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COMMUNITY - DYNAMICS IN A SPATIALLY
HOMOGENEGUS:ENVIRONMENT_

T Introduction to Communities

Populations do not exist as isolated entities in a physical environment.

They interact with other biological populations on a.reqular long term . .

basis and, because of these interactions, often coevolve as an ecb10gicai' o

unit, An assemblage of two or more biotic populations is called a
community. The simplest structure, one composed of two spéciés, and the .
possible interactions between these two components will be discussed first.
There exist traditional classifications of two populations in terms of
their interactions and this will be the point of departure for our notes.
These distinctions, however, are certainly difficult te make since roles

. can depend upon life cycle stage, environment, and other ¢ircumstances.

1.1 Predation
The resource-consumer interaction described previously is
an example of a more genera]'twn population interaction calied predation.
One population, called the predator population, utilizes the other population,
called the prey, as a resource. The association is traditionally
viewed as "beneficial" from the prey to the predator and as "negativistic”
from predator te the prey. From an energy flow viewpoint, a diagram of

this assectation is given in Figure 1.1,

\_i/
Predator Prey

Fig. 1.1 The signs represent the energy flow in the predator-prey
influence diagram.

From a modelling perspective, the predator-prey interaction can result

in a. negative per capita growth rate r in the prey population. If r
remains negative then extinction of the population should result. This
arrangement would not be beneficial to the predator population if it also
went to extinct%on. What is the purpose of predator-prey associations?

If there were not an advantage to the system, these interactions certain]y
would have gone to extinction by now. There are some cbvious system

bemefits; predation usually is heaviest on the most susceptible individuals

- in the prey population such as the young, the old, and the weak. The

removal of these individuals strengthens the prey population. There are

some, perhaps not so cbvious, advantages to predation, For example,
Dyer {1980) has demonstrated that grazing can stimuiate growth of the
grazed plant species. Even more remarkable is the manner in which this
astimulation occurs; the saliva of some herbivores can contain a hormone
that initiates.p1ant growth.

The way fhat a predator population reacts to a density of prey is

the predator functional response. Examples of the typical types of

functional responses that exist in the literature are those listed under
resource-consumer interactions (Section 4 in the Population Ecology Notes):

Tinear, sigmoid, and hyperbolic.



1.2 Competition

Section 2.1 describes the intraspecific competition between

1.3 Cooperation

Angther type of community which we shall consider is

individuals of the same population for a set of resources. If two species represented by the influence diagram in Figure 1.3.

must struggle for the same rescurces then interspecific competition

results. Again, from an energy flow perspective, an influence diagram ///,,.~i-ﬁ\\ﬁ*
representing interspecific competition has each component having a negative . ot
influence upon the other. (Figure 1.2) ‘Q\‘*=_1L——’////
Cooperator 1 Cooperator 2
,f//”‘__h~‘\\\3¥ Fig. 1.3 An influence diagram for energy flow in a cooperative
;\/' ] cormunj‘ ty. '

These cooperative communities exist for the mutual benefaction of each
Competitor 1 Competitor 2

cooperator species.

Fig. 1.2 An influence diagram for a community composed of two
competitors.

As we argued in the predation case, competition must eventually confer
some advantage to the system.
It is often convenient for modelling purposes to distinguish between

two aspects of competition: exploitation and interference. Interference

competition refers to a mechan'ism, usually behavioral, that keeps a compet-
jtor from using the available resources. Exploitation competition

occurs when a competitor actually utilizes the available resource.



1.4 Quantitive Predator-Prey Communities

Two of the figures in the Section 1.4 of the Population Dynamics Notes,

namely Fig., 1.16 representing the dynamics of the lynx and snowshoe hare and Fig.
1.17 on the bean weavil and the wasp, should probably be viewed as c::mmunit.i.es
not pepulations. There seems to be some guestion about the strength of the inter-
action between the lynx and the hare which prompted the word "probably" in the

previous sentence. The lynx is a predator of the hare but it is doubtful that
the predation pressure is of. sufficient magnitude to cause the oscillations of

the hare observed in Fig. 1.16 (e.g. Hutchinson, 1978).

