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ON THE ANALYSIS OF ECOLOGICAL TIME SERIES

Louis J. Gross

INTRODUCTION:

As a science which is uitimately based on testing hypotheses ecology
makes use of a variety of statistical techniques to carry out analysis of data
from field and laboratory observations. Aside from applications of standard
sta;istica1 methods such as t-tests, F-tests, and analysis of variance, there
have been very sophisticated applications of principle components analysis,
factor analysis and other multivariate approaches, especially in the analysis
of components structuring plant and animal communities {1}. There exist whole
volumes devoted to statistical ecology {2), and any overview at this area
would require considerable time, Instead what I will attempt here is to give
some insight into cne area of statistical analysis that arises frequently in
ecology, namely that of time series. For our purposes a time series is a
collection of numerical observations arranged in a natural order, such as each
observation being associated with a particular instant of time or point in
space. The observations may consist of vector quantities in which case we have

& multivariate time series. Some examples would include monthly total rainfall

occurring at a particular weather station over several years, continugus
measurements of any environmental variable (temperature, wind speed, irradiance,
etc.) at any fixed location over a day, yearly population size estimates
obtained from census data, chlorophyll counts of phytoplankton concentration

along a transect in an ocean, and diversity measurements along a latitudinal
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gradient.

Time series may be classified in several ways, one of which concerns
whether the data is taken continuously in time (or space} or whether observa-
tions occur at discrete intervals. Continuous ecbservations arise in Eonmuni-
cations and signal theory, but are somewhat rare in ecological practice. For
a discrete time-series, the observations generally are taken over equally
spaced intervals; the analysis of non-equally spaced data becomes considerably
more complicated. A time series may be one- or multi-dimensional depending
uport where the underlying ordering accurs. For example, the distribution of
temperature throughout a lake could be described as a #4-dimensional time series.
In practice, the analysis of multi-dimensional probiems is very complicated (33,
and I will here mainly deal with only the simpler, one-dimensional case. In
any time series, successive observafions are generally not independent, so one
must take into account the time order of the data. When successive values are
dependent, future values may be predicted from past valtues. If they can predict
exactly, the series is deterministic. If the future is only partly determined

by the past, the series is stochastic.

OBJECYIVES QF TIME SERIES ANALYSIS:

The types of analysis performed on any particular time series will depend
upen the objectives desired, These objectives may include (4):

{i} Description - We may desire to determine 1if there is a "trend" in
the data and if so, determine §ts form, There may also be seasonal effects or
other periodicities, and gutliers -~ meaning data points which are far away from
most.

{ii) Explanation - Here, if observations are taken on two or more variables,
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it may be possible to explain variations in one time series by those in another.
This may involve setting up a model of the system and using the data to test
the model.

(i1} Prediction - Given an observed time series, we may want to estimate
future values. This may be done without requiring any attempt to explain the
data as in {(ii), by assuming the basic mechanism generating the data doesn't
change through time, allowing statistical prediction methods to work. For
example, we may want to estimate future population sizes, given data over several
past years, without building a comprehensive model of the population dynamics,
which could well require extensive biological krowledge of the species involved.

(iv) Control - Here we may wish the time series tg have certain values in
the future when we have control over part of the system. This is the usual
probiem faced by witdlife managers in setting hunting or fishing limits in order
to maintain populations at the desired levels.

In actually analyzing a particular series, several points are worth con-
sidering., First it is necessary to decide what questions you wish to answer.
Given this, the techniques which may be used to answer these questions should
be determined. It is only after this that data should be taken, in order that
it will indeed be done in an appropriate mannef for your chosen tecﬁniques to
apply. In practice, the data is often taken with little regard for the analysis
techniques to be used, which can lead to great difficulty in actually performing
the analysis. For example, many techniques work best with evenly-spaced data with
no missing values, and it would be worth extra effort to obtain data in this
form during the observations. Once the data is cbtained, what is perhaps the
simplest, most useful technique is to merely graph it, Often this will serve

to guide further analysis.

TECHNIGUES QF ANALYSIS:

One way of structuring the field of time series analysis is by considering
these technigues which have been most useful. As with any subject of analysis,
however, it is preferable to keep an open mind about which techniques are most
appropriate for your purposes, rather than sticking to one approach no matter
what. Time series amalysis is indeed a field in which breadth of knowledge
of many techniques is éssential. Several excellent texts are available to
cover these topics (4,5,6}, and I here give only a brief overview of the

tecﬁniques which have been the most useful in ecological applications (7).

