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1.0 Intreduction

Ecology, freely translating from the Greek expressicn, means "the
study of the household of pature". A population is a collection of
arganisms, usually of the same species, that occupy a prescribed region
and function together as an ecological entity. While most popu]atians

consist of a single species, the definition of a poputation is intended

to be sufficiently broad to include assemblages of species such as those that can

interbreed to produce viable hybrids or lichen populations where the algae
and angi are so closely associated that they function as a single species.
Population ecology, in the sense meant here, refers to the structure and
function of a collection of ufganisms as an autecological unit and, as
such, addresses the more purely biological aspects of ecology.

The relationship between a population and its biogeochemical environ-
ment is often an intricate one. Populations are seldomly dominated. by
their physical environment; indeed, they are often able to modify and
even regulate, within constraints, their environment. The biology of the
popuiation, the biogeochemical characteristics of the environment and the
feedback mechanisms between the collection of organisms and the environment

are important aspects of population ecolagy.

&4

1.1 Characteristics of a Population

Before embarking on a study of population models, it is useful to have
a compiiation of the terminology that is employed to describe a population,
There are many traditional, physical characteristics of populations
that even a casual observer can delineate. These include the size and
distribution of the population. The density of the population is the number
of individual organisms per unit of space. The density of the population can
be computed from a population census; it is, of course, a nontrivial task
to accurately census most natural populations. The manner in which
organisﬁs are distributed in space is referred to as the dispersion of the
population. In the subsequent models, it will be assumed that the population

is uniformly dispersed throughout the region. This situation is termed

spatially homogeneous; hence, the origin of the title of this chapter.

There are ways that poﬁulation size can fluctuate. Natality can occur;
new organisms can arise from seeds, spores, or eggs. It is customary to
refer to the rate of addition of new individuals to a population by repro-
duction as the birth rate. Mortality decreases population size; the rate
at which organisms are lost from the population by death is called the
death rate. Another change in population size can be effected through
immigration and emigration. The rate at which organisms immigrate to or
emigrate from the region used to défine the population is called fhe dispersal
rate of the popu]atioﬁ. _

There are many other attributes of a population that help to characterize
it. These include the sex, age, and organism size distributions as well

as genetic characteristics. The proportion of corganisms of different ages
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1.2 Modelling Aspects of Populations

5

{or sizes) 1s often a fundamental characteristic of populations and this

feature subsequently will be explored in detail in Dr. Frauenthal's The use of the language of mathematics to model or represent a

lectures. Another important trait’ of a population that will be discussed phenomenon has several advantages. This interdisciplinary approach allows

later are the evolutionary aspects of population ecology. the usage of tools from two disciplines - those of the scientific area

plus those of mathematics. A traditional view of the use of mathematical
models is to "predict" the behavior of a system. In biology, while
prediction is highly desirable, this objective is probably one of the

Teast fruitful avenues of research. Among the uses of mathematical modelling,
many of which will be illustrated in these notes, are

1. Clarification of definitions of compartments, flows, and pathways,

2. Generation of hypotheses about the system,

3. Suggestion of experiments to validate these hypotheses,

4. Assistance in research planning,

5. Identification of poorlylunderstood system mechanisms.

In any modelling process the objectives of the effort must be clearly
delineated. When the objectives are specified, the representation of the
scientific phenomenon in the Tanguage of mathematics results in a model,
This procedure requires basic laws which, in ecology, are not plentiful.
The contrast between existence of fundamental laws in the physical
sciences and the lack of corresponding laws in biological sciences is
striking. However, this is one reason modelling in the biclogical sciences
is fascinating and is evolving at a high rate. After the model is formu-
lated, it must be solved. A specific problem can sometimes be solved
analytically but often it is necessary to study the model numerically. In
the modelling process, the next step is to interpret the solution in terms

of the ecology of the system and, then, quite possibly start the process

over by redefining the cbjectives.
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When the model is suitable, according to the chjectives, an important
aspect of modelling is the control of the bBiological system. It is frequently
necessary to modify or optimize system behavior {as in an agricultural
praduction) so the development of the theory of control of systems is funda-
mental.

