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3. Competition ‘ X1s is a constant multiple, k, of the other population, x,. This

3.1 Lotka - Yolterra - Gause Models leads to an infinite number of equilibria and the relationship X = {constant)
Gause (1934) developed a theory of competition based (x2)k must hold between the two populations. This situation is related
upon experimental work and theoretical studies based on the Lotka - to the concept of competitive exclusion discussed later in Section 3.5.
r

Volterra type modet, 3.2 Competition Models of Kolmogowov Type

The Kolmoguﬁbv mode1

dx]
T 8y - byxg - byoxy) )
X
1.
(3.]) Et'— = X,]f-i(xllng)
dx : . ‘ .
T = %la, - byxy - bayxy) o (3.2 _
' dxz
-at— = x2f2(x1’x2)

It can be demonstrated that there are four ecologically feasible outcomes
to competition modelled by {3.1). with competitive interactions has a relatively restricted asymptotic

The two populations can coexist. In this case, the system has a behavior in that no limit cycles can arise. The hypotheses required to

unique positive equilibrium that is globally asymptotically stable. achieve this result include

For later useage, it is convenient to denote this coexistence by the symbol

3{-’1 sz 0

X} > X € g5, Bgexgd < 05 g (qaxg) < 0.
The positive equilibrium can also be a hyperbolic {saddle) point.

The winner of the competition depends upon the initial population sizes. Hence, if either papulation in the competition increases, the growth

The function that governs the interaction is defined by the separatrices rate of the other species decreases.

of the hyperbolic point. Notation for this outcome is X +§- Xy.

The remaining outcomes are when one population dominates the other

{c2) There exists a K > 0 such that for X4 >K, i=1or2,

so that independent of initial population size, this population always: then both f_(x},xz) are nonpositive.
i

survives while the second goes to extinctfon. This is denoted by Xy 2> g

or X, >> x; according to whether X; Or x, wins the competition When either population is Sufficiént]y large, neither of them can grow.

2.

respectively. There is another type of system that is excluded from the

above classification. This is the case where the ecology of one population,
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{€3) There exist carrying capacities x]c, xzc ‘where
C
f](x1,0) > & for x; < x; and fl(x1,0) < 0 for
c, . ¢
X] > Xgs f2(01x2) > 0 for_ Xy < Xy and fz(O,xz) <0

¢
for Xo > Xy .
Theorem 3.1 The limit of any solution of {3.2) exists and is an equil-
ibrium; hence populations tend to one of a finite number of Timiting

populations.

Indication of Proof. The complete details of the proof may be found in

Hif%h and Smale (1974}, The basic amalysis employs the decomposition of
the population quadrant inte fegions determined by flows across isoclines.
Then each type of region is analyzed tdldeterm1ne the characteristics

of the feasible w-limit sets. As indicated in the theorem statement,

all w-limit points are equilibria (and in particuiar, there are no '
cyclic behaviors associated with competitive systems of Kolmogovov type).
The stability of these equilibria is relatively easy to determine and

it is shown that there extsts at least one asymptotically stable equilibrium.

3.3 Competition in Labgratory and Natural Communities

Gause (1932), stimulated by the theoretical work of Volterra,
Qndertook some laboratory expériments thatIIead to outcomes much like the
theoretical work predicted‘(Section 3.1). His work 6n two yeast populations
were not definitive because of the production of ethyl a]coho1 (yeast are
fine for making wine but not for interacting) which, in turn, shut down
reproduction.
Apparently not discouraged, Gause continued his work in aquatic

systems, this time using ciijates. Using Glaucoma. scintillans and Paramecium

aurelia, he found that the smaller organism, Glaucoma, was not inhibited
by the Paramecium while the growth of the Paramecium population. was hindered
by the presence of Glaucoma. . . .

Gause also employed three species of paramecium in sdme ekperiments{

these were P. aurelia, P. caudatum, and P. bursaria. The outcomes of

competition between these species are now indicated.

1. P. caudatum >> P. aurelia if metabolic products are completely
removed,
2. P. aurelia >> P. caudatum in most other instances; hence the

winner of the competition can be changed by. a perturbai-ion in environment.

3. P. aurelia «- B, bursaria. (This might not be direct competition

for a resource since P, bursaria tends to feed on the sediments). The
data indicates that multiple equilibria might result.

4. P. cavdatum and P. bursaria mixtures led to inconclusive results.

Stable equilibrium coexistence did occur in certain instances while P.

caudatum << P. bursaria occurs if P. bursaria is initially present in

sufficiently high densities.
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Another classical competition experiment is that of Park {1954, 1962)

.
using Metazoa. Tribolium confusum and T. castaneum were used in a homo-

geneous environment, with different temperature and humidity ranges.

T. confusum, grown by itself in a hot, wet environment, reached
peak densities. However, when it was grown with T. castaneum {which
did moderately wetl in a hot wet environment), T. castaneum won the
competition. In a cool dry environment, neither species did well. In
this setting, T. confusum dominafed the competition. Hence, environmental
conditions are important factors in competition. Also extraction of
information from population to community levels is not, in general, a
feagible objective.

Many factors can provide a basis for changing the outcome of com-
petition.

These include refuge, predation, and genetic effects. Crombie

(1945, 1946) utilized flour beetles and by adding a refuge changed the

outcome of competition from one of competitive dominance to stable coexistance.

pimentel et al. (1965), usinghouseflies and blowflies, were able to change
the dominance in this system through selection for superior competitors.

As indicated in Figure 1.9, Connell (1961) studied the competition
between two barnacle populations in an intertidal community. The barnacles,

of the genera Balanus and Chthamalus, compete interspecifically for space on

the rocks in the intertidal. The Balanus are vigorous and tend to dominate
Chthamalus in thé lower zones while the situation is reversed in the

upper regions.

-

¥

3.4 Competition for a Single Nutrient in Continuous Cultures of

Microorganisms
Hsu, Hubble, and Waltman {1977) developed a theory of
coﬁpetition hetween microorganisms, such as phytoplankton, for a single Timit-
ing nutrient. Their modeiling efforts were motivated by chemostat experi-
ments in which the initial input, 5%, and dilution rate, D, of the nutrient
are known constants and the environmental medium is homogeneous.
Let x‘(t) denote the concentration of the ith population at time t;
s(t) denote the concentration of substrate at time t; m i is the maximum
growth rate of the ith population; i is the 311 growth yieid for the ith

population and ay is the Michaelis-Menten half saturation constant.

The model is

Srm; xi{t)S(t)
d%_(tlh (s° - s(t)) DZﬁm

t=1

dx,{t) myx,(t) S{t)
A
o S v 3 M

s{0) =

xi(o) = Xy >‘0

Theorem 3.2 (Extinction). Let b, = m;/D. If efther by <1or

a.
b—%—-r > 8% {when b > 1) then lim x, (t) =
i t + =

Extinction results if the maximum growth rate m, of the ith population
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is less than the dilution rate or if the metabolic needs of the popu]étion,
ai/(bi - 1} exceeds the initial amount of nutrient present in the system.
Theorem 3.3 (Persistence of one Population). Let i be an integer,

1 <13 <n, and suppose 0 < ai/(bi -1 < aJ./(bJ. - 1) foralljt#i,
F=12,11, n. Let 5°> ag/{b; - 1) and by > 1. Then

_ a.
lim S(t) = v,

t+w i

< _ o
1im xi(t) =¥ (s

ft+>

a.
1
- _b'i _ "[)’

1#m xj(t) =0 j#i.

t 5> o

The proof of this Tast thearem is long and invelved, atthough not difficult
to understand; the interested reader is referred to the original article
for details.

This competition model has again Ted a globally asymptotically stable
equilibrium. Survival of a population is determined by the smallest of
the ratios: ai/(bi - 1}. This indicates that when a single resource
is limiting for a community only one population can survive. The validity
of this statement and the presence of cycles in competitive systems is

explored in the next section.

3.5 The Proposition of Competitive Exclusion

Gause's experiments with Paramecium candatum and P.aurslia resulted in P.aurelia
dominating in the competition for a single limifing resource. From these experi-
ments and from the mathematical theory developed by Volterra arose the proposition
that no ecological community in which there are n apecies can persist on less than
n limiting resources., (A resource is limiting if it is necessary for maintenance
and development of the community and its supply is exhaustable by sufficient utili-

zation).

While Gause's research was in the laboratory, there also exist classical studies
of competition with exclusion in natural ecosystems. R.MacArthur (1958} studied
five. epecies of warblers that appeared tc be so similar in ecological preferences
£hat competitive exclusion was violated. He found that they feed and occupy differ-
ent levels in their forested environment snd that competitive dxclusion held for

this community.