Other classical laboratory predator-prey communities include the ciliates

Paramecium and Didindum. D.nasutum is considerably larger than P.candatum and

Didinium will in an unrestricted aquatic environment, consume all the Paramecium
and then go to extinction (Luckinbill, 1973). ljfoﬁhrig methyl cellulose to the
medium (which increases the viscosity of the liquid} and decreasing the food
supply of the Paramecium will allew persistence of the community (Fig. 1.4; from

Maynard Smith, 1974).

The oscillations present in each of these examples seems te be an important

characteristic of many laboratory predator-prey communities (although see Section
2.4).

Competitive Communities

Figures 1.5 and 1.6 represent the dynamics of competitive communities.

Figure 1.5 gives the time evolution of a community composed of Paramecium

aurelia and Glaucoma scintilians. The phase plane diagrams of several of these

communities are indicated in Fig. 1.7. This system is discussed in more detail

in Section 3.4.
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Fig 1.5 represents another classical example of competition - Parks bietles
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Figure 1.4. Coexistence of Paramecium aurelia (full line) and Didinium nasutum
{broken line}, after Luckinbill (1973). A, medium with methyl cellulose; B,medium

with methyl cellulose and reduced food for prey. In each graph, the upper full
line ia for P.aurelia on its own,

Figure 1.5. Upper panel, Paramecium aurelia
cultivated without (solid line) and with
(Broken line} Claucoma scintillans; middle
panel, G.scintillans cultivated without
(a0lid line) and with (broken line) P.aurelia;

bottom panel, phase plane trajectory. (Gause
modified).
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100 | Tribotium
N .
50 Figure 1.8 demonstrates the dynamic behaviour of a comminity of barnacles of
Cryraephilus Figure 1.6, ({a) Populations of the two grain the genera Balanus and Chthamalus who are competing for space in an interidal com-
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duced into the P.aurelia culture. Middle
panel, trajectories converging on a stable
00 point when P.aurelia and P.bursaria are cul-
~ tivated together. Bottom panel, trajectories

H when P.caudatum, much more sensitive to meta-~
belic products, is cultivated with P.bursaria

(Gause, modified).
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Cooperative Communities

The dynamics of completely cooperative communities are scarce in the litera-
ture. When cooperative communities are discussed many are mentiocned: lichen
(fungus-algae), clown fish - sea anemone, cleaner wrasse - large fish, ant-Acacia,
nitrogen fixing bacteria-legumes, mycorr hizal fungi-plants, and others. However,
" in none cof the standard tests I investigated is there any graphic illustration of

the dynamics of a cocperative community. Some theoretical aspects will be developed

later.

1

1.5 Two Species Community Models

Let xy =-x.l(t) and Xy = xz(t) be measurements of two populations
at time t; for example, they might denote population numbers, biomass,
or densities. It is reasonable to assume that the birth rate, B1., and

the death rate, D., of population x

i are functions not only of X but

-is
also the other population as well:

B; = Bi(x],xz), D,

i = Di(x.I,xz), i=1,2.

As another initial hypothesis, it is assumed that the per capita growth

rate is the difference between birth rate and death rate. The resulting

model is
i dx, _
7 " B 0geng) - Dy {xgaxp) = (k)
b dx, Dy
X, dt " Balxyaxp) = Dylxgaxy) = folxyxp)
ar

dx1
T = xifrxgx,)

(1.1
- dx

" xTa(x) 1%5)

For convenience, it is assumed that the functions fi have continuous
partial derivatives in the two dimensional nonnegative cone R, % R, This

particular form of a community model 1s called a model of Kolmogovov type.

Y3



The partial derivatives of fi determine the classification of the community.

These are given in Table 1.4.

bl

3)(2 BX]
Predation — +
Competition - -
Cooperation ¥ +

Table 1.4 The signs of the partial derivatives determine the
category of the two species interaction.
The partial derivatives afi/axi represent intraspecific competition
effects and represent density dependent interactions.