Some steps (and perhaps, all of these) in the modelling process will

be evident in the presentations o6f this course.

g

1.3 Continuous and Discrete Models

If the domain of the deterministic dynamical system is a continuous
set {usually’ R, # [0,=)} then the mpdel is called briefly, a cqntinuous
model. In these notes, a continuous model will refer tb an ordinary
differential equation. If the domain of the model is a discrete subset of
the integers, the model is said to be discrete. The discrete models

discussed here will be difference equations. Examples of quantities

-measured continuously include inflation and temperature while the census

of a population is a discrete measurement. It is traditional to model
certain discrete phenomena in a.continuous manner. Notable physical examples
include gas and hydrolagy measurements. As we will see, it is often convenient

to model popﬂlations by a continuous model. ”If:a”pﬂpuTation model has as

.a state variable the number of individual organisms, this would seem to

force the model to be discrete. However, if the population is very large,

the addition of another individual is a small change relative to the“pppu- .

lation size. In this situation, it might be reasonable to mode]'the*

population in a continuous mannér {often not only continuity but different=
fabiTity “is assumed. for such variables). ~Another justifiable way to view

poputation state variables as continuous is to use biomass.as the measured

'wmﬁw.
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1.8 “Quantitative Befavior of Populations -

- To motivaté the subsequent deve]opmeni,ftﬁe'tihe:eéﬁ]ﬂ%ian-ﬁfftﬁv‘ »—_i T

structure of some laborateory and natural populations is presented.

ﬂgy_gg Populations Behave at Densities that Allow Substantial Growth?

Figures 1.1, j;g, and 1.3 indicate that some populations grow rapidly
from certain 1nit1al.popuTation sizes. From this realized gfowth,‘it
can be inferred that the ﬁopuldfiun‘is not at a level Qhere some resource
factbr {such as a limiting nutrieﬂt‘ur a r@stricfed space reguirement) is.
drastically hindering the growth of the population. A reasonable but
taotplogical definition of a population densiiy which promuigates at a
figh growth rate is that there'are no censtraints fo severely limit
expansion of the population. There exist certain constraints on densities
~ of this type: in particular they need not be very low densities (compare
Figures 1.3a and 1.3b). The Allee principle states that undercrowding
_cén be a limiting factor in population regulation. Limitations at low
poptilation denéities might occur if the population is so widely dispersed
that reproductive contacts are restricted and infrequent.

One of the simplest ways to model a rapid growth employing a minimal

number of parameters is to fit it exponentially. Two parameters are required

nere: one to indicate the initial size of the population and the second
to represent the rate of increase.

How do High Density Populations Grow?

As in the case of a growing population, our terminology describes a
situation that is relative to another comparative one. A high density

population refers to a population that is limited by the availability of

—
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Phasianus colchicus torquatus)
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of its development; plotted arith-
metically against time (data of Einarsen).
Broken lines indicate hypothetical
exponential growth. (Hutchinson)

Fig. 1.2 Estimates of population of
the collard turtledove { i
decaocto) in Great Britain since 1955.
logarithm scale, Note exponential
increase in first 8 years, with rapid
decline in rate of increase after 1963,
{Hutchinson)
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Fig. 1.3a World population in the first two milennia of the Christian Era.
Figures represent billions of persons. The dotted portions of the curve
represent estimates of what may occur in the near future if present rates

The consensus of prasent opinion foresees a human poputation

centinue.
of 6 or 7 billion by the next millennium, (Boughey)

225108 '

175108
§
= 125108
q .
-
= -
[+
I
a 75-10%

25108
) [ R S WO R T S M R
§700 1800 1900 2000 2160
YEAR

Fig. 1.3b Logistic {solid line) fitted to the humam population of the U.S.
from censuses up to and including that of 1940, by Pearl, Reed, and Kish,
with actual points from later censuses, following the broken line.

some resgurce. The degree of Iimitation should affect the growth of
the population until there is a balance between availablie limiting resource
and population utilization of that resource. This should Tead to a steady
state population assuming that no other timiting factor becomes critical
or another ecological change occurs.

