T o
o, = O 2.196.
HOH («'ﬁ}h'.‘)' h-n LF] ( !‘]',)
gfwy o f
= 27 = Ea 2.196.b
04 C3n? ? 7o oo ( )

Note that, in general, g, g, Up, are complex wimbers. Velocity components can be calculated

from (2.192), by similarly decomposing the velocity vector as i = {wy e l),

cn
= ?}?{——UUO("(“'-'—W)}
) h,[)

2 (2.197.a)
= *I—{')“hj(]l cos (ke + Iy — wt + &)
o

e .
), = ‘R{ 1,'—0 _‘__‘-,,]”t.‘!(h-_) -u;f]}

. ’”f“‘ (2.197.5)
= *;U;|’ll)| sin {Ar 4y — wi + &)
h,(} W

where ¢ is the phase of ng, such that 4y = g, It can thus be shown, by combining (2.197.a,b),

that
) 9 w : (' i ! .
T (_) = ( UM{”) (2.19%8)
A Ty

which is the equation for an ellipse alorgated in the propagation direction.




[ £ (j:.my - DO-1I - Rotating Fluid Dynamics ]

Note that by virtue of (2.197.a) and (2.197.b) the current vector is rotating in the clockwise di-
rection, hecause of the clockwise deflection of the Coriolis effect. For w >> f (gravity waves), the
ellipse becormes narrower and hecomes aligned in the direction of propagation {uo, becomes vanish-
ingly small by virtue of 2.196.h}. On the otley hand, as w — f (inertial motion), both components
of velocity become equal and the ellipse becomes a circle. In the general case of inertia-gravity
waves {(w > f) the current ellipse is aligned in the propagation direction. While it is not directly
applicable here, it is worth noting that for the case w < f, the ellipse is oriented perpendicular
to the propagation, and only in the limit w —s 0 (geostrophic motion) the current becomes per-
pendicular to the isolines of surface elevation (isobars). Thereflore, it can be seen that, in general,

inertia-gravity waves are far from being geostrophic. Certainly they are another class of waves
much different from Rossby waves,

2.5.2. Poincare and Kelvin Waves

Consider now a coast aligned with the x-axis:

(1\19

A
T 4|
T o s~/ T X
Coasl

Let the depth be constant, b = hy. Then eoiration (2,184} reduces to

d e cror 0 2.199)

W\ g T/ n=GVayt =0, (2.19¢
where (/5 = ghy as in (2.186). The boundary condition at the voast is

o=l j =0 (2.200)

t.c., the normal velocity at the coast must vanish. this bonndary condition van be conveniently
expressed, using (2.187) as

) ; : Lo N L.
((‘{T"Vu-ﬂ.'x V:}) ) =—= (( +‘/')-u,-n.:0 ony =10 (2.201)

or as |
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iy oy
- —f—=0 c ={. 2.202
iy i oy (2.202)

Another houndary condition is needed at the open boundary, which will be the requirement that

1 — bounded, as y — oc. (2.203)

We will consider solutions which are periodic along the coast and with respect to time:
1= R{N (y)eilhr—=th (2.204)
which, upon substitution into (2,199}, (2.202) and {2.203), gives the sot

‘/".!JV w‘l _ f’

5] + { .}. i - '["2}:’\] - 0 (2205)
elif- (@
IN k
i +f-N=0ony=10 (2.206)
ey w
N = hounded, as y — oo, (2.207)
For simiplicity, let
p= ol e (2.208)
€5

which is the same expression as the dispersion relation (2,189} or (2.190).

Now the solution has different eharacter for different values of 1, as shown in the following cases.

[

2.5.2.1. Solution I - Poincare Waves (/° > ()

For 1# > 0 (I'is a real number), the solution to (2.205) is

Niy) = At 4 ge—rn (2.200)
upon substituting in boundary condition {2.206), this gives
. e , s
I+ f—)A+ [ -d+f=)B=0. (2.210)

The boundary condition (2,207} is readily satisfied by the form of the solution. The solution (2.204)
15 then:
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y = ?]?{Afl(k.r+ly—wr) + Bci{kr—l‘y—w!)}

(2.211)

This sotution, then, represents an incident wave with amplitude B and a reflected wave with

amplitude 4, whose ratio is given by (2.210)

A el IO (2Rt § D I 13
B s+l 4+ &2 1+ 52
where
lw
8= =,
kof
Substituting
B =B
yields

— & 28

N = ‘[g|:5n{(_‘i{.ﬁt_::—fyfu;!#-ﬁ) “
b4 s

(,t(kw+1y—ur+5)}

as the solution.