The Kolmogovov model has numerous properties that are useful in
analyzing behavior of the community. From the theory of ordinary
differential equations, we know that through each point in RE = R+ X R+
there exists a unique trajectory Sf (1:1}. The space Ri is invariant
for (le1}; indeed, by the uniqueness of solutions to initial value
problems, any trajectory eminating from the first quadrant in Xy=Xy
space, §R+ - {O}} X {R+ - E)}}, remains ther-é for all time. This has
implications when extinction is the objective of a study; there is no

finite time extinction for populations modeiled by (1-1).

13

1.6 Lotka-Volterra Systems

A simple form of fi is a linear function: fi(x].xz) =
a + bﬁxT + b2i*2' This traditional hypothesis results in logistic
dynamics in the absence of the interacting species and a mass action
interaction term. With a linear per capita growth rate, this model is
often called a Lotka-Volterra model in reference to the men who first

used it to study two dimensional communities.

2. Predation

2,1 Volterra's Principle

V. Volterra, in analyzing a problem posed by D'Ancona,
his future son-in-law, concluded that a moderate amount of harvesting of a
prey population can, on the average, increase the number of prey and,
at the same time, decrease the number of predators in the system. If
the level of harvesting is reduced the predator population will increase
and the prey population will decrease,

This result was obtained by using the model

dx1
T T oxley - byxy)

{2.1)
dxz

a = Xpl-ap + byx)

This system has two equilibria: I: (0.0), II: Eg , 81} . Linearization
b b -
2 1
shows that I 1is unstable; but that no conclusion can be drawn about II.
Hence, we must work harder to analyze II. Fortunately, (2.1} can be

written as a first order system and then solved in a ¢losed form by using

[N



the variables separable method. This leads to the solution

4 3

T B
X b.x

e 271 e 172

where: ¢ is a constant. It can be shown that this relation defines a
¢losed curve in Xy - Xy space and, as such, represent periodic solutions

of (2.1) each of which contains II in its interior. The equilibrium II

1
p
where p 1is the period of the trajectory. o

is the time average of each periodic trajectory: e.g. ay/by = = I P x1(s)ds

To obtain Volterra's Principle, suppese that harvesting is indiscrim-
inant and results in a fixed proportion (hxi) of both predator and prey

being removed. The model (2.1) with harvesting is

at = xlap - h - byxy)
2.2)

= xpl-ap - h +boxg).

The interior equilibrium of {2.2) is (aZ * h , - h) 50,
b b
on the average, indiscriminate harvesting resu1€s in an i*crease in prey
species and a decrease in predators.
If the prey species is desirable, as it was in Volterra's situation of
edible fish (prey) and selachians {predator), harvesting is desirable. On
the other hand, if the prey species is undesirable, as occurred with the

prey population of Cottony Cushion scale insects {Icerya purchasi}) and

the predator populations of a ladybird beetles (Novius cardinalis),

15

harvesting is not beneficial. This predator-prey system was causing little
difficulty for the California citrus growers until indiscriminate harvesting
by insecticide (DDT) was initiated. As predicted, the prey population

exploded and troubles ensued.

2.2 Asymptotic Stability in Predator - Prey Models
Harrison (1979}, expanding on a technique of Hsu {1978), has
discussed the global asymptotic stability of an equitibrium of a general

predator-prey model. The model is

dx-l
a = alxg) - flx)b(x,)

(2.3)
dx,
o = x)alx,) + elx,)

where f and g are positive on R ; a(x1) represents the growth rate
dye to all factors except predation; C(xz) represents the rate of increase
or decrease of the predator: n(x1) and b(xz) are assumed to be nondecreas-
ing functions; f(x]) b(xz) is the functional response of the predator and
n(x]) g(xz) is the numerical response of the predator.

Let (x1*, xz*) be a positive equilibrium for the system (2. 3) and

assume that

[n(xl) - n(x]*)l Exy - x1*] > 0, X1 # x]* :
[b(xp) = b(x, 1] [xy = x,°1 > 0, Xy F %y

Theorem 2.1 If 1n a neighborhood of (xl*,xz*), a(x])/F(x]} and
c(xz)/g{xz) are both nonincreasing with one strictly decreasing, then the

equilibrium (x]*,xz*) is asymptotically stable,

A



If, in addition to all previous hypotheses,

a(x } = b x2 )f(x) 0.< Xy. < x]

!
4
5 a(x)) < b{x, )f(ﬁ) {2; X<,
clxp} 2 -n(x,*)g(xz) 0 < x,<xy

*
c(xz) 5_-n(x]*)g(x2) Xg € Xy <@,

with the inequalities strict according to whether a(x])/f(x]) or

c(xz)/g(xz) is strictly decreasing, then (x]*,xz*) is globally asymptotically
stable.