Figures 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, and 1.13
all reflect an exponent-type growth for some low initial densities and,

then, a saturation effect at high densities.
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Fig. 1.4 Logistic growth of colonies, {a) of Cyprian and (b} of Italian
cultivars of the honeybee (Apis mellifera) near Baltimore, Mary-
land, showing almost identical values of K (76, 328, and 74,000)
d:tﬁr?infd ultimately by hive size. (Bodenheimer, from the data
of Nolan}.
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Fig. 1.6 Growth of a population of
Paramacium caudatum, fitted to a
Togistic curve. (Gause). .
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Fig. 1.8 Growth of populations of Drosophila melanogaster, (a) wild type
in a pint bottle; {b) stock homozZygous or hemizygous for five recessives
including vestigial wing, in same-sized bottle; ?c) wild type in a half-
pint bottle (Peari).
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Fig. 1.5 Growth of SaccharomyGes cerevisiae 5L .
as plotted by Carlson. This curve, plotted
arthimetically, seems to be the firsti one Y
for an actual population drawn to show =
the sigmoid form. Sk
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Fig, 1.7 Growth of Escherichia coli L 7
at 37°C in peptone broth, from the
data of M'Kendrick and Kesava Pai, [
with their calculated curve, which
they plotted logarithmically, for o am Lo
which r is taken as implying o 1 2 3 4 8 & 7 8

division every 22,3 minutes.
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Fig. 1.9 Sigmoid curve of
settling of populations of
Balamys balanoides on the shore
of Great Cumbrae Island in the
Firth of Clyde, April-May 1954.
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shown for three Tevels relative
to mean tide level (Connell).
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Fig. 1.10 Population growth of sheep introduced into Tasmania. The dots
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yariation in’Populations

Many variables, including environmental. and: genetic: fluctuations,

can change the behavicr of a population. Figurses 1.10, 1.17, 1.12, and”

1.13 represent populations that exhibit some oscillatory behavior.

Figure 1.14 represents a Drosophila population with some genetic regulation

present, Figures 1.15, 1.16, 1.17 and 1.18 demenstrate that oscillations

are a viable behavior made for some populations.
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Fig. 1.14 Populations of Drosophila birchi, reared at 19 C: one (o}
from Popondetta, New Guinea; and one (x) a strain derived from mass
hybridization of the Popondetta straim and of another from 200 km north
of Sydney, Australia. The sciid lines are the regression lines on
time, starting 17 weeks after initiation of the populations. (Ayala)

Fig. 1.15 Shelford's {1943) data on the lemming population in the
Churchill area in Canada (expressgd as numbers of individuals per

hectare} .
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Fig. 1.16 Changes in the abundance of lynx and snowshoe hare. This
is a classic example of the cyclic oscillation in population density
and itTustrates the correlation between fluctuations in numbers
of prey (hare} and numbers of predator {Tynx). After D.A. MaclLulich,
University of Toronto Studies; Biological Series No. 43. 1937.

pp. 1-136,
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Fig. 1.17 Fluctuation in populat1on density of interacting populations
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of a host, the bean weevil Callosobrychus chinensis {solid line)

and a paras1te, the abracenid wasp Heterospilus rosopidis (broken
1ine). From S, Utida, Ecology, 38: 442-449 {1957,
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Fig. 1.18 Fluctuations in a blowfly pepulation (Nichoison).

Why Don't all Populations Behave Nicely?
any alt

The sampie populations presented in this section have behaviors
that range from nice (Figures 1.4 - 1.12) to wild oscillations {Figures
1.36 - 1.17). There are many factors that determine the behavior df a
population. Ironically, while the biology of a population is important,
it is often secondary to the ecological system of which that population
is a component. If a population goes to extinction (and they do with a
high frequency) the void it leaves in the ecosystem does not go unnoticed.
Through a process sometimes called ecological release, another population
{or combination of popuTations) will assume the function of the removed
population.