Theoretical aspects of competitive exclusion have been well developed in recent
years. The work of Hsu, Hubble and Waltman (1977) mentioned.previously in Section
3.4 supports the concept of competitive exclusien if the ratic of the Michealis-
Minte}‘parameters of each population is distinct from the others. Theyialsa demon—
strate that whenever two spécies have equal Michaelis-Minte;‘ratios that it is pog-

sible for both species to survive,

Related to competitive exclusion is the "paradox of the plankton" (Huﬂtchinson.
1978). The coexistence of many species of phy_to plankton in a well mixed body
of water with only a few limiting nutrients (usually one) seems to vioclate compe-
titive exclusion. The analysis of Hsu, Hubble, and Waltman suggeats that, in order
to survive, the Hiﬁiﬁaelis-Minte;hparameter ratios should be very similar,

Theoreticaly, this allows exclusion to proceed very slowly,

Levin (1970) also provides a theoretical basis for a higher dimensional compe-

&

tition exclusion., He considers the model:
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axi

X € R: . The competitive condition can sometimes be re-

" Exploitative Competitive Communities at Equilibrium ~interspecific interactions are given by < 0 for

placed with other hypotheses about the characteristics of
Model Hypotheses and Preliminaries

the interacting species. We will indicate some of the set-

The autdnomous, Kolmogorov-type model tings in which such extensions are valigd,

Xy = %y Fi(x) i=1,2, ..., n, (3.8} - the primary purpese here is to provide insight into

equilibrium competitive communities with spectal emphasis on

where x = (xl, X5 . xn)T , 1is assumed to Have species exploitative competition. The novelty of the apprpach is
growth rates F, that are continuousty differentiable in the based on the Interpretation of the functions K, and the im-
n-dimensional nonnegative cone R: = {x & R: x>0} . Inorder plications which this interpretation has for explotative competition.

that (3.8Madel intraspecific competition, it is required that

aFi(x)
ax,
i

. 0 . i=1,2, ...,n, (3.8)

Some density dependent hypothesis is necessary for the ex-
istence of an equilibrium community (Deakin, 1975). The
requirement that all species exhibit a self limiting structure
is imposed for our development. .

The Implicit Function Theorem implies that, for each 1,
i=1,2, ..., n, there exists a continuously differentiable
function K, = K. (x;) , where&gig = (Xys Xyy wees Xy_po

Xigpr oo xn)T , with the property that
Fi(xl’ Xps sees Xy s Ki(;ﬂ)’ Xippr oot xn) =Q.

The functions K1 represent thg traditional isosurfaces for

the system (3.8) Ome passible interpretation of these functions

i 18



Stable Equilibrium Communities

The allocation and utilization of a community's resources
can determine the existence and stability of an equilibrium
for that community. When a'community i5 at equiTibrium, then
its resources need only be allotted to the maintenance of
its component- populations. Here, it is aiso ccnvenient %o
assume that in the absense of consumers all resources of the

.community are at equilibrium. This situatien would be
approximately valid even in the presence of consumers when--
ever resource growth is relatively fast as compared to con-
sumer growth,

. Let R denote the totality of resources available to

a species and § the average amount of those resources re-

quired for the sustenance of a single organism of that species.

At least as an initial approximation, Rﬁ_l

can be regarded
as the carrying capacity of the environment for the species.

This concept is utflized in(3.8BXhrough the assumption that
R _
K1(§H) - R_.I(xi)ai , t=1,2, ...,n0 ,

where Ri(;i) denotes the total resources available to
species i when the populations of the remaining species

are given by the ({n-1}-vector ;1 and 8, is the (comstant}
average amount of resources required by a single species 1
organism. In this and the subsequent section, competition

for resources is assumed to be expleitative in the sense that

M

{(#11) At equilibrium, the total resources available to
species 1 exceeds the totality of species 1 resourzes-

that are utilized by the remaining n-1 -species:

D l““*"‘ ’I < RyEp s L
s o
JH

Comdition (i) reqﬁre.':- effects of an orgamism upon its -
resources to be morerpronounced than the total effects of
organisms of other speciés:on its résourqes; that is, ntra-
specific effects dominate interspecific effects on resources.
The satisfaction of this condition requires competing species
to be nondominant in utilization of a common resource. To

i1lustrate when (i) would not hold, consider two species
that utilize the same (single} fcod source but one requires
and consumes a much larger guantity %ur ma1ntenanée than

the other. One of the inequalities in {i} would be violated
for this sefting.

Each of the conditions has implications for niche
separation. fhey imply that each species, either individually
or collectively, must in some sense, have sole agcess to
some portion of the total resource spactrum. A strategy for
formation of a stable equilfbrium community that is suggested
by these conditions is for each species to have a resource
allocation which does not significantly overlap with the re-

sources of the other components of the community. Such an

90



no aggression or interference mechanism is utilized by any
species and directed towards a different species. Such be-
havior is allowed between members of the same species. This
implies that resources available to species i are

diminished by a species j organism only by the amount of
those resources actually utilized by the Jj-organism, and
therefore eRi/axj represents the amount of resources a-
v;i1ab1e to species 1 which are utilized by a single species

j organism.

Theorem 2.5. . Each of the following is sufficient for
) ' to represent a stable equilibrium community: .

(i) The average resource reqﬁirement, 5y s of a
species 1 organism in an equilibrium community exceed the
combined effects caused by a single organism of the other

species on the resources, Ri , of species 1 :

n
E 3R1.

-

(x{)l cE . =L 2 n
R A%
§=1 g

J#i

(i1) The average resource requirement, &, , of a
species 1 individual in an equilibrium community exceeds
the combined effects caused by a single organism of species

i on the resources of the remaining n-1 specfes:

allocation of resources necessarily results in decreased com-
petition and has been suggested as an evolutionary goal of
competitive interactions (Planka, 1978).

Conditions (i) and {1} are not explicitly dependent up-
on the tatal population size although the size of the com-.
ponents of the equitibrium state are implicitly contained in
each. As demonstréted below - each of the conditions
in Theorem 3.5 is obtained from.the linear algebra cancept of
diagonal dominance. As such, the species interactions need
not be restr1;ted to be competitive; indeed, the type of
interaction does not have to be specifiad to lead to a
stable community. However, the interpretations of the mathe-
matical expressioﬁs as presented above may no longer be

appropriate. The proof is related to a subsequent theorem

‘and will be given later.

22



/ o -
%

B s /)"’f{'."»_f/-’ FOLA AT T LA AR sy

SR S | g L hre qu AL o s
wr Lxtimmad Ay b s IoLiLin s La Hhs coies 17aF
WS Ofarasacr 1 i frirmice nerelonnipnn w
M‘Z, o/ Z—? Ao @ p0sr Qs d Ao P Ty cerar &

A jl-j/%/j/j//j Apseise . O At oThon Lo d s e b
Aag,é? i an oo LZL).&«. /:-ﬁjwjl’/’ 7’%
et ¢ e APruns . Hose teglss FLot Ho

Py 6’?///-0;1-//.4.#{;0’;

A2gpran v, g Lilde L Ay P rine o

’Z? & ’Q?M’JA/? /9/'(:, . 'f,',/:/f'«u_ ﬂ//_/g[? /4;. ﬁ_} [y Sy 4

RaA

of Has rrivinns ooy cthioh Ly o
j’ c?/'(j Apn gons g é,u.// %/.;/f{f/_;/ 3/?,_‘/03 ‘C}'
;Lg,}ﬂ/u,wf«zl Hs  doe sonc % 2 47 AL
VOTAY VI R YV B iy o 2,
& 4'/"/3& CPAlE e /0; aACgaM/,o;w..

o o ol Ha ,Md?a'n, ﬂ%,&;{}dof,ﬂ.ﬂ
/gld He ffré{wc’a ele.m :2(/ e s Fhe s s freal

/ W P LY SR : :
Jﬁfwﬂfu,f:’ A A /«,?‘/4-\,,;2' g 7.02 ,,.MAZ Algeund.

wndir adlione . 40 acowme That s Tatal repouncea

et n—z_& % A %—w,&é/uwwu Lov Coviia u,w,%
RAL P&u.tjzﬂklﬂ J/;j); K Aﬂwé};cf'/l«!,cda%ag ﬁ-«

Lot ? r_M_.& A

2ol Apsena 4, L 2,0, 0,
e

J 4
S ()= (Po, po s fir)

tp o s hg 0l Ledlos
wtlors. F,/k

£
)Z pet .

d/ui ﬁ"e :A_! /)() /'_2}’,1//_,4)//7#‘ 7%/ J/’”@//_,_,f ﬂﬁ(

ndpbh v
J

= g&' )

%{i .//;' ﬁL m J)fra’ﬂ /b’g V/‘../'ﬂ/u‘,ﬂ/af & % 4’, var j’-"/é""

ﬁm ALEDCN D j ot LDy (J/V/Z[. /Zax,/,t-w% x

,ﬁ'u Wﬁg'“pﬂﬁ d’ﬂ/—mp//j 4',‘2&?