TIME DOMAIN ANALYSIS:

The first techniques I discuss concern analysis of the data as ordered by
time (or space), in contrast to frequency domain analysis which utilizes a
transformation to frequency-space. One of the prime objectives of time domain
analysis js to determine trends in the data, which we define as a long term
change in the mean. One must be careful about trend analysis since what is a
trend in a short time series may turn out to be part of an oscillation when a
longer time series is available. To measure trends it is often appropriate to do
a curve fit, or regression, so that if Xy t=20,1,...,N are the data points,
and Y¢ = f(t) is the reﬁression curve, then the parameters in f(t) are

chosen to minimize E = § Lyt - xt)2 w(t) where w(t) 1is a weighting
t=0 :

function. The simplest case is a linear regression in which ¥ = at +b-,
Far more complicated forms may be used however, see tor example (8) in which

& sum of an exponential and four sinusoids is fit to data on atmespheric CO2
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content. Often the choice of Y is an iterative process with successively
better regression curves chosen until the least-squares error E is below some
acceptable level.

A variety of techniques to efther display a trend or remove it, involve
the use of filters, The simplest of these is the linear filter, which is a

new time series given by

5
Yt © =Z. B Xppr

Here the ai‘s are chosen to meet some desired goal. In the case Z a, = 1,
this is called a moving average, which may be thought of as smoothing out local
fluctuations and estimating the local mean. Another type of filter is obtained
by differencing, e.g. Yo 5 Xpqp " R T th . This differencing may be repeated
a number of times if desired, and is typically used to remove trends. The above
smoothing operations cause data to be Jost at the beginning and end of the

series. One alternative is to use an asymmetric filter

q
'yt = _E aJ- Xt_j N
J=0

The case of exponential smoothing takes g =« and a; = all - a)?’. It is

important to keep in mind that any filter will cause certain frequencies in the
data to be emphasized and others to be deleted.
Some definitions now are necessary:

Defn. The autocovariance coefficient at lag k of a time series Xy is

1 M=k
N tél (xg = X) {xgyy - %)

)

Sk

N

where X = % ¥ X, is the mean of the series. Note that c, is the sample
t=1

variance of the series.

Defn. The autocorrelation coefficient at lag k s

Ck

r  —

k g

Here r, measures the degree to which observations a distance k apart are
correlated, It is the same as the usual correlation coefficient, only calcu-
lated using the same string of data, The correlogram is a plot of re ¥s. k

and the analysis of correlograms is often the heart of analysis in the time

domain. The approach is to first estimate the trend and seasonal effects,
subtract them out so that all that is left are residuals, then analyze the
residuals to see if they fit any particular prdbahility model. I now discuss
some of the standard models.

Let {Xt} . t=1%,1,2,... be a stochastic process on a prebability
space (@, ?ﬁ P) . He define the mean function , p(t) = E[xt] , the variance

function cz(t) = E[(xt - E[Xt])zj , and the autocovariance function
v{t),ty) = E[(Xt] - u(t1))(xtz - uity)d .

Defn. A stochastic process {xt} is second order {or covariance or weakly}

stationary if E[xt] =y, E[Xf] <o and y({t, t+ 1) =~v(t) , t.e. the
mean and variance are time-independent and the covariance depends only upon the

lag. The autocorrelation function for a weakly stationary process is

pf1) = ﬂ%}
@




For our purposes, the most important property of stationary processes is that
they are ergodic:

Thm, {Weak Ergodic) (9) Let {X,} be weakly stationary and Tet
Y£ = % (X] Xy Lk Xt) . Then there exists a random variable X such that
. T w2
Tim E[(Xt -X°1=0.
t -+

In addition X is constant, X = E[X;1 , if and onty if

lim 2
N+

=|

N-1
I vlvi=0.
v=0

Under the conditions of this theorem, we can estimate the mean of the process
{xt} by using time averages, rather than having to take several different
realizations (or time series} of the process. Similarly, if the process is
Gaussian, we can estimate the covariance function y(1) from a single time
series. Ergodicity.refers to the equivalence of time averages and ensemble

or sample averages. A similar theorem giving convergence almost surely rather

than in mean square requires strict stationarity of the process.

SOME_PROBABILITY MODELS:

Some of the typical models include:

¥. Purely random process. Let Z, » t=1,2,... be a sequence of mutually

independent, identically distributed random variables. Then E[Zt] =n ¥t

0 for k>0
and (k) = a® for k=0 where 02 = Var(Zk) .