Example: The Lotka-Volterra predator-prey system

T Xifay - Byyxp - bygxy)
at = *ol-ay * byyxg)
satisfies the conditions of the Theorem so the equilibrium
3 by - by,
B S ———E——B;E————- is globally asymptotically stable. The difference
21 21

between this model and Volterra's model is inclusion of a carrying capacity
for the prey species. The behavior of global asymptotic stability is

contrasted with the neutrally stable (periodid Volterra model.

\?

Indication of Proof of Theorem.

. The function

g - nix, X bis) - b
W) = [, 100 TR bl

X
1 Xy

. . . *
is a Liapunov function for (13-1). Since V can only be zero at X

Cor xz*, LaSalle's Theorem on the extent of asymptotic stability implies

- * * . ..
all solutions approach (x1 2%y } as t approaches infinity.

18



2.3 Ecological Cycles in Predator-Prey Models

Periodic variation in communities is & documented phenomenon
(Figures 1.14 - 1,18). Many of these variatfons do not correlate with
known periedic exogeneous forces such as diel cycles or seasonal cycles.
Some of these cycles cccur in predator-prey relationships; for example,
see Figures 1.16 {lynx-hare system) and 1.17 (wasp-bean weevil system).
Many explanations of cyclic behavior have been suggested ranging from
poor data to the hypothesis that the predator cycle has nothing to do
with the prey cycle. These points will not be belabored as it is my
purpose to demonstrate the existence of a reasonable community model that
exhibits cyclic behavior. To this end, the Kolmogovbv model {1.1) is
considered. The Lotka-Volterra model, with its simple nonlinearities,

cannot have a Timit cycle.

A subset of the following hypotheses can lead to cyclic system behavior.

(H1} of,
ax,

This is a portion of the assumption that the system is of predator-prey
type; (H1) implies that an increase in the predator population decreases

the percapita growth rate of the prey.

(H2) af

ax

1

~N

< 0.

This completes classification as a predator-prey system and states that

an increase in the prey population benefits the predator population.

19

(H3) of,

oz
BX-[

Density dependent effects are imposed independent of population densities.

An increase in the prey population has an adverse effect upon the prey

growth rate when there are no predators around.

(H4} of,

o < 0
Xy,

The predator population also is limited hy effects of crowding.
Ty . T
(H5) f1(0,x2 ) =0 for some %5 > 0.

There is a size of the predator population, sz, beyond which the prey

population is decreasing even when the prey population is small.

{H6) fﬂﬁcm)=0 for some ﬁc>0.

There exists a carrying capacity, x1c, for the prey population in the
absence of the predator population. For Xy > x1°, the growth rate of

the prey is decreasing by {H3}

(H7) fz(x]rp) =0 for some x1T > 0.

2.0



There exists a threshold prey level necessary to support the predator

population.

(H8} PR x]T

If this inequality is not satisfied, extinction of the prey population

will occur.

(H9} The equation f1(x],x2) = 0 can be solved uniquely,
via the Implicit Functien Theorem, for Xy = h(xl) where

hoeclo d, nbco, by = x]

. h(x%) =o0.
This hypothesis is, of course, related to (H3), but it is given to
specify the prey isocline. The curve X5 = h(x1) can be interpreted
as the carrying capacity of the predator population at density X
of the prey population.

2

T
%2

Fig. 2.1 The prey isocline defined by Xy = h(x1).

(H10) fz(xl,xz) = 0 can be solved uniquely for
/

1

%y = glxy) where g ESE][O,T }, @' >0, and g(0) = x]T

2\

Fig. 2.2 The predator isocline defined by x; = g(x,)

af] af]
(H11) xlEi;'(x]’XZ) + %, 5§E-(x],x2) <{

Mathematically, this condition states that the change in fl along the

outward normal vector eminating from the origin is negative.