! 4/ prg x) =0 VETN RO
&, x) =
¥4 ) o _‘,/ /54,16-4‘-}‘_0) VYR SR L

4,,4/40 002 conerple ars 5!-”%&;12& 340/ 4 deplu

Mepiince. A L A s 2 e kL T Alapienes

Mﬂ:@?ﬂ?ﬁ'aw Hﬁ/\: P be ://5,/ /32.?,' - /f,,;)

de A ARpHUISI2 4«}//;-,'144&2” ﬁlcﬁﬂ- /



e

-

Ty (éfsz‘ ErSe voey Ens } ol frt tord €4
doo Arforcsd sdoge . ‘

Uper Jaronsdiboe Joad Tu 5 moreiTon
é} 4 oy oo 7 /Mfr At 4,/,, > 'y/,fs/»:]b)f}.}/_ ;g

ey o120 ;:,v.?{ffam o ffr enents ;’;e./' He tloment

d‘f'}. 5_ ;l’(fc/ . @Wﬁtl{la.{{jﬁ Us s ;"’»{l’ T~ }C'(X J - g,ﬂf/&:’/m}\ .
%J 4/0&-} np‘fif' IO o 3494 Lag e 44//#} ijfﬂxﬁ 7"#2,
£ = 3 ) “w

4;374,/‘))( = -y
P"’h"{ dbuuf‘u{

comp ttoom ) vt o, g ad

; '0,,-' = J’(A - - - F "
d /JX’ 75\6 /gd

#
h)/gj/'/_ ’ zbu @7}1 ARy, }Mﬂ(’y T oaee B " .

Mot fgzﬂ/mu,ﬂnz&u «/ﬂ}a/fdﬂ/ 42':%47:;? . e d-d-dzrm/o/:':fz;
Hed s compellioe o /za/j/% erplo TaTive. Poal

CoetFrc ent:

M/@/wu,ﬂaﬁam fr/ Hin W/{(fgpu /M

;’K{/DXJ‘ /éV 2¥ 0L 7. Pﬂ:ﬂﬁ”a&/ (e ; 3

pre o (1762)) . Mere | o 3'4.&" cw oy 24
leving .

a Ap&/w?*’/ cam)ya/far e /!7//#,8 Mr/u,u <

7 a )VMZ:&}? ? A Arcoiace <t T ,a,Zj.fe S y4

ﬂo"fz’t A4 « /04,4)’ P{ ,(,ﬁ Py A?KIMWJ

),/fa J,.Z:/—.f: I, f/ AREO U L /’fxocr’oaﬂa £ 'waoﬂ’—fff
( 4

we s 474/@}@/”/,.&»/ i wosr 4 Yoo jro s AL
H, oAl .

9l hﬂjlﬁ'ﬁﬂ.— /rﬂ‘-if‘,a/’; vod s lnre 280V et |
a éhr:w/]a-')afm: 4 12 ama,fagi(’-} mgﬁw
ovoi bl 18 5 o

Ifk/fx") = ‘D E: e B/X”:
W - b '.
D»;Li_ag a’;{- Y n s Eﬂex{,‘)mz , B (Eigdeen
o, I!fx*-) o T (}acaﬁ'r'wv 4. K- sy oty ,,f;/ at x* .

s P as_f-/éﬂ)k IR f/a;,a{ vy »é Teke.

0 spor ook ot sows 2lL conepl o Ty Tza.f?,
Q;é ngf%'e tpraner oo ke o ‘,9/.'4/ 7 fhege. +
Y it Moot in 2n 7@%»:.;% memuncy
Ha Humhon of 2y pecss conpol excwrd e nibor
4 Ao Conét A/wamma/ Py 7’5; <ecm”, v e lly
tfeard Vo as the com PeUJ,..& il umere prin copel

s ‘ﬂ‘-’jt%z;/a 47’.}5;;/ 2w 4;/ MV/'}A)Z{ /474" —Zj(ﬂd/} fﬁ;i



s /}f 2 Sicprin s (e /glp) z/;u.-j,-gu 4,“2', i
7 ;

4 Ajﬁ/d y ﬂ? . ,//ﬁ.j.ﬁ,,,';,_,,) et (/..-.u_/%; 7 ./Aee, fac’-?'l ')

Losur

% L 4/7—/ H

TP{L‘ lf"‘/",lg Ayr i -

A1 ,2.:.4,‘ ,',_4, fi.f

é/r.:(, :’éfj’?’w y / ?f:' 7"‘

rE7p ) . bt

);'.“A»Z! r;'//ﬁ/_, 22 é/—_//_.?'w_ “ éznp'@

C:}w,w,u,yy-j/él& and fﬁ(, dzfm}g/(,a&i{’ -:xf)t’/ KA/M /ﬁfgﬂ

Falee? corisg PJIM&

EH s 10 2. Hori

.WU/VW aﬁjwﬁy.d Eer

Hematic E07) -/
a 2 A/,y;,ge L‘f!lf;ﬂ/ m R jwﬁ;’g ﬁ' M’dze
ﬂ

e Jonck § jran Il lalisie ,W%mfmffﬂ MM;»?,
/ﬁ’ﬂt e /—W%w»«ﬁmdﬁ . ;’,)L,_ W/} //n,fﬂma]jﬂ

wnded o buj,% ALePien €20 AAEL. A %;\i //jyzd ,/3—«/, 1
\

wibich, dpecies, ngt 7o st Amoun® 4

sayunses Ao “ng Longres d %%‘WW

Do aroipe 3.6 . Dha z;/‘p/&ﬂ’?rfl)gf PP /@‘Z’Z’pa
27 ctun p,t"'g_L, A/ag)&'

/\% d/;u;, (J,% %& /‘ﬂﬂ/ﬁf:-u_n»;} &Znp 4@26.‘4%420’

_0/1 /J'ﬂ/;gﬂ_,'u_;w {'&W .(,v(.l//‘.ﬂ)iLff

”‘) JILI Preas: Eﬁf. ,Jf'degj:.\’, ﬁxcetiﬁr '}%C ¢M/.4Mrvﬂ-"/b

? A8 uncle. (nsk) .

R e R TUN U BT, Capesee

27' | “f

f

AP A VO S - B e %,
EREE e P .,*7 . .,, _f.,- o
\ PV L
W kzn and T <t 7

J’L} L e Ve S s Bl g, et Zrdel oy u., P
¢

e At “

ﬁ,.wdﬁ&ﬁl’-\" 4‘7‘35’3 ‘Mddb" \— Aﬁt n, A—ﬂg{k, /f*ld/&&f‘]‘rn“

prdone s "V"j 7 f-‘bV;z.n m‘i‘&?fw; pe 4 o 9 7h 2

Apiise.

LTI I 2] a"»wd( evver  esd 7 ;; PET -

r,b'-)?,;?/i - ch + PEY EPY) uﬂz .;ﬂ ,»51_- ,j'._raﬁz,:’,, b SArhtas
¢ J:i 7 /

Va
Y

,dlj " J/T‘m‘;_.g,!;#hmd ; +.d b,

f;:v'/. bt p 9 S DA LB g

ja.f,J s AR NLD IR R

f? ¥ ﬁ—nw\r /, prded
2iplrito e yrFar .

/(74,.} {ti? '? Hos Merrirse, 4 Ma/--“ﬂ wl rerose

6,‘.24;_)’/.' a,ﬂ “Hr Lt

ﬂ,/&emm Mmo"aﬂﬂ. . At mld?ﬂvj Jfow ..?z}(a/mP/L/ that

‘T"{I.l A p G 4-ﬁ A a’,fb(//_om;p 2‘}7_ %ﬂ Ldlonpx;z:z:ye

/'/_,/ oo pp.pc,')‘, -g_aujg HA Aeg i h Ate, DUy AT 44*/)‘
)ég/j’&/»r, x/.z'./%'}}' /Ac Ahpe A&f’ @’( ALQG LAt b A

'H/‘V/‘/ ?/J”‘”y_.?‘f f&'l'} /htﬂ /C‘J Coornanr u/r,u}}‘ Caa.wdg

3

."ﬂ‘.ff"& & "T:A,L}J ,L; MJZL‘W/M- .
;@E tﬂ{,,' - .“‘ )

A7 z Ty i w7

E”



2'7 M gﬂ S

B

__ de/m (- m/m Wz;uémﬂ =
Hal %W/&M«e W/ W
WJ/A(,&M%%Z%M?,/%&W
m%’—/ﬁ s el y dn»;:»né/ﬂa—

a}’ ‘71{ /—g’f{’p.«jq?:/% 4-»4’_] u.ﬂﬁdﬁdh Wl cin

. Toriar
iteo /.-Iw;rff,%t ooT e spiliigligge tn. Tor alr Kons

moded.