é(&x-{j*uff)
c

, / l"&F!é c 'LD‘{
‘])4 ¢ .EKW(L W

e sl

A A e

COAS)‘

The superposed waves will look like the foillowing:

20k .
Mav—> T AL L e T T
o TN (o
4_._/\,,;\/\.4\ o - : a

; S ( .

- e - . “*—-—.\
B W ‘Q AR

T ATy

(2.212)

(2.213)

(2.214)

(2.215)

a ef—(jﬁkaf—f(jfw{)
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Note that the cocflicient of the reflected wave can be written as

I — &% = 2is V=S4 (297 L a2

| + &2 P o2
V14 st 05T 1482 i La,,-l(%) (2.216)
= — ( T
1 4+ =2
. Ll(,‘_i LAII_I(];jS:E) — Cifi
with & replacing
25
f=mn—tan"" g‘,).
— 2
so that (2.215) becomes
n = [B{cos(ka —ly —wt 4+ 8) + cos{ha +ly —wt + 5+ )} {2.217)

i.e. the only change in the reflected wave is that it merely suffers a phase shift.

These waves are called Poincard waves. A special case oceurs when [ = 0, {i.e. waves propagating
along the coast) in which

2

wi=wl = R (2.218)

gives the minimum frequency wy possible for Poincaré waves. By virtue of (2.208), Poincaré waves
with ¢ # 0 always have

W W, (2.219)
Note also that for all possible cases, w > [ (period of motion is less tlan the inertial periad)
2.5.2.2. Solution II - Kelvin Wave (/* < 0):
= —at < (2.220)

L, i ) ) & , . : : .
For (= < 0 (I 'is an imaginary number), we can interchange ! with o, such that n? = 12 >0 (v is
real). The solution to (2.205) ix expressed as

N o= A e (2.221)

Sinee the first terin can not satisfv the houndary condition (2.207), we mnst have

A =0. (2.222)
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The boundary condition (2.206) requires
k
—wv+f—]1B=0 (2.223)
w

and using (2.208) and {2.220) in (2.223)

S 24,2
at =kt (,._,f - (2.224)
- w

and this reduces to

or simply

(‘2’_) =2 (2.225)

This equation has both positive and negative roots w/k = £C4. On the other hand, since o > 4,

equation (2.223) requires that only a positive root can be aceepted:

i;’- = +CYy = /gha. (2.226)

The choice of only one of the roots imposes a preferential direction to the motion. Furthermore,
this shmple result in itsell is remarkable, vielding a non-dispersive wane solution, propagating with
the classical shallow water phase speed . (for anon-rotating lnid), despite the fact that the wave
motion owes its existence to rotation. The decay parameter alpha is caleulated from (2.224) and
(2.226) as

/ f
Co T Tl { )

Substituting (2.227) and (2.226), and ietting I3 = oy {a real number) without loss of generality, the
solution (2.204) takes the foliowing form:

o

/ X .
= -'Ill‘-:];\{( _ﬁ”(-"p[-"“( nf)} | |
: (2.228)

= e eos (b = 1))

-

The wave motion is sketched in the following:

<z /J,;:f’*y“% h )



[ K. Ozsoy - DO-1 - Rotating Fluid Dynamics |

since Cp > 0, (2.228) indicates that the Kelvin wave always travels in the positive z-direction for
increasing t, t.e. it takes the coast to its vight. The wave motion has a maximum amplitude of 7g
at the coast and decays offshore within an e-folding distance of

Co Vb
= TU - -’;'“, (2.229)

which is the Rossby radius of deformation. An estimate, with hg = 1000m, f = 10~ *rad/sec, for
the ocean gives i = 1000km; i.e. the wave amplitude decays within several thousands of kilometers
from the coast (!}. This solution does not seem to be of physical significance in the ocean, but
its analogue in the atmosphere is feasible. In the ocean, a similar pattern of motion, the internal

Kelvin wave, occurs only in a stratified fluid. The velocity  is obtained from (2.187), by assuming
a form of

i = R idge ™ To Y kr=Caty (2.230)

and by substituting this in (2.187):

(fP = 1P C Ty = —g{—ik(y (ii.:i - LJ + f —i,i - ils:j) Yo
Clo o

= -y (1-32(-'(: - %) P+l = Fk)imo (2.231)
= .q%(f: - BOh.