Thus {Zk} is weakly statiomary - it is sometimes called discrete white noise.
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2. Moving average process. Let {ZtJ be a purely random process with mean 0

and varfance 02 . Then Xt is a moving average process of order m if

K= BoZe v By Zegt oo By Ty
2™ o2
where {B;} are constants. Then E[X,]=0, Var(x) =g ‘EO By and
: 0 k>m =
o M=K .
v(k) = £ a 120 By By k=0,1,2,....m
Y{-k} k<0

Thus {Xt} is weakly stationary.

3. Autoregressive process. Let {Zt} be purely random, mean 0 , variance

02 . Then Xt is autoregressive of order m if

{*) Xp = oq Xy +_a2 Kpop toees o Xy L+ 7

Here xt is regressed on past values of the process. It is clear that E(xt) =0,

and to derive conditions for stationarity, assume Xt is stationary, multiply («)

by Xk » k>0, take expectations, divide by Var(Xt) to get

p(k) = % plke) + ... + ar plk-m) for all k>0,

{Yule-Walker equations). It can be shown that {Xt} is stationary if p(k) +

[=)

as ke, whichwill hold if a1l roots of y" - ap Y™ < ay™2 - L. - o
are less than 1 1in magnitude. Bulmer (10) uses a first order autoregressive

mode} with 2 sinusoidal trend term to analyze cycles of snowshoe hare and Tynx,

.



4. Mixed autoregressive-moving average model (ARMA). Here {Zt} is purely

random, and
xt = o xt_] + .., 0+ o xt_p + Zt + B Zt_1 L Bq Zt-q

where {a{} and {81} are constants. This type of model has been used to
estimate parameters in a linear compartment ecosystem model (11). See (6) for

its use in forecasting.

5. Autoregressive, integrated moving average made]l (ARIMA). We take the
dth

-differences

W=V X =¥ (v ... ¥ Xt) s

then the model 1s

Ny =og Me g ¥ bop Wy + 2 4By 2y g+ v BT
The use of differences here tauses the original series to be detrended. ARIMA
is extremely useful in prediction problems (5). However, there can he errors
developed since this is a linear model and the differencing may not adequately
remove the non-stationarity of a non-linear model (12). Successful results on

forecasting mosquito populations have been obtained (13).

A general approach to estimation in the time domain (here estimation refers

to deciding a proper model and its parameters) is to detrend the series, construct

the correlogram, and then compare the correlogram to those from a variety of
models of the above type, to see which best fits the data. This may well be an
iterative process, and a variety of approaches to estimating parameters once a

modet is chosen are available {6). Since all the above models are Tinear, they

have limitations, though some extensions of them to non-1inear cases have been

made {14).

ANALYSIS IN THE FREQUENCY DOMAIN:

As a counterpart to the above time domain analysis, we may consider the
various frequency components which make up a particular time series. This is

called spectral analysis, and is based upon Fourier series techniques. If a

time series appears to have periodicitieé at certain known frequencies, then

it might be modeled as
n
X o= igl Ry cos(wit + 61? + 2

where {Zt} are i.i.d. random variables. See (8) for an application to
striped bass catches. The general anmalysis follows from:

Theorem (9). Fbr a real-valued weakly stationary stochastic process with
auté?ovariance v(k} , there is a mongtone increasing function F(w} ,

called the spectral distribution finction, such that

v(k) = Iﬂ cos wk d{F{w) , F{w) =1 - F{-w) .
-

. ‘
Here v(0) = 02 = J dF(w) , so we may think of F{w} as the contribution
0

to the variance of the process caused by freguencies in the range (0] .
If F(w) 1is differentiable, its derivative f(w) 15 the spectral density

function, or power spectrum, and
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fw) =1 § oyl e K
K= —oa
Thus, for a stationary process, the power spectrum may be estimated once the
autocovariance is known.

Because & time series consists of discrete sample points, it's obvious ona
cannot expect to see variations in the data which occur on a scale smaller than
the sampling interval. If the interval between samples is At , then the
highest frequency we can see is fN = §%f » the Nyguist frequency. Simitarly,
since we only sample over a finite time, we cannot see cycles which are on a
time scale Tonger than the total sampling interval. These facts may put severe
Timitations on what time scales we can detect and so should be taken into
account before the data is collected. In general, the determination of
sampling intervals for ecological systems is quite difficult (15).

In order to obtain a consistent estimate of the power spectrum, one technique

is to transform the truncated autocovariance (5), to obtain

n M
flw) = % {ageg + 2 k§1 A& cos wk .

Here {Ak} are a set of weights called the lag window and M < N 1is the

truncation peoint. A variety of choices of the lag window exist, along with
other estimators for f(w) . Spectral analysis techniques have been extensively
applied in phytoplankton studies {16) and are often used in an iterative approach

with time-domain approaches to detrend data (8).
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