A /ZM Ao L%t’j .’ %_2; ALY DA (R

//, flo weatbom ate call furd  no'e fhat “f

4 éyl}u'// '3 @
»} ()‘r///:/ﬁ <, f’f.m a .A?ucd&i, . mg‘/ﬂw 4“’”"“’
efpet 1 the Vcounceer]. apeciios ; it

wf G ) nv}%

Ei-ﬁéro ;/€J'-F‘-’=D) 'aT )

iins R 7

Jg.;/ﬁxj : o

HP/A 7 “Lf/;’ [, Ry 'r./.-,j@

‘7:9 P T X IS RIIYS i J,ajl’»u ,

’;.j drsd t_mﬁ,,& z{ 3}?} /;,‘L = O

b glacy e -ifuw 4 A?V.WQZ}
o A Zpnos abock 1o wiain deagonal

4 pecrnd tilridiv,. o Mot 1,

g J"U—ﬂv\—

g i) bay brave o T ntvourcea

offedt 1)t

{t A‘Pr’a,'e‘. .',’/

7 &y orbfb ﬂ?za'y. (, LR 14 pf ﬂ;(ae.{ LA dﬂl/wagz,
4?’1‘.} MWMM J‘ L2
- Jpg/r)vél

Sl BUALE ng,ﬁuuzmui' SJ' g

Spc i r S0
/ﬂ' 04-). l;’! ; 'BES 2] ; :’AJ /,/;‘ﬂsu‘d;j} L!r"’r’ ‘ﬁe J—/&,c/

»1 DYVTRRVERY SN R Algouncl. mf;fzja{ L? A-/Mma



bood net »53 }Pta,f/.i Ef fo Doms W 7 AT it

tmdicrs £ oA ? L & = ej. Hazir PMJ i > :}.' TE 2 mr 3.4

b Fe e itag 433/“,‘ M'ﬂ-ﬂﬁt Aivo i 2T F Aty pwe s

wir o df Py Hood s awytpta i sovm P,j,;z;_,'p

Lenviyh '/-’n»‘.l/t(_/ b ea =L % €+ g dm a* -} .
Yo Coen
/:’Fjd}/:‘ pre tlood frr’ M7 et ?’ Frcline 4 At coa

A, Ay A, od lead ms % #a l”_&?{«.,a/,jr,:a_

(g(’__‘i 64-; 'P"z . Cic Bz &y o & - ,g,“ z o€ . F‘}
Lo

e Yy 4 , JA- ,Qf_ff.‘aw , E w4

Moo, o4 o f/."m‘mum./‘g, i froedts | frn fon
6///.; &J.’f ?. Ja/ﬁf-wo'}’ //'ym}./'u_, diy Ly iy o

l;_k:, YKy . im| o L
A‘(‘z. nga Jxr:'

whie e 2oroypalive anw suefualed at ¥, je,
,a}f’ C?’Q;,w Faad'ufza ? ,&gMnAJ’:ev 7 4& Q"W/muﬂ:fi

. ! )
o (g I-&u*  av Draa Moo oue .

PR SRS ) _
o et

¢

. ‘.
J{ {e mm [FRay Iy

L. fl-‘ R CU N
Asgene 2,7 0 Dha rempenuny Y \Mﬁ'ﬁ’u’ f’/ &

f/o'/://ﬁ/fn capiad aluie com piTiis WMVH“!-}; e
ng; : wuvéf? d(‘ﬁ?,ﬂ”d/:a dopenant .

ah?  covvon Wja ‘m aTwge Toit MM
copladitive coppadtin s modilled rero
Love T ;':/4',‘/1{1,44 ?M wdoss: # 2 /r?/mv-;.«;’xz e
A3 40 aabone  aand ?u s - ol g&iz po ot dappiiionce
Yeare re arere D ppnephn o farn Arompecarin o0 o oo

a

L‘«, W,& J' JJ’/HAMCAQ ,Z,u]?ﬂ //?M _/c-v_,;w/ﬁf“a '[JA —gﬂ,_

L -dﬂ W

;L a d"f_ﬁ_,f,ft - L/Jf,u-f E» /V.f; PP Q’/ﬁv,a }L-f f‘?a.ﬂ' AE A f’ﬁf-z%-f"l«l«r

I

I3 / »

Tt e

, G?}Z (1477 /ﬁi-rtd-*ﬁﬂx-' At Zj";/‘/./-rbeb
F

Py /,w,},,)ﬁ/u// Aj/}) } A o s Q&p a A.;affm

I/ ) W«——%—ﬂw daore 0¥ AJM%J
wenin s
Ljf{%r’? f»_]d,o/a cannot” ppppcsnit fxp’w'/;fﬁ,; it
covn pilfion - St gam, o Ttat Z Strobechs 2 shamptia
frg72) ¢ Tors /Af‘/!}-,,, Ho) Aive My o ~orplanes
ivt Ha pgame ¢<rm9lw- 43'”‘)‘9‘:1"“;‘””" bt e A

44,,1 + 7 albos o M;}ABFJ_ . g{puj djjTWJa it ot Al prer

A fedpteses deco v pam%w ? /L; ,..g_%w -}j,,g .



4/// Ats 4 #. Py ‘LJ’; Sap ‘Jr;“ R L A _[—] e }, -
¢ 4

Laoe /,// o
!;AQ-J; Live Lo ;.zéu&p i?:;a.m.'aﬂ; s /rﬂv //:’Aj;*«4%4;/i~a€
"/’/""Wg»ew&#«i’ {m “s Mi‘f—’wn&ﬁ, JA7s | parosan
A s 1;‘;—;,}/’/4@/&'  uole _fL i 4 spnne o Lo
e ,;}1-_ Jx\ Wf/_':},’é/,f i e ;»,\?,ﬂwh,/mﬂ 'C,_,«,,.,;,,.':’, o
w umw')#” «é’//vf o /f’:u/ﬂ /r«an Hons r-/f'n”, =
o h"’ Wj’ f?dwf f’uf ton £0W9m¢mz_a. c;rf #e

.:";rppbf :7’ ]um waf( ngamﬂ Jowwaw:a o

wrw)elfff,a, -‘a%»'f?'e=-4 .

w”j A :?'l—l% }‘f/,.z w/u?g_'-.é'ﬂ)»»; .

9!4. M Centeyme ce tome mit T
- ﬁalaak (1973) Ase odouwn
faed | 1o ?"M}/aﬁl flor 1m0t M,JF wealage ? a Hons ,4;510;;
Wﬂltme 4t Aot it contss tmorigh <o frmimalinc

At ATirrnrs wlithen an tguibbnism comomimTy e

il 1 arwunstabte . Mowtrer fw /,u«wzér.- Leploifative

P WYree _W A4 TErmar, #al 12, o o s DG

i ,fz)mya}%‘t% %L }zdﬂfuﬂ" ﬂ et (- k(x*)}
pwz‘u %mrnd«f 4 I"K‘M

ﬁv/tgwmm, f?m&lfﬁ’ ‘Qdditnda gt Zkg,,m, ‘;7.

aed 4

y ﬁuffv'ﬁf@ .

I Y z /"‘:'/f*"f.ﬂ

Hoprrioen SF
S YO Y ﬂf",’f—"

P
ﬂ/xpﬁa:“f&lf'b.& Jngf‘/wm f_i'('?’{’mu..zyqu;}/_ Dire ¥

M?’"‘Pﬁﬁw% aTokts 4 oo ’“}3 4f ,Cé'f (r- ko] > o
| {’[é) -f'wppa»_uu A at é,:t’ﬂ)#éj&*} . C{,J-“b%‘ .'_}.,;77.

“'*J ))'Z@"d ﬁ/j r & _.S)-_- {x éRﬂ '0‘ -‘-'K_!{ar.) s '17;';"'}

P #\A* del (f—K’(X)) -] | ,){2!7- s e ﬂ—_a_ . 33’}«_
Hars ;,,?L 4 //47;5:'@ ‘ﬂ.off‘p‘n p?"ai’:mf&’a_ adod b

o

/{'—p?‘;/z' Agﬂz..u—-m .{;tl. . lf,,_- ,

s ffﬁﬂﬂl—c‘f‘wx ‘ Aot 7 Aoy o

4

L 9._)‘" /‘__,4,6:,;(}_,.;)

i D it ) _fr,» £t ./.-/.,:Tq,—;,—A ,

cﬁﬂfw&z:i;.tzz“*-ﬁ-y;v@% Lt 4

_‘ALLILLM,-F-- S - -‘—"'7"“—9'-"" SR
- - T ot S ria
' ,a, !a: Yier “*_“__’/

T ] y

MW{E' S T i , (’ =y /‘rrzﬁ;v'zﬂar—r"o;"—yb*méév
()

S /’f‘_ j'r-o -~ LETA r; /}-#7;;0 —fﬂ}h—-—d R j{ -1 —; ﬂ,—;;’* }tr_} -

ae— "’”'0‘“"‘#‘7? ——"ﬁr’“ﬂ"&—)—

W - xin M/_r/‘—sff l.fj?ﬂff scten Lo, / i L




P

”whiéhlﬁaVE-dhusUaTibehaviar s the 1ntrénsitive arréngﬁm;n€~

(May aﬁdLLeonard 1575).  However, 1% is 1nterest1ng tn note ... ,:.

that a. resnurce allocation wh1ch is. cons1stent with ex-i

'p101tat1ve competition as mod;%]ed here is feas1b1e for th1s
system, : _ / -

Al1 of the ;onditﬁo?s in Theorem 2 depend upoﬁrén
equilibrium structure. 'X%here are several recentlexﬁmDTes
of persistent systems,ﬁ1th the species number exceed1ng
‘the number of resoqfces (HcGeehee and Annstrong, 1977,
Yorke and KapTan,/1977 Freedman, 1980} Of course, these
.pers1stent sysEFms do nnt represent stable equ111br1um
communities. / . .

These nésults also relate to the ideas of qua11tat1ve
stabi]‘ity;,(Quwk and Ruppert, 1965; Jeffries, 1974; -
Pie1ou,/{§77) where.only the signs of the;iﬁteraction matrix
are. known. '

kL e
MATHEMATICAL PRELIMINARIES AND RESULTS

—— R

Avreal nxn matrix A = (aij) is & Z-matrix if
4520 for 1#J. The matrix A is a P-matrix if
the principal minors of A are positive. The matrix A
is an M-matrix if A is both a Z-matrix and a P-matrix.