3f
2
(H12) XIEET (x],xz) + Xy Efg (XI’XZ) >0
sz
. P
jSecer _
{H13) The prey cueve has a hump, Figure 2.3, (Rosenzweig,
1969)
Xy 4
e \\
Xa \
\\ .
> ~ 'I
C [
X

Fig. 2.3 The prey isocline has a hump.

2



This is an analogue of (H9) by replacing (H3) by (H3a).
¢
(H14} (x1 - X ) F] (x1,0) <0
(H15) (%, - x,7) . (O,%,) <0
2 2 1 4

{H16) {x5 = %,5) 5 (x1,0) > 0
These last three conditions guarantee that equilibria on extinction
axes are unigue.

Theorem 2.2 (Limit Cycles). Let f],f2 satisfy (H1), (H2}, {H3a),

(H4) - (HB), and {H13). In addition, suppose that the prey-predator

isoclines have the configuration in_Figure 2.4,

"Nz e,
* i /,7.—"
xz / :4‘
e / \

x © ¥ / %

2 \‘\
/ \
{ Y

1! B — *1
C
*1 *1 1

Figure 2.4

and that a +d > 0, ad - bc > 0 where

* BF] * *
B.:Xo‘ W(X],XZ)

* af] * *
E (x-l L] xz )
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o
i
>
—_

Then, system (8-1) has a limit cycle in R4?.

Indication of Proof

c

The retangle formed by the coordinate axes and the lines x, = X

1
and Xo = xzi where xzi is given by fz(xlc,xzi) = 0, The w-Timit
set of any trajectory, w(r+). in this retangle is a limit cycle. This
may be demonstrated by showing that m(T+) contains no critical point.
The equilibrium (x]*,xz*} is repelient; all extinction type equilibria
are hyperbolic. To eliminate the possibility of & cycle graph, note that

(k]*.xz*) cannot be in & cycle graph and if the extinction equilibria are

in the cycle graph, w(r+) is unbounded. Hence, m(T+) is a 1imit cycle.

Another closely related result is

Theorem 2.3 Let hypotheses (H1), H4), (H5), (HE), (H7), (H8), {H11),

(H12), {H14), (H15), and (H]G} be satisfied. In addition, suppose

f](0,0) > 0 [that is, for small populations of predator and prey, the

prey population increases}. Then, the predator-prey model (8-1) has a
unique equilibrium with positive components. [If this equilibrium is not
asymptotically stable there is a Timit cycle in R4+2 which is asymptotically

stable from the outside.

Indication ¢f Proof

For complete details see Alhrecht et al. {1972). The hypotheses
(H1), (H5), (H6), (H14} and (H15) imply the existence of a prey isocline,

24



X = h(x1), as described in (H9)}; similarly, the existence of a predator
isocline Xy = g(xz) with the properties as indicated in {H10) follows.
Since x1° > x1T, a single positive equilibrium exists. It can be shown

that any trajectory must cycle about the equilibrium. The limit set

coutd be the equilibrium or a Timit cycle which is stable from the outside.

Remark. Another mathematical technique that is employed to generate
cycles is a Hopf bifurcation. Waltman (1964) used this method to find

pericdic solutions to the Kolmogovov predator-prey system

dx]
ar = ¥ Filxgxg)

dxz
T = X Falxpaxp)

There are many recent results that generate cyclic behavior by applying a

bifurcation theorem ({see Freidman, 1980).

Example. Another two dimensional model that uses logistic dynamics
and mass action interactions for the prey population while the carrying

capacity of the predator is a function of prey density is due to Leslie
{1948). His model is

dx1 2
T T A% 7 bxT - byoxx,

dx
2. 2
F o L WA

25

This density dependence is probably best understood by considering the

ratic of the number of prey per predator. If xz/x1 is small {so that

there are many prey per pradator) then the predators grow exponentially.

If xZ/x]

js large {that s, there are few prey per predator), in par-

ticular, above a2/b2, then the predator population decreases.

The Liapunov function of Hsu-Harrison can be used to show that Leslie's

model is globally symptotically stable.