This result shows that the velocity field has only a « component. We Lave

o = fig * L= o —(y, g = iln-j=0. (2.232.a,b)
0

.
e T coshie —Cof), v=d-j=0. (2.233.0,0)

Since the v-velocity vanishes evervwhere, the corresponeding terms in the shallow water oquations
(2.181.a,b) vanish, to yield

i ! 2.234
ar ﬁ()_-;: (2.234.a)
f o 22340
= ar .
' .;'{.)” ( )
Ay n il 0 -
ar ae T (2.234.¢)
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The equations with the remaining terms indicate an interesting balance. While the alongshore
acceleration is driven by the alongshore pressure gradient, the velocity is in geostrophic balance
with the cross-shore pressure gradient. Elimination of u from (2.234.a), (2.234.c) gives

&)

- Py
20 _n
ar?

o= 2.235
O a2 ( )

t.e., a classic wave equation for the propagation (with speed (g} in the w-direction. Of the two
possible wave solutions with phase speeds +C'y ,only the positive valued solution can satisfy the
boundary conditions.

2.5.2.3. Dispersion diagrams

For both of the above solutions, i.e. the Poincate and Kelvin waves, a dispersion diagram can be

constructed:
2 T L2
W=, = L+G K
?Om ¢ ay€
Waa€s

(c o JL)VLLL.;LM)‘ l

N WE Wy = - mﬁf—?

The Poincaré waves occupy the shade regions in which all frequencies that satisfy the dispersion
relation (2.208) are allowable. For the Kelvin wave, there s only one wave number satisfying the
dispersion relation (2,226} at each frogqueney,

2.5.3. Topographic Rossby Waves
2.5.3.1. DOne Dimensional Depth Variations

Let us now consider the effects of depth variation. The governing equation (2.184) can be written
as

d [ ih - O dy Dy o Dhdy dh ooy o
i?i{(ajf+‘/ )7} 7 (I;d—r+ﬁpﬁ)}/q(mm—ajr— = 0. {2.236)

Without loss of generality, consider depth variations in the y-direction, i = h{y). Then {2.236)
reduces to

()
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i i* 9%y on dh an
-— — he— 4+ — . 2.2
ot ( ) K ( Py + ()u’ du) b ()u D =0 (2.237)

The depth variations induce a restoring effect, as seen through the potential vorticity conservation
(2.109), in a much similar way to the g-effect. Motion across isobaths will cause stretching or
extension of fluid columns and thns generate vorticity.

h ﬂfl&feudnda'

Therefore we may expect topographic Rosshy waves of the form

= RN () hewi (2.238)

which reduces {2.237) to

ERY 1 AN lh
—iwl (= DN =g (=N 05 Ty g (—ieN SR ) =0
el y? dy dy iy

or

X 2 I
N4 (;) N Z (; _ f—’—) N =0, (2.239)

ih

where primes denote differentiation with respect to i, We can further denote

) Ll I ) 240
= —— = 9 9.
Y hody h (2.240)
and substitute

Niy) = Mgyt 2.241)

Lo transform the varialles into a new form:
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N = M8 S P

1 L Ea
N'= (M= SFM)em , (2.242.0 ~ ¢)
1 3 t . -4 f it

N" = [M” - "M+ (I - QF’) M] (S F

Then, using these substitutions in (2.239) reduces it to

M7 _ f:_“”’ Ny iE/H_ L ; +
qh wh 4\ h

Consider the flow on a sioping bottom adjacent to a coast:

AN
- — M =0, 2.243
2 ( h ) } v ( )

#

At the coast (y = 0), we must require the normal velocity to vanish -5 = 0, so that boundary
condition (2.206) applies. With the substitutions {2.242 a-b), (2.206) reads

' I
M+ (i! - EI'L) M=0 ony=0 {2.244)
! [

Far away from the coast, the motion nust vanish, so that boundary condition {2.207) applies. But
if N is bounded as y — oo, we have by virtne of {2.241)

N

M — bounded, as y 5 . (2.225)

A solution can then be obtained for (2.243). with boundary conditions (2.244) and (2.245). By
virtue of (2.240) and (2.241), we have

(2.216)

= M
— h—%(u}«”(u)‘

‘

[ G0 ]
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s0 that the assumed solution {2.238) can be written as

y=w{h" 5l M {y)etRr=wiy (2.247)

where M(y) is determined by =olving (2.213) with boundary conditions of the type (2.244) and
(2.245) imposed.

Note that (2.243) is a differential equation with non-constant coefficients, Furthermore equation
(2.243) with boundary conditions of type (2.244) and (2.245) constitute an eigenvalue problem,
which must yield eigenvalues which relate w to k. However the terms in square brackets of (2.243)
are extrewely complex. For example, assuming an eigenvalue is determined, these terms are cubic in
frequency w and quadratic in wave number L. Therefore analytic solutions can be obtained only in

simple cases where a certain simple topography i assumed and with further possible simplifications.