The matrix A s diagonally dominant if

n
lai{i >j§1 [aij{ , i=1,2, ..., N
J#

/s

éf':i;isngjalei Vﬁ::j’eaéh,ﬁ_"

" It then-follows that for any set of distinct indices iy

aKi' aki
{4} 1 - 2 ... ’
) X, X
iy iq

whare thé de%ivatjves are va1uate& at’ x* ,» feed, aTT cyc11c
proQucts of elements of the community matrix - 1 »lK "(x ) are
less than one, All comﬁZnity matrices that repreéent ex<
p1qitative competition as modelled here must have this property.
There aré several examples of three dimensional systems in-
which dynamic behiyior appeﬁrs”tb be anomalogical.. thr(19775"
ha§.given an example of a Lotka-Voiterra'sysiem where the
positive eq&iiibrium is asyhptotﬁcaliy stable but there is
also a region gf extinction.. The above.necessary conditions
imply that Goéﬁs system does not represent exploitative com-
petition sipﬁe the éﬁmmunify matrix does not satisfy (a).

The same 1; true of Strobeck's examples (1973) of two systems
that haﬁg/tﬁe ‘same isoptanes and thé same positive equi-
1ibr1um[but ¢ne is stable whi1e the other is unétable. These
systems do not allow a resource qecomposit1oh of the above
type;l

Among those three dimensional competitive systems



37 38

14 15
T ie a3 . : :
or 1f A’ has this property. The matrix A is guasi- _ (1) There exists a neighborhood ¥ of X" such that
diagonally domipant if there s a diagonal matrix D with g if xeU with x < x then K{x) - x < Z(X* - x}
positive diagonal entries such that p7AD s diagonally (3) 1~ K'(x*) {s diagonally similar to a matrix
dominant. The matrix A is weakly diagonally dominant if Ca (¢1.) where O 1 and |cij| <1 if i74, and
L = . i
for eack 1 , |a1ii > lajil s, l<jsen, i#§. (max < )2 = s{min cij) + {1-s)(min cij)2 where s> ne2 ’
: 1#] AT} 4§

A is guastweakly diagonally domtnant if there is a diagonal

matrix D with posftive diagomal entries such that 5~ Lap LR
Some of these conditions (a) - {e} may be found,

is weakly diagonally dominant.
explicitly or impiicitly, in the literature {Strobeck, {(1973;
The following result does nat require that competition .
Siljak, 1976; Travis and Post, 1979). The fact that they may
be exploitative. .
_ interpreted in an ecological setting is the content of Theorem L.

Theorem ;: 7Each of the following conditions is ' Conditjon (f) 15, as far as we know, new and it is
sufficient for the equilibrium, x , to be asymptotically _ therefore useful to find canditions under which [I - X (x )1
stable. is a Z-matrix. To this end, let

fa) I - K‘(x'} is quasi diagonally dom1nant;

(b) I+ K'(x*) is a P-matrix. 8- [b1i} . -F (x b= d!ag{———)(l - K (x "

{c) I+ K'(x*) i1s an M-matrix.

(d) T+ £ (x) 1s quasi diagonally dominant For any matrix M = [mij] »let G (M) _denote the (if)-th

() Thers exists an x » 0 such that cofactor of M . HNote that C1j(B) and C, J(E - K {x 3}

have the same sign. It is apparent by writing [I - K' (x )]

a+ ' (xMx >0 il - X (x")]

that 1f det(l - K (x 1) » 0 then [I - K {x )]

() [ - K'(x")T"" is a. Z-matrix with pasitive diagonal Wt -k )]

elements, js a Z-matrix with positive diagonal entries if and only if
{g) There exists a neighborhood Y of x such that Cii(l - Kt(x*» >0 and cij(I Sk e0 for T4 4.

whenever x € I with x < x* , then K(K{x}) > x . This trivial result has an interesting interpretation.
{h) There exists a neighborhood U of x" such that First, note that an obvious necessary condition far the

i oxeU with x> x then K(K(x)} <x . . asymptotic stability of « s that det{I - i'(x*)} 50

or det B >0 . Thus, one might expect that any factor which



>y

has the effect of decreasing (increasing) det B should have
a destablizing (stabilizing) effect on the system. Most of
the standard stability conqit1ons for competitive systems
can be transiatéd roughly as "intraspecific competition is
stronger then interspecific competition."” The last two
statements suggest that an increase in the intraspecific
interaction terms , by should increase det B while an
increase in bij should decrease det B . By noting that
E§E$$~El = C;(B) , we find that the above sign conditions
on cij(B) yield the appropriate changes in det' B for
the intraspecific effects to govern stability.

Condition (j} of Theorem 3§prears rather technical
and unwieldy. We will say more about this. condition in

section 8.

EXISTENCE, UNIQUENESS, AND FEASIBILITY OF
fQUILIBRIA OR COMPETITIVE SYSTEMS.

We shall ﬁOw diiﬁﬁss sﬁme sufficigpt conditions for
the existence,‘uniqy;ness,_and positfﬁ%ty of a competitive
community equilibydum. /

' The competftive community‘(ﬁj/aiways has a K-equi-
1ibrium-in thg set !
ff

a + _‘
.:ﬂ[): x e Rﬂ. Oixi

]

provided {3) holds. The nonnegativity of X implies that

K@), 1=1,2, ..., 0

Go

3.7¢e/
* * : . +*
or, [I +K'(x)]x >0 . Theorem 3{e) implies x re-

presents a stable equilibrium community,

- 3.6
Proof of Theorem &. In each case it will be shown that
det EB = 0 and, consequently, I - K'(x*) is singular. How-
ever, for x* +0 be asymptotically stable, it is necessary
- * ’ .
that det[l - K'(x )] #0 .
(i) If n > %X then the rank of EB cannot.exceed k.
(1) 1f K>n then

det EB.f ; (det Ep) {det Bp)

wherg Ep is an n x n - submatrix of E obtained by

'choo$1ng any n columns of E and B_ 1s the submatrix-of

. P
B_ obtained by choosing the corresponding. rows af B {Noble,

1969). The summation is over all such choices. Whenever
(11) 1s satisfied each of the matrices Eb will have linearly
erendent rows; hence det Ep =0 for each p .

{iii) In this case each Ep will have linearly de-
pendent columms. Conditfon (iif) s also a Corollary of (i)
since if g resources are all utiliZed in the same way by
all species, thes_é resources can be regarded from the

modelling perspective as a single resource and then (1) holds.

Tinduca ﬁvha %?roof of Thegrem 3.7

The fellowing conditions are equivalent for any I-
matrix A (Plemmons, 1977):



Lef

o
- and'positivity of equifibria are also preséﬁ;ed Many of
the abqyé/ment1oued resu1ts are 11}ustrated in the specia}
//;/that the model is of Lotka-Vo1terra type. _//
Quasi weakly d1agona11y dominant matr1ces are shown
to play important ro1es in models of exp1oitat1ve competttlon,
in particular, for‘such systems the cmnnun1ty matrix must

be quae1 weak}y diagonally dom1nant.

: APPENDL+—PROBFS-OF ~THEOREMS
) 1“6;o~LL«Jﬂ Hoe ?rrvé;'g Theereo 3. : "--'

(iy. The cond1t1on is equ1va1ent to condition: (a) of
3,7

Theorem 1, henﬁe by ‘Thegrem 37 which witl be proved. below

x* 1% a stable equilibeium commumity. ‘
(i1). Llet D= [diag 6] . The fnequality of (11)

holds. if and only if DB(I - K'(x )0~} is diagonally dominant;

that is, I - K’(x*} is,quasidiagona1Iy.dominaet. Theorem

3 (a) implies x* is a stable equilibrium community.

1

(i14). Multiply the inequality by 6; At equilibrium,

1 Ri(i; } = x: ; hence, for each i ,1 =1, 2, ..., N.

<1 R,
Z XJ isf ax1 >0,
i=1, 3
JH
This inequality can be written as

* n *
Xs + { X.
=1 4
j#

: 't:i:s:!_;‘j‘:" .

(i) A is an M-matrix
{ii} A has pos1ti§e diagonal entries and is quasi-
diagonally dominant
(141) There exists an x > 0 such that Ax >0 -
{iv} A1 of the eigenvalues of A have positive:

real part.