To understand the dynamics of a population is to understand the
ecosystem of which it is a component, At the current state of knowledge
of population ecology, and ecosystem ecology, there remains much to be

done before the governing principles of populations can be delineated.
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Discrete Models of Populations

2.0 Introduction to Exponential Growth

A population in which generations do not overlap or population size
is not large should probably be modelled in a discrete manner. Suppose
that the time variablie is scaled so that the generation time is one and
let ¥y, fepresent the number of individual organisms in the papulation at
time n. Then, the population size at time n + 1 is given by a conseryation
Jaw as

(2.7 w41 = ¥p t by - dy, * e,
where the terms on the right in (2.1} are respectively, the populaticn
size of the previous generation; the number of individuals born in the nth
time interval; the number of individuals that died (or were removed for
example, by predators) in the nth time interval; and the net number of
ingividuals that emigrate from and immigrate to the region defining the
population.

et r=1+b - d; r may not be constant over an extended period
of time. It varies with the environment, food supply, predation pressure,
and many other factors that can affect the population. Let's explore the
modelling effects of various hypotheses about the population as they are
reflected through the net growth rate parameter r.

If r is & function of the population size, the model (2.1) is said to
have & density dependent garowth rate. To be biolegically realistic models

of growth processes, certaim restrictions on r are necessary. For example,

suppose that the net exogeneous input, e, is zero for all n, and r(yn) Z g > 1

or rly,) §8<1 for all n (or for all n sufficiently large). These

nypotheses have important fmplications for the growth of the population.

22

e n
If rly) 2a>t, then y .y =rlydy, 2oy 2% Yo w=1,2,..
Thus, Tim ¥y = @ and the populatiocn grows beyond bounds impesed by

n=+w
physical constraints. The alternate hypothesis, r(yn) <6 <1, results

in extinction of the population; hopefully, no population is operating under
these conditions.
The hypothesis above that led to exponential growth for the model

yields conclusions that are, at best, ridiculous. MacArthur and- Connell {

- demonstrate this by considering a single organism, such as a bacte}ium, that

reprdduces by dividing into daughter organisms every twenty minutes.

Assuming exponential growth, this bacterium and its progeny can produce a
population that is one foot deep over the entire earth in a 36 hour period.
This population would, in a few thousand years, weigh as much as one universe
anid be expanding outward at the speed of light.

Braun (1975} has performed some interesting calculations about
exponential growth and the world's pepulation. Although done for the differ-
entfal equation amalog of the difference equation we are considering, he
finds, by assuming people are able to live as members of aquatic communities
as well as terrestrial ones, that in approximately 500 years, each of us
will have only 9 feet of surface area; in 600 years, only one square foot
per person; and in another 35 years, someone will have to stand on each
person's shoulders. . ‘

Clearly, with these kinds of numerics, there is something that is
wrong with the model. 1Is there anything that can be saved? There is
certainly evidence that populations can explode and, even some evidence,
that this explosion can be exponential for at least a finite time period.
Swarms of grasshoppers, massive outbreaks of agriculture pests,

multitudes of tent caterpillars, gypsy moths, and spruce budworms provide
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examples of the occurance of exponential growth. Many of the populations
illustrated in Figures 1.1-1.13 exhibit an exponential growth for low
densities of the populations. Minimally, we observe that at small popu]afion

sizes, the population growth can be approximated by an exponential function.