A turther simplification can often be made in (2.243) with respect to the first term in the brackets.
In fact, let L be the horizoutal y-scale of the motion. and let Ly be a depth scale; then comparing
the first and second terms of (2.243), we have

Loy o(LM) 272
( ah = el (f ) = O(6) (2.248)
(45 Ozz) qho
where
s= L (2.249)
thy

is defined as the divergenee parameter. Note that this parameter is equal to the ratio
H

S (LY
D = (E) (2.250)

where [ is the Rossby radius of deformation defined in (2.229). The scale L can be thought of as
the horizontal scale in which depth variations oceur (Le., the shell width).

For typical values of [ = 10% rad/sce, L= 10k, g = 10 fsee” Dy = 100003 6 is caleulated to be
§~ 1079 < 1, and therefore the second term of (2.2 13) is much smaller than the first. With this
approximation (& < 1) in place, (2.243) reads

, L WA WA

The approximation for the horizontal scale heing much less than the Rosshy radius {6 < 1) is

in fact equivalent to the rigid-lil approximation, and amonnts 1o neglecting the 2% term in the
continuity equation (2.181.0). This ciur simply be verified by making the appropriate substitution

in equation (2.083), 700 S b = 0, and similarly eauses the first tern of (2.243) to vanish.

P61
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2.5.3.2. Shelf Waves - Exponential Shelf

As an example of simple case with an analytical solution, consider the coast adjoined by the
following shelf topography

L
hiy) = {”0’ 0 Byt (2.252)

th"sz = h’ms L < W<,

visualised in the following sketch:

Region 1 and 2 are the cominental shelf and deep ocean regions respectively, In region 1 (the shelf),
(2.240} is a constant,

B 2bhgetty
Fly) = ;_ - e, (2.253)
)

hyelhy

and in the deep ocean region

Fy) =0, (2.254)

so that the corresponding equations (2.243) become:

region

M [:’A;J; AN RS 1] PR (2.255.q)
il w
region 2
MY~ ["4‘—l My = 0 (2.255.b)

gle,

The second term of {2.255.a), which mives pise Lo non-constant. coeflicients, ean be neglected with

the rigid-lid approximation, § < 1. vielding:

62 ]
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region I;

M-k - :ézw; + 6 M, =0 (2.256.a)

region 2
M)~ 1My =0 (2.256.5)

We define
v =kt 7[‘2!;1; + b (2.257)

55

to replace the constant coefficient in the first equation.

The boundary condition at the coast is obtained by substituting from (2.253),

k
M+ [f—-UM =0aty=0 (2.258.a)
w

We will be interested in waves that are trapped in the shelf region, so that far from the coast we
not only want the solution be bounded, but also to vanish:

My =5 Dasy — oo (2.258.h)
Finally we need jump conditions at 2 = L where the shelf joins the deep ocean. For this we require
that # and - 5 be continuous at the the junction yvielding:

My =AM,aly=1 {2.258.¢)

M+ (ff - b) M= M)+ (%) Myaty =L (2.258.d)

3
w/

The solution to {2.206G.a.h) can be writton as

My = Al Lo ool L) (2.259.0)

My = (Pl 4y —Mu—1 {2.259.0)

Boundary condition {2.258.h) then requires that
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while boundary conditions {2.258.a,c,d)roquire:

(v + ik - b)r‘“fﬂ“/l + (-7 + ik‘ - f))(jﬁ]‘B =10 (2.‘260.&)
w w
A+ B =D (2.260.5)
[ [ o ¢
v+ ;A ~bt A+ —-v+ u—JA b)) B={(-k+sk)D (2.260.¢)

and eliminating D from 2.260.b,c we have

(Y4 k=0)A+(—y+h—B)B =0 (2.261)

For non trivial values of A and B, {2.260.a) and (2.261) then yield

(7+ £k - b) (=y+h=b)et - (ﬂ + £A: - b) (v + & = b)e"" =0, (2.262)
or, rearranging terms, and utilizing (2.257)

5

tanh L = ——"—, 2.263

' b+ k ( }

This is a transcendental equation for whiel the roots Yu st be obtained. Graphically the right
and left hand sides can be sketched as fallows:

The only possible root is v = 0 which is trivial. 1n (2.257) we have imperatively assumed that
37 > 0 (v is real), but we nwow find that non-trivial solutions are not possible. However, if we let
v <0 (v is imaginary),

[ Gl ]
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¥

vyoo= w—,uj < 0 (2'264)

(2% > 0, g is real), then {2.257) becomes

2= f‘Zbi.: — bR (2.265)

o

and (2.263) becomes (with y = ip},

it

tanhipl = tlanpl = "ib + 0

(2.266)