Since 1 +‘K'(xf) is a_ l-matrix, this resu1t'1mp11es‘thdt :?
), (), (d), dnd (e) are all equivalent. It is clear that
I-K4x) s quasidiagonally dominant is equivalent to

. " ‘ . . . .
THKRNx ). s quasidﬁagona11y dominent; A quasidiegdnalIy;'
‘domTnant, matrix with negative diagona1 entries has e1genv

-: values with negative real parts (Gershgorin Theorem) hence,

for each of (a).through {e), X is asymptot1c311y~stab13.f
(f). Since the matrix [I - K'(x*)]'1 is a Z-matrix,
it is also an Mematrix. This {s a consequence of the fact
fhat when x* » 0 then [l - K'(x*)]x* =w>0Q; hence,
[1-x{x)7 we=x">0. The equilibrium, x" , is
asymptotically stable when the efgenvalues of 'G'(x*)fs'
D(I - K'(x*))- have negative real part. Hawever, since
1 - K'(x }]'1 ts an Mematrix, so is [1 =K' (x 7 (-0 .
Thus. the eigenvalues of [I - K {x )]'1( ) -1 and, con-
sequently those of -B{I - K'(x )} , have positive real
parts. | '
(9). Let H{x) = x = K(K{x)) ; then, H'(x) =
I- [K'(x*)]2 . Employing Taylor's Theorem, K(K{x}) = x =
(1 -k (Y20 - 13 - #([x - x|} where e{[x - x'}) =

ﬁy%ujﬁlﬁ«mn



ard x sufficiently close to <,
T+ DT - kO] (x - x7) -
- 00

--‘Sincé:é1i'pf‘the entriés of I - K'(x*). are positive, then
A — . *
[; - Kx )J{x - x)-> 0. Condition {e) mplies that "x.-
is asymptotically stable. ]
(h). The proof of (h} is similar to the one above. -
“{i). For any x € U, Taylor's Theorem applied ta K

“in the inequality of (1) and some simplification lead to
” . . -
[+ K I - x) e (= x> 0

Condition (e} is applicable again.

{i}. 1In this case the hypothasés imply that ‘C'l is
an M-matrix {Willoughby, 1977). As such, ¢~} and, con-
sequently, [I - K'(x*)]'1 and I - K'(x*) have eigenvalue

with positive real part.

Proof of Theorem 4. That K

(n*) <, is apparent, s0
again the Brouwer fixed point theorem gives a  K-equilibrium

in 2, . The 2n bounding faces of o, are of the form

By = {y e o, | yf'i“xfj + T21< n ; and

Bl - xh) s [xoa x| - 0. Whenever, x €U, x « P

4.7 Modeis-of Loppération -

Perhaps the most iriteresting and beneficial association between two species
is the act -of Eéoperétion. This interaction has béen suggested as an evolutionary
objective of selection by 0&um-(1974_) and others. The interaction can be faculta-

tive in that the association is not obligatory or it can be dbligator! in:the sense

.'that survival of each population depends upon the presence of the other.

- 4:1. Lotka-Volterra Models with Fecultative Associaticns’

Classical example of ¢ooperation (wﬁich in various degrees has;also been re-

- ferred to as mutualism, sxmbiosié, commensalism, amensalism, in Odum, 1974 ) include
‘the algal and f@ngal components of lichens, /the clown fish {Amphirion percula) and

‘sea’ anemones, the ant-Acacia system (Janzen, 1866); plant-pollinator systems.

-

' In the ‘abserice- of an -interacting. populatied, the individusl populations are

”aﬁéuhed_governed‘by a logiétic equation; hence the wodel with mags action inter-

. " action terms is.

dxj = x .(a
& 1

= - X C X
et 1 _z.ﬁ. T Mre 2)

2 x
"X, (az b2x2 +Cy 1]
where
ai( bi,ciJ are pésitive constants,

This medel has two possible types of asymptotic behaviour. There can exist
a positive equilibrium that is glebally asymptotically stable (in the case when
b1b2 - 012021 > 0). The second type of pehavior occurs if blh2 _—912C2fé 0 and
the result is, as aptly described by May "an orgy of mutual benefaction”, unbounded

growth for each component.
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4.2 Obligatorx Interactions as Modelled by Lotka-Volterra Kinetics

For obligatory interactions it is assumed that each population, in the absence
of the interacting species, will decay exponentially and that interactions are rep-

regented by mass action formulations. Hence, the resulting model is

dxy

— = x_ (-a_ + b x)

at 1 1 1 2

(4.1) dx, ( X ,
—_— = x_(-a_ + x

dt 2 .2 2 1

Models such as (4.1) can exhibit a stupendus orgy of mutuality since it can
be demonstrated that they have.solutions with a finite escape time {that is, there

exiats a T« @ such that 1im %_(t) =00 or lim x (t) = ). For example, with
t=r 1 t»7 2

al = 32 = bl = b‘,2 = 1 the substitution V=x1—12 leads to the temporal representation
-t -
V(t} = V{(0Je *. To demonatrate a finite escape time the transformation \l=x21 can

be used to show that

dw/dt + { - 1 + v(0) e-t) w=-1

The clasgification of those solutions w that vanish at a finite time can be

obtained and these solutions correapond to those solutions of (4.1) with a finite
egcape time. There is also 2 threshold where small initial populationa of each

component populations reault in extinction.

A graphical solution of (4.1) is presented in Figure 41l. The equilibrium is

a saddle point with regions of growth and extinction determined by the separatrices

of the saddle point.

” INA
x, ’
%, = 8
bl
] B
. Y
x, —._2
b2

Figure 4.1. Phaae plane diagram of a Lotka=Volterra model of obligatory cdoperation

4.3 Other Models of Cooperation

While the preceeding model contains some desirable propertiea such as an ex-
tinction threshold, the unbounded growth of solutions is certainly undesirable from
a modeling perspective., Vander Mesr and Boucher (1978} address the question “"How
should the isoclines be constructed for cooperative systems?". If interspecific
interactions become weaker as population densities become large, then this might
have the effect of curving the isoclines towards each other so that they again inter
sect. At this second intersection will be stable equilibrium and the unpleasant
unboundedness of solutions present in the original model (4.1) does not occur here

(Fig. 4.2}.



v
]

Fig. 4.2. Feasible isoclines for a cocperative system. u and S indicate an
unstable and a stable equilibrium respectively

The model might now have the form

, ‘
X mxy (~a e by ("1"‘2)"2_)

Xp = Xy (-2, 4+ b, {xpx,)x )

where bl. b2 are decreasing as both of xl. x2 increases.
An example of a community where this situation might exist is the legume and
bacteria (Rhizebium) system. Properties of this interaction include
i). There is a minimal population of bacteria necessary for successful plant esta-
blishment. The few bacteria generally present as seed containments are in-
sufficiont for ecrop growth and inneculation is often required to achiéve an

establishable community.

ii) Additional bacteria inoculum have little effect on nodulation (and thus, pre-

sumably on plant growth and reproduction}. This cccurs above a certain

threshold level; for example, on red clover seedlings grown in culture, addij

tions above 104 (ml)_l of rhizosphere producea no discernable changes in growth:

iii) The number of bacteria present.in the soil when symbiotic with legumes are

usually substantially greaéer than the number needed for nodulation.

In another attempt to formulate a realistic model, May proposes modifying the
éarrying capacity of the logistic equation to reflect dependence upon the density
of the complementary population. The system 1s written here in a slightly different

form to be consistent with earlier discussions:

dxy C.x
= - 1
— =% [rl - ]

g a,
at Bye 8%,

dx: . Cc
'—.2.=12[!‘2-_LIL_]
a
dt 82+ le

This formulation has the effect of increasing the equilibrium values of each of

the components (over the population carrying capacities).

'Koimqgorov-Type Models

The general model of a cooperative two dimensional community of Kolmogorov~-type

is
ax
1
= x f (x, x)
dt. 1171 2
dX2
= x_ £ (%, x)
at 2 2 1 2

h fo o, ¥ 20
where for xlé . 22



b

(the interaction is cocperative)

2) x . df + x. Of L. ollLp, i=1,2

(changes in ¥ along outward vector from origin
is negative) ‘
3) 'fi(o,o)} e , i=1,2" {small populations grow)

4) . fi(Kl,o)'

]
o]
)
—
%)
=
L=
-
"
o

) {there is a cerrying capacity for each
'propulation) o

" Albrecht et al. (1974) demonstrate that there is.a ‘feagible equilibrium that is

globally asymptétically stable,

4.4 Stability in Higher Dimensional Cooperative Communities

.
An equilibrium, x , of the Kolmogorov system

{4.2) s d-x‘! = xigi(x) » i=1,2,...,n. T
dt = .
_ x (xl,xz. xn)

is asymptotically stable if and only if the eigenvalues of the community matrix

s=(sij).

5, = ? (x,g,(x))/
. x X=X

M

- * *
have negative real parts. Since Sij =x, dgilx )}, x 1is asymptotically stable
if any only if all of the eigen values of DA h§\;e negative real parts where D=diag

« »

.(xl *y

* *
X ) and A is the interaction matrix, A = (0gif(x )).

éxd

For competitive and predator-prey systems, stability is independent of the sta-
bility of the interaction matrix. That is, there exists competitive and predator-

prey communities for which the community matrix DA is unstable even though the in-

teraction matrix A hae eigen values with negative real parts and, conversely, there

i o ‘EjIC) .'.

exist communities for which the community matrix DA is asymptotically atable even

though the interaction matrix is unstable.

A pleagant property of cooperative systems is that this is not true in that
stability of an equilibrium is determined solely by the interaction matrix. Assuming

that (4.2) is completely cooperative, -that is,

dg, ()Xo, xer’, ifj,

the following ¢lagsification of stability can be obtained.