24

2.1 Density Dependence and Delays in Population Models

Returning to the model (1) and noting the above restrictions,
what form might a generic density dependent growth rate take? If population
sfze is small, the organisms could be sparsely distributed in its habitat,
mating encounters could be infrequent, survival and development might be
difficult. This could be reflected in r(yn) by requiring that r(yn) <1

if ¥, < 1. On the other hand if ¥, > = 1 overcrowding is Tikely

-since intraspecific competion will be strong and the assumption r(yn)'< 1

seems reasonable. As we noted above there should be a population size
where r(yn) > 1, otherwise extinction is automatic. Figure 2.1 illustrates

a generic density dependent growth rate.
r

m

m
[V

L4

Fig. 2.1 A generic per capita growth rate reflecting
affects of density dependence.
The points E, and Es of Fig. 2.1 where r(ﬁ’) = r(Es) =1 are

important for the analysis of

(2.2} yy 4 =vly) v
namely, they are equilibrium values of (2.2) where the population size
remains constant for all n (r (yn) = 1), n=1,2,... The fact that a

state is at equilibrium tells Qery little about the dynamical system. A

needle standing on its point is in equilibrium but it probably won't stay
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there long. Certain stahility properties of the equilibrium would be If 1 satisfies either of the fnequalities -1 <i <o or o0<2 <]
desirable information. then E is locally asymptotically stable. If |x] > 1 then the

A standard technique used in the stability analysis of an equilibrium equilibrium is unstable. Translating this information to E , since
is that of Tinearization. This process is now briefly described. Let E r'{€,} > o, this point is unstable. At E_, some information about
represent an equilibrium. Translate the equilibrium to the-origin: . relative magnitude of E r'(E.) is needed to guarantee asymptotic stability,
¥o - E=7Y,. Using Taylor's Theorem, linearize the system ignoring all For example, if Esr'(Es) > -2 then linearization indicates stability
higher order terms. Study the linearized system for stability since most results.
nonlinear systems behave locally about an equilibrium 1ike an associated When the actions of a previous generation regulate the growth of
linear system (Coddington and Levinseon, 1955). population, the resulting mode! might be governed by the model

Employing this procedure leads to
_ (2.4) Yos1> My Py m=102, .
rly,) ® v(E} + p{E) (y, - E) =1 - Er'(F) + r{E)y ;s
The equation (2.4) is a second order difference equation. As a first
hence, the resulting linearized equation is approximation to study the behavior of (2.4}, suppose an equilibrium

E exists; that is, v (E) = 7. Linearization results in the equation

(2.3) Yo, rY¥, n=1,2, ..
{2.5) Yoeq-Yo- EF(E)Y, _;=0, n=1,2,...
where % =1+ »'(E) E. The asymptotic behavior of the first order
equation (3) with constant coeffictents is indicated in Figure 2.2; the The behavior of a general second order difference equation with constant
sotution of (3} is Yn = YD A", n=1, 2, ... coefficients is expressed in Figure 2.3,
The numerical value of Er'(E) again determines the growth or
decay of solutions starting close to E. For example, if r'(E} > 0O,
unbounded damped exponential exponential .
oscillations oscillations decay growth - \ growth occurs; if 0 < -Er'(E} <% decay results; hence stability can
_; 6 ; ’ be determined in this manner,
Period Period Figure 2.4 compares the differences in behavior of solutions difference
two. one &
. euqations due to delay effects in the growth rate, In general, this
Fig. 2.2 Description of the asymptotic behavior of the first order
difference equation modelling exercise indicates that the population might be regulated

Yn +1 -2 Yn as a function of &,
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more efficiently by using current data. It is also apparent that additional

delays induce oscillations.

c ;o .
Vi b ‘LIC 1 1 1
P one ] ! '
y; period osc1“IIatory: oscillatory imonotonic ! monotonic
G‘,wm? O cillafions y ?ﬁ]iy growth i decay E decay i growth
/ ; - . ~Er*{E)
+ ¥
/ two i ; L oscillatory!
+| : V4 period monotonic :monotonicioscﬂlatory: osc:‘w.:ho y:
| QE'Iay growth i decay ! decay ! 9 !
DeC“‘an“a |0&‘tinn‘t‘:on: in ¥ : i g t
J"ﬁ"‘ﬁ_ — = = M L — ek Fig. 2.4 A comparison of the effects of delay in the difference
Growth ' Oscillatipns equations X =r{x }x and x =r{x, _ ;) x in
n+l RN n+1 n-1 "n

Deco.a' terms of the parameter Er'(E).