This equation possesses an infinite number of discrete roots i, = gy, g, ... (n > 0)

and by virtue of {2.265) an infinite munber of discrete frequencies

w 20k

where g, are the roots of (2.266) (or n > 0. The solutions (2.259.4.h) hecome

My = A ole= b L =) (2.26%.a)

Ay = 1), ~Hu=) (2.268.b)

[ 65 ]
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and the relations between the complex-valued coefficients A, 13, and L), are given by {2.260.b)

and (2.261). By making use of (2.266)

Letting

|

By b= b4 i,
4, k—bh—in

_ k=) = (k4 by tanhig, L
T e =) 4 (kb vanh e, L
_ k(I —tanh g, L) — b(1 4 tanh e L)
- _k([ + tanh e, L) — b(1 — tanhig, L}

Le—tnd _ hetbin L

(2.269.a)

- Jotrn L he =it L

I, - ﬁ _ 2.17/.'.?1'
A, A, k—b—in,

20k +b) tanh g, L
(e =b) + (k+b) tanhip, L

The solutions (2.265.a.b) became

A '{]

anel

Substituting

2.269.1
_ by (etnel — eminaly 22000)
- Leetion Lo be—tin L
(B 0)2isinp, L
ket et L
1. : i
A = o, et Lo pemun iy (2.270)
‘47t tpeg L =g by By (y—1) — gy, 1L vy Ly i, (y— L)
S Tl e s m ) i _ s L )
i
ﬁ {'{‘:{(ili‘n Vo i 3,'] _ b[r:‘ﬂ..(y—.’h} o r,—e‘ptn(:!ff'lL)J} (2271)
2t
= A, {hsin flndf = bsin g, {y = 213}
My= A, (ke + D) sin i, Lo Fo=1) (2.272)
o = hi=in 2, [J).’;']—I/Bju (2.273)

and utilizing (2.247).02.252) (2,27 1) amd (222723 the full solation ean he WrtLen as

[ 16 ]
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bsin”ﬁ [hsin po,y — bsin g (y = 20)] e cos(he —w,t), 0<y< L, (2.974)
7= - T .
! —g‘;:';:{"i‘ (k+b)e Mo =kly=1) cos(he — w,t), L <y < oo,

where 7 is the amplitude of the wave at the coast. The amplitude of these waves with offshore

distance can be sketched as follows

The wave motion is thus trapped in the continental shelf region. Note that by virtue of (2.267),

the frequency w, is positive for any positive k, <o that

cos(bae —wy, )

always represents a wave moving in the positive x-direction:

?fu-’f’a]'::l't’\m | I .

The waves preferentially take Lhe coast to their right (similar to the case for Kelvin waves).

The dispersion relation (2.267) vields an infinite number of frequencies w,, corresponding to the
rOOLs ju,,. Since g, are ordered in an increasing sequence forn = 1,2, higher modes have smaller
trequencies, i.c. for

[ 67 ]
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Ja < iy < fig ...

the frequencies are ordered as:

Wi > W > owy ...

Note that (2.267) has a maximum when

B = K = 11 (2.275)

which corresponds to a maximum frequency of

w b b
(—"*) = ——— = (2.276)
f nax h? + !”‘?31 'l‘:III?LX
for each mode. Note that for any possible made. w,, .0 < [ (since 15 > 0), ie. possible frequencies

are always smaller than the jnertial Jrequency, or the Coriolis parameter I

Furthermore, note that for a fixed frecuency w, of any single mode, {2.267) yields two possible
wavenumbers, kb and k7, since (2.267) can be written as

- (zbi) k4 b7 4 2 =0 (2.277)

Mgy

and it follows that

by k= b(i) + (hi) — (b + p2)

b )
(bf fu,)’

2
I o
Menax “n
= ( ) Ii"llm\r l + l - ( )
wy, “max

where {2.275) and (2.276) have been utilized.

(2.278)

The phase speed of shell waves is alwavs in e positive s-direction since these wayves always

propagate with the coast on the right hand side.

(=T (2.279)
Tk T kT ) o

A caleulation of the group velocity ean he made as follows:

LGN
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TRV £53
ok (0T 4 pd 4+ k)2

Cuw= (2.280)
Now, note that ("o < 01F & > &y up. Therefore it can be verified that for a fixed frequency w, of
any mede the wave with wavenumber &~ carries energy in the same direction as phase propagation,
while the wave with wavenumber A% carries energy in the opposite direction. Also note that at

k = kax the group velocity vanishes, implying that no energy can be transmitted by such waves.
x ! \ ying B!