- Theorem 4.1. & cboperativ'e' community modelled by {(4.1) is {asymptotically)

* * . .

stable at the equilibrium x (x > o) if and. only .if the interaction matrix A is
agymptotically stable. -

Indication of the Proof. The concept of an M-matrix ie useful in the aubse-

quent arguments. The following criteria are equivalent (Plemmons and Berman,)

1. A is an M-matrix ) .
2. All eigen values 'ot-‘ A have positive real parts
3. A is nonsingular and A-]'}, o

4. There exists a Z> o such that AZ>o

5. There exists a y> o such that ATy) Q.

6. The principal minors of A are positive

The off diagonal elements of the matrix DA are nonnegative. The matrix DA
is asymptotically stable if and only if -DA is an M-matrix. Property 5 of M-matrix
yields that -DA is an M—mafrix is equivaient to . the existence of a vector
X, x> o, such that --(DA)Tx =-ATDx> 0. Hence, this is equivalent to the existence

T .
of a y>o such that -A'y > 0. $Since ai 20 for i7#§, this is equivalent to -A is -

J

an M-matrix. This results in the conclusion of the Theorem.
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There are several interesting consequences of Theorem 4.1. Since —A is an
M-matrix, the stability of an equilibrium, xi, is equivalent to the existence of
a vector d> o such that Ad £0. Writing this statement in terms of the components
we obtain the inequality

) n
(4.3) 4 Iaii I's» 3 dj‘ai:j , i=1%,2,...,n
. jel
3
When (4.3) holds, A is called quasi-~diagonally dominant. An interpretation of (4.3)
is that for stability of x“, the intraspecific competition must‘ dominate the intep-

specific interaction terma. In an analagous manner, a column diagonal dominance

" property can be found.

Employing property 6 of M-patrices, a simple algebraic relationship may be
cbtained for the stability of an equilibrium;

trt
1 %12 1k
a a v a
K 21 %pp 2K
{(-1) ) ) >o, K=1,2,...,n
e
1 %o 2k

(is equivalent to -A has positive principal minors).

The above consideration has focussed upon local stability properties. There

are global stability results that can be cbtained in a similar fashion.

Theorem 4.2. For the Lotka-Volterra system of cooperation.

dxi
(4.4) — =X, ( Tt X ai,:l xj). aij) o

.. 52

. .
A feasible equilibrium, x , is globally asymptotically stable if and only if

all the principal minors of -A are positive,

. *
Indication of the Proof. It has been previously demonstrated that x is

locally stable with this set of hypotheses. Te establish global stability, a

Liapunov function of Volterra type is useful. The function
n .

= - - 1 i
'l‘(x) X C, (x, - X .X n x )
i=1 x
.
i

has derivatives along trajectories of (4.4) expressed in terms of a quadrétic form

with matrii CA+ATC where C = diag (Cl_,Cz....%)l (see Goh, 1977). If CAH\TC is ne=-

gative definite, global asymptotic stability regults., Johnson (1974) shows that

when the negative of an. M-matrix is stable there exists a matrix C = diag

(Cl.Cz,..‘.,,Cn), Ci) o such that C.A+ATC is negative definite: Thus, global atabil.lity
*

of x follows.

This material is related to that fbund in -Sil_iak (1975), Goh (1979), and Travis
and Post (1979).
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5, Communities Composed of Populations with Different or Mixed Functional Roles

Models of interacting populations of twe and three dimension are explored
in this section.  First, the stability of a community in which the functional role
of a population changes with the density is considered. Next, we turn to some
three dimensional communities of Lotka-Volterra type with determinate roles for
populations but the coupling in the food web will be different than discussed pre-

viously, The community matrix role in three dimensional systems is inveatigated,

5.1 A Two Species Model with Density Dependent Functional Roles

Hastings (1978) has proved a pgeneral stasbility theorem for Kolmogorov iype

models.

. Theorem 5.1. Sufficient conditions for the global stability of an equilibrium
* ’

(x, ,x_) of dxy
e — = xR x)

dt

(5.1)
dx2 e )

= X x x

dt 22 "1 2

are

- » .
i} {xl ", ) exist and are unique
-

-

ii) (xl_ R x2 ) is locally asymptotically stable
iii) Both species sustain density dependent mortalities at all densitites:
f
bfl <o, O . <o

:E _ dx2

iv) There exist constants A> o, BJ>o such that
a) for any x2> B; there is a C >0 such that fl(cfxz)é.o

b} for any xl) A, there is a D> o such that fzfxl,D)é -1

- L a
Indication of the Proof. Let (xl " X, ) be any initial position. The rectangle

- - o —~
bounded by the J:l.x2 axes and the lines x1=x 1=rnax (x:L WA,C, xl ], x2=x2=

*
= max(x2 ,B.D,x2 } is invariant under the flow definied by (5.1 }. Transaform

the system by using the Volterra transformation u 1=lnx1, u2=1nx2. This leads o
u u
dul = fl(ell 92)

dt

dug R (eql‘, e”-z)

u
e 2 Lo,

n
(-3
-y
[+]
(=
R
"
[~*
[ =

£
Since bfl + & >

[=

Q|
O

X
1

] x
u u2

1

n

the Bendixgon nonexistence criterion implies that (5.1) does not have a limit cycle

Hence, global asymptotic stability results for (5.1},

A Functional Role Determined by ensity Dependence

It is not a trivial task to determine the functional role of a pepulation
in a community; indeed, it is often the cese that a. species will assume many dif-
ferent roles depending upon'average age of the populatj.pn. the density of the popu-
lation, and other factors. The snail (Thais) is both a competitor and a prey for
the starfish (Pisaster}, Paine (1966). Bluegill-bass interactions are also in-
determinant in their interaction relationships as both predation and competition

occur between both aspecies.

A system that models two populations where predation is the dominant inter-
action at high densities of the population (the prey) and competiticn dominates

at low populaticon levels is

g _ - -
=x (1 dlxl d x, daxlxz)
dt
dyl 2
= - - d
_Et_ x, (1 d4x2 dsxl + Ex:l )

Hastings (1978) has found sufficient conditions for a globally asymptotically

.

2
i > > d
stable equilibrium to be Ads d5 , d4) d2, and cl::":l6 34:15
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5.2 The Community Matrix in Three Population Communities

The community matrix has an important history in discussions of stability.
Since the principal model with an essence of lower order nonlinearity is the clas-

sical Lotka-Volterra model

n
ax; =x (r, -3 b x), i=1,2,...,n
i i i

X
JJ
at jot

These equations may be written in matrix form as

(5.2) dx

= (diag(x )} (r-Bx)
at :

T
where x = (xl,x ,...,en) and B--(bi }. A nontrivial equilibrium

2 2 3

T
yeses% ), r=(r_,r
- n 1
x of (5.2) is (locally) asymptatically stable if and only if the eigenvalue ef

. L 3
the matrix -(diag (x })B all have negative real parts. This matrix is more

*
commonly written as -(diag (x-i t:li }1{I+A) where Az(ai ),

a
J J i i
aii=o. This matrix will be called the community matrix of {5.2)}. There have been

numerous attempts to derive methods of estimating eij from field and laboratory

<b, /bii if i#j and

daté, especially in the case of competitive communities (e.g. Gause {1934),

MacArthur and Levins (1967), Vandermeer (1969), Schoener (1974), Hallett and Pimm
(1979}). Because of the infinite appeal of the community matrix and the fact that
the parameters Bij seem _to'hav_ra offered the best possibility for estimation in
the past, it would be desirable to extract as much information as possible from
the system (5.2} using only the matrix I+A.‘ This approach can be developed without

quantitative knowledge of ri and bii‘

As indicated in Section 4.4, the properties of I+A are sufficient to determine
the stebility of n dimensional cooperative communities and also some communities
‘ot‘ mixed mutualism and competition (Travis and Post, 1979). However, the examples
of Strobeck (1973) in Section 3.6 show that the properties of I+A are not suffi-

cient to determine stability since both systems have the same community matrix.

5¢

The following result is valid only for dimension 3. Extensions to dimension
4 and higher are, at best, difficult (Clark and Hallam, 1983). Assumptions include
r is & 3-vector with positive entries and B is a 3x3 matrix with positive diagonal
elements. To indicate paremeter dependence, the system (2) will be denoted by
LV(r,B}), the diamgonal matrix diag(xi'bii), {when Bﬁlr = x') o}, by D(r,B}), and
the community matrix I+A = diag(b;:))ll by CM{B). The second order principal minora
of I+A will be denoted by

y M =1 M =1-a_a

M=1 ) T B33 Ma 12%21

1 T %2332
The next theorem gives conditions which are sufficient to ensure that the stability
of a positive equilibrium of LV(r,B) depends only on the community matrix. The
conditions are also riecessary in the sense that if they are not satisfled then
either no positive equilibrium can exist for any choice of r and B or it is always
possible to find examples, such as those of Strobeck, of distinct systems with

the same community matrix but with different stability properties.

Theorem 5.2. Let A dencte a 3x3 matrix whose diagonal elements are zero,

A. If I+A satiafies either
(i) det {I+A) 4 o, or
(ii) det (I+A))> o and Mii- o, i =1, 2, 3; then for any choice of r and B where
CM{B} = I+A, LV(r, B) cannot have a positive stable equilibrium,

B, If I+A satisfies

M ow

(iii) det (I+A)}> o, Hii o,i=1, 2, 3, Mi)o, and

i=1
V det (I+A) £ -/Hl + /M2 + ‘/"3

where equality can hold only if M1N2M3 = 0, then for any chaice of r and B

where CM(B)} = I+A, a positive equilibrium of LV(r, B} is stable.
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Suppose that I+A satisfies none of the conditions, (i), (ii), or (iii). If

{iv) there is no positive vector x such that {I+A)x > 0, then for any choice

of r and B where CM(B) = I+A, LV(r,B)} can have no positive equilibrium. If

(v) there exists x > O such that {I+A)x > 0, then there exist matrices r, B,

Al Al

Ao~ L =1 * » »
r, B with the properties CM(B) = CM{B) =« I+A, B r=x > 0, B r=x >0, x

. ,‘__l- .
is a stable equilibrium of LV(r, B), and x is an unstable equilibrium of

Lv(r, B).

