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1. INTRODUCTION

The vital rates of individual organisms usually depend strongly on
their chronolegical or physiological age. Thus the average vital rates
which characterize the dynamics of a whole population of sueh organisms
will remain comstant ever time only so long as the population retains a
constant age-profile. Despite almost universal agreement on the evident
corollary of this; namely that proper modelling of population fluctuations
must require due attenticn to the dynamics of changes in the population age-
distribution, the great majority of theoretical studies take little or no

account of such changes.

it is our belief that the primary reason for this omission lies’in the
failure of any currently popular age-structure description to provide a
modelling tool combining a useful degree of realism with an acceptable
level of mathematical difficulty. The partial differential equation
formalism orginally due te McKendrick (1926) and repopularisad by von
Foerster (1959} is the most rigorous and elegant available, but poses
such herrendous technical difficulties that few analysts succeed in wringing
from it any significant biological insight. The more popular matrix formalism
(Leslie 1945) poses fewer technical problems but is seriously flawed as a
modelling tool because its necessarily rigid assumption of equel length age
classes precludes the realistic identification of such age classes with
groups of functiopally similar individuals (e.g. insect instars). The
manifest failure of these two mathematically rigorous descriptions to come
up with the biological goods has lead im turn to the use of a variety
of ad hoc models based on sets of heuristicaily formulated delay-differential
equations (see for exampleMcDonald 1978). Such models, although appealingly
tractable, all carry the inherent flow that their lack of any mathematically
rigorous foundation makes it hard to distinguish real (i.e. biologically real)

dynamie subtlty from irrelevant artifacts of erroneous formelation.

In this paper we wish to argue that it is possible to set out a
prescription which, under well defined simplifying assumptions, allows
one to systematically formulate models which combine the rigour of the
von Foerster approach with the mathematical docility of heuristic delay~—
differential models. The key element in this prescription is the
realization that within most age-~structured populations there are readily

identifiable sub-populations whose members can, without serious error,

..2..

be regarded as functionally identical (and thus, in particular, as

having identical wital rates). 1f we write the number of individuals
in the ith such functional class at time t as Ni(t) and think of a
closed population (so as to exclude immigration and emigration} then
it is self cvident that the dynamics of the total pepulation must be

described by a set of differential equations of the general form
ﬁi(t) = recruitment ~ maturation - deaths. N

The process of model formulation now focusses uvpon calculating the
three terms on the right-hand side of this equation. The two diffieult
terms are the recruitment and maturation rates which describe moults,
emergencies, pupation and so on, but it turns out that if any inter-class
transition is triggered by a critical valve of a single parameter (such
as age, physiological age, size etc.) then the equivalent recruitment and
maturation rates can be obtained rigorously from the von Foerster equation
or cne of its more complex cousins. In the remainder of this paper we shall.
concentrate on two particular cases: fifstly inter—-class transitions which
teke place at a critical age, and sccondly transitions governed by bady
size (which is theught to be the criLical factor in triggering many insect
moults). However we would like to draw your attention also to scme work
which Stephen Blythe will be describing later in this session, in which he
examines the possibility of similarly rigorous formulation of "distributed
delay" models in which individual members of sub-populations differ in

their aging rate.

2. AGE-DEPENDENT TRANSITIONS

We consider first the class of models in which transitions out of
class i-1 into class i take place at age a,, and transitions out of class i

inte class i+] occur at age ay so that the duration of age class i is

+1°
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We seek to calculate the magniﬁudes of the terms in the population balance

equation (1)} which we re-write more formally as
Ni(t)nki(t) -Mi(t)—Di(:). 3

The death term is easy; we are assuming that all members of age class i

have the same instantaneocus per capita death rate 5i(t) 50

Di(t) = Gi(t)Ni‘(t). (4)



The formal derivation of the recruitment and maturation terms (see Gurney,

Nisbet and Lawton !982) is considerably more complex, but it is rather easy

to get a feel for the results with the aid of George Oster's analogy between

the process of aging and the motion of a conveyor belt. By picturing age

class i as a belt of length T turning at constant unit speed {see fig. 1)

we make it elementary to see that

1.