The dispersion diagram can be sketched as follows

' 2 llua;c ijm.x

In the above analytical solution, we have we have exeluded the Poincare and Kelvin waves becanse
we have used the vigid-lid approximation. However, it is often foune that the dispersion character-
istics of these waves are only slightly modilied by the preseuce of hottom topography. The general

form of the dispersion diagram is sketehed below:
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CHAPTER 3

QUASIGEOSTROPHIC THEORY

3.1. An Overview and Derivation of of Quasi-Geostrophic Equations

In Chapter 2 we derived the shallow water ecuations, and studied possible solutions to these
equations. In general terms, we have always seeked to represent the complex geophysical flows by
simplified equations which could be used to better understand the possible motions. We have done
this in two ways: (i) in Section 2.4, we have made the rigid lid approximation and utilized the
potential vorticity conservation to tvestigate low frequency motions such as Rossby waves, (ii) in
Section 2.5, we have allowed surface displacement, but in order to simplify the equations, we have
neglected nonlinear terms, upon which we discovered new types of motions which were mainly of
high frequency.

In this Section, we will develop the approximate theory for the first type of motions considered
above. We have seen in Section 2.4.1 that the motion becomes geostrophic in the steady limit.
We have also shown that the low frequency motion (Rasshy waves) carry many features of the
geostrophic case, such as the particle motions being transverse to the surface elevation gradient
and feeling topographic steering effects. The motion is than essentially close to heing geostrophic
(which we have shown to be a degenerate case), and hence called quasi-geostrophic, because of the

set of simplifications consistently approximating the primitive equations.

Let us re-write the shallow water equations (2.89) and (2.90) excluding the barometric pressure
and frictional effects:

()il -
%—Fﬁf-Vﬁ-f-f/dX = —yVy (3.1)
it
i -,
“Tyv a0 (3.2)
N
where
H=n+h (3.3}
is the total depth and
[ = fat iy (4.4)

is the Coriolis parameter, as it was approximated eaclier in Section 2.3,

We now want to focus our attention on motions with time scales muel) larger than the {internal

. 1 . . . . .
period) fi7. Therefore we want (o scale the equations accordingly, choosing the following scales:
[ 70}
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Fe~ b ~T
[/
Ho~ o, ey [~ o (3.5)
'L
7~ / it~
q

upon which the non-dimensional forms of the equations (3.1) and (3.2) become

er%ﬁ—e(ﬂf‘\_/’ﬁf%—/fyﬁ: x '!_f')+/::>< ==V (3.6}
{
iy _ .
5(—'7‘7 + V. HHi=10 (3.7)
(1A
where
[ . (3.8.0)
¢ = —1L 3.8.a
fo
]
(p = —T (3.8.0)
fo
R -
=: 3.8,
T gl (3.8.c)

The first of these nondimensional numbers, ¢, is the Rosshy number, the second one ¢ measures
the ratio of the inertial time scale f; ! to the time scale T of the motion. For the type of motion
considered, we insist that the rotational effects are Iimportant, ¢ < 1, and that the time scale of
the motion is much grater than the inertial time scale, 7., the motion is of low frequency so that

er < 1. While hoth of these numbers are small, their rativ

¢ T

il (3.9.a)

determines the relative importance of the nonlinear terms in equations (3.6) and (3.7). When the
ratio (3.9.a) is small the equations can be lincarized. Sinee we want to keep the nonlinearity, we
must also insist that the ratio is unity, or

ep oo (3.9.0)

Finally the third parameter ¢ in (3.8.0) is called the divergenee paramcter,

We have seen earlier that (cfequation 2.250)

5= (%) (3.10)
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where R is the Rosshy Radius of deformation. Its order of magnitude depends on the application.
For example, in the context of shelf waves, we have seen that § < 1, and such motions are called
quasi-nondivergent it corresponding terms have a small contribution, or nondivergent if these terms
are completely neglected. The nondivergent case is also known as the rigid-lid approximation.
Here, we will assume that

4 =0(1) {(3.11)
and keep the corresponding terms. Therefore, the only small parameter in the equations is the
Rossby number, . We can now make a perturbation analysis in terms of the small parameter «.