Two observations are relevant to part C of Theorem 5.2. If C(v) holds,
* »* '
it is always possible to choose x = % . I ai”) 0 so that the system repre-
~ .
sents competition, then e¢{iv) cannot hold and x and x in C(v) may be chosen

arbitrarily.

Quasi Weak Diagonal Dominance

A matrix C = {c, ) is weakly diagonally dominant if f¢, t> t¢, 1 for
ij nxn ii ij

i=1,..., n, and j # i. The matrix C is quasi weakly diagonally deominant if

there  exists a diagonal matrix D with positive diagonal elements such tl;xat
D-ch is weakly diagonally dominant. Quasi weak diagonal dominance might hold
for many ecological systems as it relates interspecific and intraspecific inter-
actions. The following theorem due to Fiedler and Ptak (1967) illustrates this

and leads to some interesting observations.

Theorem 5,3, If n22 and € is any matrix, then C is quasi weakly diagonally

dominant if and only if, for any set of distinet indices, lﬁ-il,iz....,ikén.

(5.3) te c
14 ii"'ci i € | & 1€, c, - 0
172 1o K1k ikil 1111 1212 lkik .

Applied to the matrix B of the system LV{r, B), the condition (5.3} is

a direct generalization of the well known condition which is necessary and

- B8

sufficient for the stability of a positive equilibi‘ium of a competitive, system

when n = 2: Ib__b_ ! £ (b b I .  This condition is usually transiated as
12721 11722 8 condiEe ¥

"intraspecific interactions are stronger than interspecific interactions'", and

this interpretation also seems appropriate when n ) 2. Note that (5.3) holds

for B if and only if it holds for CM{(B) = I + A, and, in this case, takes the
form:
(5.4} | a a ea, 1 %1

Y2 fata Ny
It is well known that det (I+A) > O is a necesssary c¢ohdition for stability
and also that it is not, in general, sufficient if n > 2, However, in the three
specles case, condition {(5.4) simplifies matters congiderably and leads toc a
simple classification of stable equilibria.
Theorem 5.4. Let n = 33 r>0; and B be a matrix with positive diagonal elements
such that B (or I+A) is quasi weakly diagonally dominant. Then, a positive

equilibrium of LV(r, B) is stable if and only if det {I+A) > O.

As remarked pr;eviously. quasi weak diagonal dominance might be valid for
many commnity models. For_ a .competitive }:ommunity. it is a con'sé_qu'ence of
some of the formulations of the competition coefficients aij' As an illustra-
tion is it noted that one of the more familiar formulations firat suggested
by Gause for n = 2 and generalized by Levins (1968) and MacArthur (1968}, can

be generalized to include the case of a continuous resource apectrum as follows:

(5.5) 2 = Jsfi(x)p,(x)d_x

i)
Jsp' ?(x)dx

where pi(x)dx denotes the probebility that species i will utilize the portion
(x, x + dx) of the resource spectrum in & unit of time, and 5 denotes the re-
source continuum. If “/ / " denotes the inner product and norm in the appro-

priate inner product space, it follows, for distinet indices i , i_,..., i

2 4
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Therefore I + A is quasi weakly diagconally dominant.

There are extensions to these results to the Kolmogorov-type system

dx.
i = % fi(x), i=1,2,u044,n

dt

where 3f / 8x 4 0.
i i

The proof of Thecrems 5.2 and 5.3 are not given here; they may be found
in Clark and Hallam, 1983,

5.3 A Two Dimensional Competitive Sub Community and Another Population

Assuming that a cpmmunity contains a two dimensional competitive sub—
community then various‘typea of populations can be added to obtain a new commu~-
nity. We have studied the case where the added population was a competitor
with each of the other two populatiens. In this section some consequences of
introducing a cooperative population or a predator population are described.
The mathematical details are similar to those for the Lotka-Volterra competitive

model.,

oo

The Third Population is a Cooperator (Hallam 1981).

For a Lotka-Volterra model of a competitive subcommunity and an added coopera—
tor, certain hypotheses about the ccefficients are required te eliminate the "orgy"
effect. With these imposzed, extincticn.of the populations can be c¢lassified.
Employing two populations interactions, there are scme interesting outcomes., The
intreduction of cooperator can destroy the stable competitive subcommunity by
driving one of the competitore to extinction. This can be accomplished by the

symbiotic population helping one of the competitors toe much.

The Third Population is a Predator

Mcdels for a predator and two dompeting pray are numercus in the literature
(e.g. Cramer and May, 1972; Vance, 1978: Gilpin, 1978). Most analyses have focus-
sed upon "predator mediated coexistence" where the presences of a predator allows

regulation of a dominant competitor in a competitive subcommunity.

An analysis of persistence and extinction shows that there can be two forms

of predator mediated coexistence; these are given by the arrangements

V1)> v

> H V1<—>p H Vzé-—*>p H

and

V2V, 5 Ve plov

1 2}

In these arrangements, the competitiop notation is as in Section 3.6 for the prey
populaticns Vl, Vz. The interactions between predator and prey indicated by

vié——é p and p N Vi represent an asymptotic stabil;ty coexistence for both predator
and prey and the survival of the prey population only respectively. Bofh arrange—
ments require invasion capability of complementary species for equilibrium communi-

ties.

The persistence analysis also leads to another possible mechanism of coexist-
ence, namely, "competition induced coexistence". An analysis of the Lotka-Volterra

model shows that this can occur in two ways:
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Instances of predator mediated coexistence are well documented in the ecological

literature (e.g. Paine, 1966; Connell 1975; Caswell, 1978).

The Third Population is a Predator

Models for a community containing a predator and two prey populations exist
in the literature (e.g. Cramer and May, 1972; Vance, 1978: Gilpin, 1978), Most
analyses have focussed upon the processes of predation and competition as mecha-
nisms that can generate diversity in communities. Two of these mechanisms that

¢an be identified by model analysis are predator mediated coexistence and competit-

ion induced coexistence.

Predator mediated coexistence is concerned with regulation of a dominant com-
petitor by predation in order that a complete compunity might persist. According
to the model, this type of coexistence, which tacitly assumes that the competitive
subcommunity interacts in a competitively dominant manner, can occur in two VEVEH
either both preﬁat_or-prey subcommunities coéxist stably or one coexiéts stably
and the other exhibits predator extinction. The criteria for persistence and,
hence for predator mediated coexistencé, are that species complementary to stable
predator-prey subcommynities are able to successfully invade at subsystem equili-
brium densities. Instances of predator mediated coexistence are well documented
in the ecological literature (e.g. Paine (1966), Connell {197%); Caswell (1978)
references several experiments where predator mediated coexistence does and does

not hold.

Other references, related at least peripherally to the model studied here,
in which a predator is introduced into a competitive subcommunity include Maly
(1975), HNeill (1975), Addicott (1974), Yodzis (1976) has discussed effects of

constant rate predation on competitive systems.

&2

Gilpin (1978), using a model employeAd by Vance (1978), has numerically demon—
strated that chaotic behaviour can arise in a three dimensional system composed
of two prey and a predator. While the parameter set they utilize te find chaotic
behaviour is a limiting case of an arrangement whose persistence development is
indicated in Hallam (1981 ), it can be shown there are parameter sets in this
arrangement that lead to chaotic motion. Not conly is the phenomena of predator

mediated coexistence of ecological interest, the mathematical description of the

dynamics can be very complicated as well.

Another model generated mechanism that might exist in communities and which
could lead to increased diversity is competition induced coexistence. Two arrange—
ments of subcommunities wepe classified in this category. The largest increase
in diversity occurs in an arrangement where a predator cannot survive on either
of the prey species but it can persist if it is able to invade the stable competi-
tive subcommunity at its equilibrium density. Certain herbivore~plants systems

could theoreticall fit into this category.

A mechanism that guarantees {according to th‘e model} diversity will not in-
creage in three species systems is for the competitive subcommunity to exhibit
competitive instability. That is, according to Lotka-Volterra kinetics, competi-

tion that is unstable cannot be regulated to a state of persistence by predation,

The terms predator mediated coexistence and competion induced coexistence
refer to persistence in a community attained by effects of species upon subcommuni-
ties. Analysis indicates that determination of coexistence can be function of
all subcommunities as well as species interactive capabilities. In the case of
predator mediated coexistence, a persistent community can be theoretically achieved
by introduction of a prey competitor intc a predator-prey subsystem, in which the
predator need not even survive, The phenomenon of predator mediated coexistence
might be masked in such a situation. Persistence since it is dependent upon sub-
systems composition and interrelationships, is a community property and phrases
as simple as predator mediated coexistence are probably not totally adequate descr-

iptions