The recruitment rate to the first age class (i=] say) is just the total
population reproduction rate, and thus, since ail individuals in age
¢lass i at time t are deemed to have the same instantaneous per capita

fecundity Ei(t), must be given by

R (1) = Esi(t)ni(t)' ’ ()
For age classes other than the first,new recruits get onto the st;rt
of the belt by falling off the end of the previous one, so the rate
of recruitment into elass i must be exactly equal to the rate of

maturation out of class i-|
R. = . t i>1. 6

Once on the belt individuals get off it only by dying (evaporating?)
or falling off the end inta class i+]. Thus if Pi(t) is the
probability that an individual falling onte the start of the belt

at time t-Ti is still alive to fall off the end at rime t, then

the tata of maturation out of age class i at time t is

M (E) = R (e-T )P (E) o 7

The through age class survival Pi(t) is quite complex to caleulate rigorausly

(see Gurney et al loc. cit.} but fortunately there is a simple intuitive

argument which yields the correct answer. We first define Ei(t) as the
average death rate to which an individual maturing out of age ¢lass 1 at

time t has been exposed during his sojorn in that age class, so that

.
3, (o) =;‘_— J 8, (x)ax (8)
1
t-Ti

and then see immediately that the through age-class survival probabilicy
Pi(t) must ba

e
Pi(t) = exp{_riﬁi{t)} = axp{- J Gi(x)dx}.. (9}
=T, .-

i

3. PRACTICAI, LUMPED AGE STRUCTURE MODELLING

In common with other delay-differential systems, the dynamic behaviour
of lumped age-structure medels is most readily investigated by judiciously

selected numerical integrations. We have found that the evaluation of such

. integrals is noticeably facilitated by re-stating the integral equation (9)

as a delay-differential equation plus an initial condition, and hence
obtaining a model description consisting of pairs of delay-differential

equations of the form

r':i(t) = R (£) = R (£-T,)P; (£) =&, (DN (r) (102)
RACES RONIHCESEN NG - T (10b)
vhere ‘ -
R (£) = Ry_ (e-7, IR (®) 1>1 C(ha)
R () = { BN () (1ib)
and ° ’

P, (0) - J §, (x)ax _ (12}

-

1

Once a suitable initial history has been constructed the system of
equations can be integrated rapidly and effectively by a simple predictor-
corrector algorithm such as that described by Maas, Nisbet and Gurney (1982).
However, at this point we encounter an appsrent impass, because the walidity
of equation (113). hinges upon the entire historical record being itself a
valid solution of equations €10) and (11). Thus we appear not to ba able
to solve the equations until we've constructed a prior histery - by solving
the equations!! The remedy for this difficulty lies in the fact that a
totally empty system (all Ni = 0) is always a stationary solution of (10) and
(11, sc.if we set

Ni(t) =0 for all i and t20 (13)

then we have constructed a valid, if apparently uninteresting, imnitial history.
Moresover, such an initial history is much less boring thaa it seems, -because.

it corresponds to the actual prior stare of a laboratory axpariment which

'is initiated by the innoculation {at t = 0) of a previously empty culture

vessel or enclosure. It thus only remains to model the innoculation process.



1f we insist that the innoculated population shall have an arbitrary age

distribution this is a very complex undertaking, but by restricting curselves

to "newly qualified" immigrants {e.g. newly laid eggs, newly emerged adults
etc. etc.) we can reduce the problem to one which can be solved simply by

modifying equation (11) to take account of an immigration rate Ii(t) chus
Ri(t) - Ri-l(t-Ti-l)Pi—!(t) + Ii(t) {14a)
R (e} = IB; ()N, (£) + I (6) (14b)
i

and then setting all the Ii's to zero except during some short "inmoculation

period” just after t = Q.

4. GROWTH-DEPENDENT TRANSITIONS

In many species transitions between clearly defined fumctional classes
(e.g. insect instars) occur not at a critical age but at a critical value
of body size, body weight, or some other physiclogical parameter (Beddington
Hassel and Lawton 1976)}. Provided that only a single critical factor is
involved we can rather easily extend the formalism of sectionm 2 to cover
this case. As before the population balance equation for each functional

class must of necessity take the general form

ﬁi(t) = R; (£)-M,; (£)}-8, ()N, (¢) (15)

and our task is to discover the relationship between recruitment, maturatiom
and reproduction. The formal mathematical derivation of the results we

require (see Nisbet and Gurney 1983) from the general formalism due to Sinko

and Streiffer (1967) is even more intimidating than before, but again Oster's
conveyor belts come to our rescue. We now visualize distance along the belt

as representing body size, so that (fig. 2) we regard size elass i as a single

belt spamning a size increment Ami and turning at a rate, o = gi(t).
determined by the instantaneous growth rate of the current population of
the size class. By simply examining the picture we deduce at once that
provided all newborns have the same weight (say m = 0):

1. Recruitment to the first size class is juscr the total population

reproduction rate

R, (t) = ;si(:)ui(c) (16a)

and

2. Recruitment to subsequent classes occurs only by maturation out of the
previous class ' .
r

R (£) = M, (t) i>1. - (16b)