Before carrying out this analysis, let us first consider (3.3) and make further approximations about

the depth variations:

l‘l‘(.&., j"t)

I

Let us assume a mean depth Hy {which was nsed as a seale carlier) and call the bottom topographic

deviations from this mean depth fn{x.v). Bquation (3.3) becomes

H=y+h =+, b, (3.12.a)
and dividing by H,,
H B Ho + - by, - 1 Iy,
fy Hy B Hy Hqy

Then, utilizing the scales (3.5). the nondimensional form of (3.12.a) becomes

H =1+ ediy — £, (3.12.b)
where since €8 = fI/L/qHqy and E s defined as

.I!.;‘

c . " 3.1
$= 3 (3.13)
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Upon substitution of (3.12.h), equation {3.7) hecomes

Sedyit + HV - i+ - VH = 5(%—? + (1 + by =V i + @ - V{edn - £) (3.14)
(

A formal perturbation expansion of the unknown variables in the small parameter e proceeds as

ATt €)= T@ONT ) + e (@NE )+ Eat(F ) + . (3.15.a)
FE L = NE o ED + EyNE D+ (3.15.b)

and substituting the above expressions in equations (3.6) and (3.14), and collecting terms with
respect to the powers of e yields:

Jatt
ot

[L x % 4 vn(“)] + ¢ [ + 30 v g gk o d 4 kx4 v”[”] +eL]+...=0

(3.16.¢})

oy
[{1 — v g~ o vg} 4+ [(5 (( i + 407 g™ L o) v7](0]> + V. -&'(1):|

+ L)+ =0

(3.16.b)

The coeflicients for each term in powers of ¢ must vanish, since the equations must be valid for
arbitrary values of e and for all a3, t. Therclore, we get separate equations setting each of the
concerned brackets in equations (3.16.a,D) to zero. For example, the first order equations (terms of

order ¥ = 1) are:

O():

oo @1 = 0 (3.17.a)

(1—&v . il — g™ g =g (3.17.0)

We are mainly interested in the first order flow. sinee ¢ is smali, However, if we only keep the O(€?)
terms, equations (3.17.a) and {(3.17.h) would he the sanme as the geostrophic equations {1.21 and

1.22),1f we were to drap the hottom topography term & In fact, using vector identities and taking
the curl of (3.17.a} yields

Cxhx d" = o x v =

O

(73]
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v =g, (3.18)
Substituting into (3.17.h) gives

at" . ve = o. (3.19.a)
In dimensional terms, this is

@ hy, =0 (3.19.5)

i.e. the first order (pure geostrophic) motion must follow the isobaths. Since Hy is constant,
(3.19.b) can also be written in the same form as equation (2.139):

9 (Hy = hy) =@ . vh = 0. (3.19.¢)

The requirement for the flow to follow the isobaths is a very strong constraint, and would fail when
H = Hy=constant. At this point, we have another choice: perhaps we should limit the effects of

bottom topography, hy vequiting that the bottom variations are of the same order as the Rossby
number, i.c.

hi (e, )
Hy

[ a—
=

= emle,y) = 0(e) < | (3.20.q)

such that

I’.’,‘, = (){(1[[]) <& hr(]. (-320[))

With this choice of orders, it is assumed that (he hottom topography variations {deviations from
the mean depth) are much smaller than the mea depth,

With approximation (3.20) imposed, Lthe terms proportional to £in (3.16.b) are carried over from

order one terms to order ¢ terms. and the first. arder equations are rediced to

O("):

e @™ = AT (3.21.a)

vt = (3.21.5)
.. the geostrophic equations. As we have seen earlier, the geostrophic equations are degenerate
{lincarly dependent), since manipulation of (3.21.a) directly yvields {3.18), making one of the two

equations redundant. It is evident that the description of the first order flow will only be possible

(7]



[ E. Ozsoy - DO-II - Rotating Fluid Dynamics }

by obtaining corrections from the second order. Substituting (3.20) in (3.16 a,b) yields the second
order equations

O(eh):
- ato) .
koot 4 ol 4 —t % val® 4 gyl x 7® =0 (3.22.a)
20, 9 70} | A0V o (5, (0) - :
Va4 5 + (67 = ) Vi1 + @V — ) =0 (3.22.0)

Note that the third term of (3.22.1) vanishes by virtue of (3.21.h). We then take the curl of (3.22.a),
first using vector identities to write

!
70 gl = §'Q(,I(Ul a4 (V x @0 % gl
~ %v(ﬁ(o) i) 4 e 5 70)

and

vV ox (79 wgly = l)\“ ) V(A a7l 4 U s (60 x g0

= 70T Oy L glo)
= halV . vt

by virtue of (3.21.h}. Note that some terms have diasppeared by vector identities, and the definition
of vorticity (2.104} have been used in the above, where

T R v (D
Similarly,
Vox ..",'}_ij\' x = F#0 V_.‘iy!:f + ;_33;1’2:? )

il .V ay
et

and

Vox koot = bw gt
With the above substitution, the carl ol equation (3.22.1) becomes

o)

N

veatt ¢ + 7T e = g (3.23)
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and eliminating Vu'') between (3.23) and (3.22.h) then yields:

ag(0) _opv) .
f’T + i@ v 4 gyl Lyt :;f — T T ) =0, (3.24)
or,
D () s (0) (0}
B (E Y -y ) + o™ = (3.25)
or using Av(® = §% . vy,
D ) s 0 :
T (E + oy — St ;33;) =0. {3.26)

We essentially have derived the approximate form of the potential vorticity equation, i.e. the
quast-geostrophic vorticity equation.