Fig. 2.3 The asymptotic behavior of the homogeneous second order
Tinear difference eguation

Y +an+

n+2
as a function of its coefficients.

1 n
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2.2 Discrete Logistic Equation

One of the simplest models that contains a formulation which represents

effects of overcrowding is when r is a linear function of population

size: r(yn) =1+r, (E - yn). Because of the name of the continuous

E

analogue, this equation is often referred to as the discrete logistic
equation. Scaling the variable y by the transformation Zn =r, {1+ ro)'1

gives a canonical form

(2.6} A =al, (1 - Zn)

n+1

The behavior of solutions of equation {(2.6) is a function of the parameter
«. This behavior,while it is complex and fascinating, also has several
disturbing attributes. Only for 0 < a <4 does (2.6) make sense with

I, measuring a nonnegative quantity. If o <0, then small Z0 results

in Z1 < 0; when « > 4, then small Z0 forces I, to be negative.

For 0 <a=< 4 the sclution sequence Z n=0,1, 2, ... does not

n!
change sign and remains less than or equal to one provided ZO satisfies

0 <7,

To study the sensitivity of the sotutions to changes in the parameter

« i1t is convenient to decompose the interval [0, 4] further. For 0 <o <]

n

extinction of the population can occur since Zn b1 %o Zo: hence,

1im 2" = 0.

n -

When o« =1,2 =1

n or N = 1, 2, ...

For 1 < o < 3, as may

be demonstrated by linearization, Z_ = a- is an asymptotically stable

n

equilibrium. The character of the approach is monotone decay if 1 <o < 4

and oscillatory decay for 2 <o < 3. The value o = 3 results in a

In

1/t
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neutral oscillation about the equilibrium.
The solution behavior when_ a > 3 becomes more interesting. There

is no Tonger just a single stable equilibrium that governs the dynamics

of the population; periodic solutions can emerge. The existence of a

neutral oscillation of period two and its stability is now discussed. It

is convenient to use {2.6) and write

2

(2.7) z

_ 2
n+p- Zn [1-(2+1) Zn t2al,

-a2?]

Suppose Zn bounces between V, and 'Vz then when Zn =V (either V1 or

Vo)s Z,, 5 =V. This leads to

oV - 2aVt{a+ )V (@Z-1) =0
One root must be {a - 1)/ o so

(v - 221y (e - (as DU+ (e =0

The quadratic factors into roots

The assumption that o > 3 implies both roots, V] and V2’ are real; in
fact, it can be seen that they are positive. These oscillations exist
but are they stable? For example, if Zn is close to V, does this mean

that Zn + 2 is closer to V? For certain «, this is the case. From
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(2.7), the relationship
I a-] £
Tnwa = In=-%" I (2, - S5 (2, - V) {2, - V) /,fé”' —s
results. MWriting Zn =¥y + P, linearizing, and doing some algebra, & ; L ‘ S{{‘u
the equation .
, -
A
P& 2 = [T1-({a+1) (a=-3)] P

n

~
=3

1 ) 3 1+

ts found to determine the stability of V;. Hence, o must satisfy Fig. 2.6 A bifurcation diagram for the discrete logistic equation.