26



2.4 Do Predator - Prey Systems Approach Equilibria or Cycle?

Tanner {1975) studied numerous predator-prey communities
and found evidence of stable equilibrium communities and cyclic behavior,
While the majority of the systems he reviewed exhibited a dynamic behavior
that approached an equilibrium, there was some evidence for féctors that
determine cycles. A propensity for a stable 1imit cycle seems to exist when
the intrinsic growth rate of the prey population exceeds that of its
predators. A prey population with a relatively high growth rate in an
environment with a relatively large carrying capacity is needed for cyclic

behavior.

Table 2.1. Impressionistic summary of life history data for 8
natural prey-predator systems. (After Tanner, 1975).

Apparent
Geographical dynamical
Prey-predator location ) behavior
sparrow - hawk Europe equilibrium
point
muskrat - mink central North America equilibrium
point
hare - lynx boreat North America cycles
mule deer - mountain lion Rocky Mountains equilibrium
point
white-tailed deer - wolf Ontario equilibrium
point
moose - wolf Iste Royale equilibrium
point
caribou - wolf Alaska equilibrium
point
white sheep - wolf Alaska equilibrium
point

&1

2.5 Simple Foed Chains

A simple food chain is a chain of predator-prey communities where the dynamics
of a population is determined by those species occupying the preceding and sue-
ceeding trophic levels. For example, the chain composed of a nutrient, & plant
population, a herhbivore population, and a carnivore population form a simple food

chain.

A Lotka-Volterra model of a simple food chain of length n is

dxy

=x 80 =A% T %!
dt
dx
2 .oy (- _
—= X825ty %)~ a%,)
dt
(5.1)
i QRS -a X - e .
-l =3 0% ,0 * faetne2fee2 ) A <
dt -
dx, = _ X P
- ;h ¢ no * an.n—l gn—l)
dt

In the preceding model, all parameters are positive with the exception of all which

is nonnegative.

If the resource (lowest) level of the simple food chain has & carrying capa-
¢city then solutions of (5.1) with positive initial conditions are bounded. If
a11=0, then the unbounded growth of the resource is propagated throughout the sys-
tem. Firat, the case 311> 0 is developed; this model might be applicable in a
situation where a resource is limited in supply and all other trophic levels are

limited only by the available resource on the preceding trophic level.
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Theorem 5,1. All solutions of (S.1) with positive initial conditions are

bounded provided an> 0.

Indication of the Proof, The boundedness of the resource level component

is readily established by using the comparison principle.

V4
The function is defined by
w Jj=1 =1
(x} = X = a, i+l T a
A i, kel k) %y
J=1 i=t k=j
satisfies
af’
— (x{t) & - ulx(t)+b
dt
n-1
where m = min a b = max 2a_ - 77
jo' (x, (22, - 2 %, )/ ak+1.k)
1 éj in x k=1

1
Solving this inequality leads to
u{t) £ u(0) exp (-mt) + b/;{m

Since u is a linear funetion of xi' each component xi is bounded, The details

of this argument as well as those of the next theorem can be found in Gard and
Hallam (1979).

Persistence of the simple food chain is determined by a single system level
parametgr. Here persistence is defined in terms of the survival of the top pred-

bin e
ator: 1p sup &r’l (t) > 0. The system level parameter is defined by
t ~* oo
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Y /; %07 ' on +£ ('I:][’ 321—2,21-1) azj,o]

=2 i=2 a_.
2 =2 i=2 8y i
2 i,
-3 TT Tai-t,zi a

v —_— 23+1,0

j=1 i=l %i41,21
where

n/2 if n is even {n/2)-1 if n is even

S k = n-1 if n is odd = n-1 if n is odd

2 2

Theorem 5.2. Let a11> 0. The simple food chain modelled by (5.1) is perais-

tent if}.: >0; it is not persistent if ,14 0.

Indication of the Proof. Assume for purpose of contradiction that the food

chain has a trajectory that satisfies .:J_."m xJ (t}=0 for some j, j=1,2,...,0.
[ .