[n fact, the same equation can be obtained throngh the exact form of the nondimensional form of
the potential vorticity equation (2.127)

D fe§+ 14+ ¢y e
To see this, we first expand
E=k-xit = k-x(@® 4 @4 ) s 95
=& gt (3.28)
and using (3.12.1) and (3.20.4), write
L : = : 3.29
H 14y — ) L (8000 )+ et a4 (3.20)
Since ¢ < 1, (3.29) can be approximated as
L o) 2 a -
ﬁ: F—cfon™ — ) + ¢ (... )+... {3.30)
So that (3.27) can equivalently he approximated as
1 i) 5,00 > 3
m{ Pty 4+ &0 40 ) 4 L]+ =0 (3.31)

whicl then, to first order vields (3.26),

The finishing touch to equation (3.25) or [3.26) comes Trom the definition or vorticity. Reorganizing
(3.21.a) and taking enrl:

LT
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@ = x vyl® (3.32)

that one obtains:

AR U Ve L O v Viylo)

3.33
= V- vyl = ¢350 ( )

Alternatively, a stream function

= 3% (3.34)

can be defined since {3.32) is in the form of the definition of this stream function which readily
satisfies continuity equation (3.21) . Therefore, substituting (3.34) and

¢ = vy (3.35)
in (3.26) gives
Iy ) . .
ot (\7"(;’: — &b+ fdy+ ) =0 (3.36.a)
We also note:

b
i V) ¥
ot

H

s0 that (3.36) can he written as

g b d dv 4 , .
RN S I A vEN S Sy = 3.36.
{UT + du dy  dy da [ l vy ”b] (3.36.)
or alternatively
i, ] ‘ ) .
I[T' RIS (} -+ .[[f,’v‘ (\h" i — (Ml“f. + ‘;')’?)- + ?M)] = () (3%6(‘)
and equivalently as
() 5 - ('){,“ X 3 . .
— {\—'”'t,-‘“ — 0'!_,-"*} + 3+ S (Vo — dy + m)] =0 {3.36.d)
ot i

Note that when & = 0 (rigid-Tid} and 5, = 0 {(constant depth) the above equation reduces to (2.166),
derived earlier in Seetion {2.4.4}.

[77]
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There are several peoints to note in the quasi-geostrophic theory:

(z) While the flow is in geostrophic halance by virtue of equations (3.21), the actual dynamics is
governed by a simple equation (3.36) in the stream function ¥ = 3@ which equivalently represents
the dynamic pressure. This equation essentially tncorporates the corrections to geostrophy by the

surface elevation, j3-effect, small bathymetrie influences, ane nonlinearity.

(1) Once the stream function {or pressure) is determined from (3.36) then the velocity field can be
obtained geostrophically from {4.32).

(#42) We have assumed earlier that the depth variations, are small as compared to the total depth,
(he/Ho) = app = O(e), where 1, = O(1). If we relax this asswimption by insisting that (hy/Hy) =
O(1), then 7, = O(1/¢) becomes large as compared to the other terms in (3.36.a) so that

l) I

= =V =0 (3.37)

which is the same as the constraint (3.19) obtained without making the assumption of small depth
variations. Therefore, that possibility is readily contained in the present, theory.

(1w} We have noted that equation (3.26) is a statement for conservation of yuasi-geostrophic potential
vorticity defined as

M, =& 4y — a0 4 gy (3.38.0)

in the one dimensional variables. In dimensional variables this i equivalent to the following:

Juﬁ$m+(ﬁ)UM—WM+HM (3.38.0)
Hy

The above definitions of quasi-geostrophic potential vorticity dilfers from the exact definition by a
fixed constant which is of 1o relevance, and is the first order approximate form of the latter. Note
that relative vorticity €9 and planctary vorticity 3y contribate to the quasi-geostrophic potential
vorticity as well as the bottom topography and surface clevation. It is also worth mentioning that
a positive bottom topography makes a positive contribution, whereas a positive surface elevation
makes a negative contribntion to the quasi-geostrophic potential vorticity. The first and the thire
terms are related to the flow and the sum is therefore total i vorticity. The second and third

terms are independent of the flow and are therefare called wrnbicnt potentiol vorticity,