. S indicates an asymptotically stable solution while u
0 <(a+1)(a-3)<2 for 3<ac1+J6) for local asymptotic indicates an unstib?e solution.

stability. A similar argument establishes the stability of VZ‘ The

asymptotic behavior of equation (2.6) as discussed to the present is You can undoubtedly predict what happens next as « fncreases. A periodic

indicated in Figure 2.5.

mongtone solution of period 8 arises, then one of period 16, and, in general, one
. decay with oscillatory decay
gggg;ogg g:g;}]:gory period 2 with period 2 of period 2", This all transpires on a compact interval and there is
xS A so]utigg//f"solution
decay to zero equilibrium . equilibrium . - 2 limit point on the o axis where this sequence of periodic solutions

+ + —r O
0 1 2 3 /ﬁ 1 +V&

{a+M{e-3=1

terminates. -The value of a = 3.570 seems prevalent for this behavior,

although others have different numbers (e.g. Roughgarden). This value

Fig. 2.5 Asymptotic behavior of the discrete logistic equation of o signals the onset of periodic solutions with odd period, beginning

Zpwq =@ L (1= Z.) as a function of the parameter a. with very long periods, and as r increases, the period decreases to

three. As r continues to increase, periodic solutions with arbitrary

_ = _ . . . .
At o =1+Ve, the onset of double-doubTe oscillations occurs; that is a period and asymptotically aperiodic selutions occur. The behavior of this

periodic solution of period 4 emerges. This is expressed in a classical innocent Tooking equation has been termed "chaotic". Several authors

bifurcation diagram in Fig. 2.6. MNotice the traditional exchange of have indicated the outcome of this deterministic population model should

stability at the points of bifurcation. be regarded as stochastic (e.g. May, 1976).
There do seem to be some redeeming features of the model (2.6).

Smale and Williams {1976) have demonstrated that for almost all « € (3,4)
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there exists a single solution that is an attractor for almost all
trajectories.

The remaining case o = 4 is of interest also; not so much for its
unusual behavior, but because it can be solved analytically (Steeb and

Bromba, 1982}. The function

—

Z, = 5 - %—cos (2" arccos (1 -2 xo))

s a solution of (2.8} with o = 4. This solution ascillates, except for
N sos 1 1 i

the initial conditions ¥g =F -7 COS %, for n and m positive

integers, in which case it tends to a limit.

24

2.3 Reflections on the Relevance of Discrete‘Models-tofpopulation Ecology

As May (1976) has pointed out, if models with chaotic behavior are relevant
to populations, then wild oscillations of a population need not necessarily be the
consequence of random envirenmental fluctuations but might be intrinsic to the popu-
lation. An important question is “Do biological population exhibit chaotic beha-
vior"? Hassell et at (1976) find little evidence to support an affirmative answer

certainly the question is unresolved at present.

The utility of chaotic type models has been questioned by several authors.
Smith and Mead (1980) employed a stochastic model and conclude that deterministic
behavior 1is not biologically meaningful. 0'Neill et al (1882) use an error analy-
sis approach to demonstrate that uncertainty in growth rate is as important in de-
termining the regularity of the system as the mean value. In spite of the negative
aspects of these works on models with a rich spectrum of behavier the resulting

discussions have been enriching to both population ecology and mathematics. ‘

2.4 Summary

Discrete models, discussed here ﬁs difference equations, appeaf to be natural
models to use to estimate the size of a population. Difference equations are in-
nocent looking but they can be dynamic monsters. While the bhehavior of some popu—
lations can be mimicked by these simple models, it is not clear if these models
are extremely useful teols in population ecolegy. The behavicral spectra of the
simplest nonlinear mcdel is extremely broad. Bifurcations can occur with extremely
small perturbatien of parameters. This phengmena of chaotic behavior is not unique
to the discrete logistic equation. These are, in the literature, models with other
than the logistic which exhibit chaotic motions’ and do not have some of the defi-

ciencies, such as a restricted parameter range for biological significance, of the



‘Logistic, These include the widely applied Ricker model

. 1 - X/
xt+1 L ©XP r( Xy/K)

among others (See May {1976); Levin (1981}).

Chaotic behaviwe -is,.mf.;aitricted_ta difference equations, It can occur
in ordinary differential egwations (Gilpin, 1979) but not for systems of order less
‘than two. .This behavior can be demonstrated for first order delay-differential

equations (Mackey and Glass, 1977).