Then, again applying the comparison principle to (5.1) it follows that

dx, A
Jtl 2 - 7js1,0  x
4t > J+1
and that lim x (t) = 0. In particular, if there is extinction the top predator
t=vee j+1

must go to extinction.

Now, it will be shown, by using a persistence function, that the existence

of a trajectory going to extinction leads to a contradiction.

Let ri> 0, i=1,2,...,n and x> 0; define



on the set S = f X e R/]rn: 0 an-‘-' >‘2. By differentiating p along trajectories on
(5.1) and by proper choice of the ri some cancellations occur. This results in
d,

(5.2) B
dt

}_b
7 !
=P Bf“ T Tpog oA

On 8, if N is sufficiently small, the quantity in the brackets is positive; hence

2
dp/dt > o. This implies that along trajectories /.};(t) is increasing; however, when

/0

o
IKn—~> o so does p. This contradiction shows that persistence is valid for (5.1).

Conversely if 4 £ ¢, then p satisfies (5.2) and

d‘ & rom /g
dt

Thus, /ﬂ

p —»0 and an extinction must occur.

what is the situation when there is an apparently unlimited supply of a resource?

{(i.e. a, = o).

models and here we find some additional ones. The persistence-extinction parameter,

There are lots of problems with dimensicnality in Lotka-Volterra

Ae , of a food chain of length n is

" 4
Ae=856" 3 a0 T aicien
i=1 i=3

B2is1,2i

Theorem 5.2. Let all=0' The food chain modelled by (5.1) is persistent provided

A o > 0; it is not permistent if 4o < 0.

Indication of the Eywaf. L the previcus result, the boundedness of scluticns was
required. #&s resmasdeed above, it is not possible to demonstrate boundedness of
solutions here; howewer, any- solution that goes to extinction, is bounded. This

%
may be proved by using the classical VoHerra ausiliary function.
n
o = K, - . = F. log X, .
fn) S 1(51 /g i /gl s 1/’51)

i=1

V(_l(l')-(z"'

L]
As proper choice m'a{i and ,31 {gee Gard and Hallam (1979) leads to V{t}£ 0 if t

is sufficiently large. This shows the boundedness of solutions that go to extinction

31

& dt

The remainder of the argument is much like that of Theorem 5.2 and v}ill be
omitted.

An interesting situation results for odd dimensiocnal models without carrying
capacity in that persistence can result even though there is no positive equilibrium,
In this case, for dimension three it ca' be shown that the trajectories are unbounded.

The final result relates persistence and stability of simple food chains.

Theorem 5.4, Let the system (5.1) with all?bo have a positive equilibrium,
Then, this equilibrium is asymptotically stable and the entire positive orthant
is the domain of attraction. If the system (5.1) is persistent, it has a positive

equilibrium which is globally asymptotically stable.

Indication of the Proof. The first part of the proof is due to Harrison who

uses [a Salle's Theorem on the extent of asymptotic stability. The proof allows

for carrying capacities on each trophic level of the food chain. The system ia

assumed to be of the form

Eh =X, (b, . X, -a, . X -
~1i ( i + a1,1.--1 iel an ~i F'li.i+1§i.+1)

i 2
ai;] > 0, 11"",1, an> o, 811" 0.

»
This is rewritten using the equilibrium x as

dgi = g

dt

ii-1 LR T (51-1')]
i1 D‘i B (éi.)]

*
- X - ]
By, iel [4 11 " Ma 1A

The Volterra Liapunov function

vix) = < ¢, [x ok X
*) =5 i[\i-gi R 1"*\—11—]
3 i=1 \ . \\xi

YA



Qv

J

has

with C, chosen as C.a, . _=C, _a_ e
i ii,i+1 i+l i+l1,1

v . Sn‘ C a X X*JZ
; =T i “ii \\i-;i £ 0
i=1 ™~

V . *
Since a11> 0, the set of points where fi._ = O conaists of only X . By La Salle's

dt N
*
Theorem, all solutions approach X as t — ==

S

The last statement of the Theorem may be preovided by an inductive argument on

Effects of Omnivory in Food Chainsg

To indicate some extensions of the clagsical models to which the persistence

function technigues are applicable, Gard (1982) has considered the system

ax
1 t - ]
- [alo () - S a0 X,
i=1 bl
(5.2)  ax -1
iex, [—a, (t,x) + S a, (t.x)X
dt J Jo Jio1 J
1
i=1
n
- t X
2 aji ( J.X) i]
Ji=j+1 ?
z4 j -l
; dx n-1
v n
=X - t a , (tx) X,]
nl_—_ano(lx)+2ni ; i
dt i i=1
) !
The aij continuecus functions of t and x that either vanish identically or satisfy,
for some constants m,,and M_,
ij ij
(5.3) orm  La (t.x) &M £ER , xe R "
: ¢ M7 By VN TNy R

3
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For j#’o, the symmetry condition aiJE o if and only if ajiE o.

Multiple level feeding can occcur in these models.

Define the matrices A and b by

21 "a1 Ma1 i-e ™1
4] m3 o rn4 5 s mn2
A= - M . P
23 © Ma3 ™n3
. o
2,n-1 n-2,n-1 0 Mn -1

M
1l,n-1

Theorem 5.5. Amssume that (5.3) holds if there is an n-1 column vector

r=(r2,...r'n T with ri) 0, JL&i 4n, satisfying the vector matrix inequality Ar 2b

n
and such that 4 (r) = ml'0 - 5 riMic) o then lim sup X (t)} > e

{e2 £ oo D
for any selution x(t) of (5,2) with X(0)} > o: i.e. the top predator peraista.

As an illustration of the criteria required for persistence in the case of

omnivory and in the case of a simple food chain. In general, we find that ©m

nivory enhances top predator persistence from the perspective that the persistence

criterion is more readily satisfied when omnivory is present.
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Example: The Lotka-Volterra system

dx
1= - X - X -
—= =X ey - Ak magk, - a,)
@ - z :
dx
—_s = - X - X
Xp (850 * 201%) = 255%s)
dt < -
dx )
= - X
—= =Xy (e, ey X ek,
dt = ot
_ @mv\(\lorva
is a simple food chain of 313 = a31 = 0. It is a food chain with provided

313 and 531 are nonzero. The parameter that determines persistence for the simple

food chain is

a a

= _ 1 - 2
Ms = %107 7= 8 — 2y
2 32
To apply Theorem 5.5. to the case of r2 and r3 must be chosen so that
a a r
21 3 2 11
2
° %32 T3 12
A possible choice here is
a,_. —-a
11 12 a
= % ca u
K‘3 a : I‘2 = 32
a
az a
21

Assuming rz is positive, the resulting persistence criterion is

11~ %2 By
a
= - az - 12 a >,
“ %0 —=— By 30
a a
21 3z

It is possible for 4 to be positive and /"s to be negative; hence, perais‘tence
o

of the top predator is enhanced by omnivory.
)
It is interesting tht when omnivory is present, Ao > o is not pufficient for

the persistence of the food chain. In particular, if

35

i a 23
v = alO + _13 a20 - " 330 >0

323 . 31

there are solutions close to the equilibrium

a
- 30
. %10 T %1 =
( 3 , o , 31 )
a
241 13

that approach this equilibrium. An argument, using :he function/pa=x1_1 X;g Ks-rw.
similar to those above may be employed to show that V£o is a pﬁgsistence criterion
for the intermediate level predator. The full food chain persiatence criteria are
/4°> o and géo. . An interpretation of these inequalities is that the intrinsic

growth rate of the resource, alo, must be large encugh to support both predators.

For a general food web, Gard (1983) has employed the persistence function tech-
nique to arrive at a linear programming problem, He concludes that omnivory en—

hances trophic structure persistence.

Other Simple Food Chains

Freedmean and Waltman (1977) have studied a general three dimensional model of

a food chain:
= xlstxl) —gtzp(xl)

4

A€ (SXZ)

s
(5.4) dt
dx
at

x, -r + cp(xl)] _E‘X

%
3= xa[—s +d gly)]
dt

where r,s,c, and d are pesitive constants. They proved the persistence of (5.4)

under fairly general conditions on the functions g and 2. The interested reader

can refer to the original paper or Freedman (1980).
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