]
Connecting the maturation rate out of class i to the recruitment rate into
it is rather more complex in this case because the belt doesn't turn at a
constant speed, To assist us.ia thiﬁking about the problem we first
define pB(t) and pE(t) to be the densities of individuals to be found at
time t on the beginning and the end of the belt respectively. MNow, since

at time t, the belt is turning at speed g; (t} we know at once that

M; (1) = g () pp(t) -(17)
,and . s
Pelt) = Ri(t)/gi(t) _ (18)

Clearly if individuals maturing out of elass i at time t entered it at a
time which for reasons that will become clear in a moment we write as

t—Ti(t), then Fp and fp MUSt obey the relation
pelt) = pylt-1, (£))P, (1) ) (19)

where the through age—class survival Pi(t) is now defined as

t
?i(t) Z exp {- fJ ﬁi(x)dx}. (20)
t-Ti(:l

This @quation (19)) in turn enables us to gombine equations (17) and (I8}
to yield a relationship between Mi and Ri

Ri(t-Ti(t))
ai(t) = gi(:) T oy (9 2n

g; (et ()
which bedomes meaningful as soon as we can calculate the delay Ti(t). But
Ti(t) simply represents the time taken by an individual maturing out of
class i at time t to traverse that class (i.e. to achieve a size gain Ami)-

Thus, although it has now itself become a dynamically varying quantity, it

" is always defined by the recruitment that

t
b, = J g;(x)dx (22)
t“ti(t)



As we found in section 3, we can facilitate nymerical énalysis of this
system by restating the two integral equations {20) and (22) as differential
equations plus initial conditions. This yields a model description .
composed of sets of three delay-differential equations of the form

. g, (1)
N (0) = R (£) - E;??%?;TETT R, (=T, (£))2; (£) =8, ()W, (©) (23a)

. [%i(t)ai(t-ti(t))
; (8 -_EETE:?;?EYS——_-_ 5i(t) (23b)
gi(t)
IAGEAC) (23e)

Pi(t)
T (E) = 1

where, again as before, we modify the inter-class links to allow for ."newly

qualified" immigrants thus

R (t) = Esi(t)ni(t) + I(t) (24a)
2. (+) = g ()
i(t) = Ri—l(t-Ti—](t)) W Pi—l(t) + Ii(t) (24b)

and where the initial states of .the auxiliary variables P, and T. are
. i i
defined by

o
Pi(O) = exp {- j J Gi(x)dx}, (25a)
“Ti(O) .
o
£ (xydx = A, (25b)
-1, €0)

As before we normally adopt the empty system (Ni(t) = 0 for
i and t £ 0) as our assumed prior history and starr off the culture
with a buxss of dsmigration just after t = 0.

5. THE POPULATION DYNAMICS OF DAMSELFLY THEORETICA

To demonstrate the use of the formalism we h;ve just developed, and
also to illustrate the potential of "mixed mode" models im which some
stages are size-controlled while others are age—cunrrolléd, we now
formulate a stratepic madel of a generalized damselfly (D. theoretica).

This model was suggested to us by some very elegant experiments of Lawton,

Thomsen & Thomson (1980) which showed that the damselfly Ishpnura elegans
can exhibit hugh variations in instar duration in response to changes in
food supply. The model, illustrated in Fig. 3, is intended to explore

the possibility of dynamic control mediated ohly by changes in instar
duration, and postulates an organism with two life~history stages, larvac
and adults, whose populations we shall write as L{t} and A(t) resﬁectively.

The population dynamics of the organism are as follows:

1. TOOD SUPPLY: 1larval food is supplied at a constant rate ¢ into a
"pool" of size F(t)}, and is eaten by the larvae at a per capita rate
E which depends on the availability of food, i.e. F{t). Thus we write

F(t) = ¢ = L{EF(L)). "(26)

2. LARVAE: )
a) We assumé that larvae grow at a rate directly proportional te their
food intake rate, and mature into adults when they reach a eritical size.

Thus, from (23c) the dynamics of the development delay are

T(t) = 1 = E(F(R)}/ECF (e-T(1)) (27

b) We assume that the larval death rate is a density independent
constant A (per unit time), so that the through age-class survival
P(t) is

P(t) = exp{-T(t)A} ) (28)

¢} From equation (23a) we can sec that if the adults produce eggs
(i.e. newborn larvae!) at a rate R{t) then the larval population

dynamic must be

L(t) = R(t) - ETE%%E%‘T . R(t-t(r)}.P(t} - A.L(E) (203

3. ADULTS: We assume that adults have unlimited food supplies (or do not
feed) so that they have a constant per capita fecundity and death rate
$ and § respectively. Thus

R(t) = gaA(t) _ (30)
and

E{t)

;\(E) = E-(‘E‘;Ti(bi)i)i *R(E-T(t))P{r) - SA(t) ) (31)



The dynamics of this model are fully discussed in Nisbet & Gurmey (1983).
Here it is sufficient to say that notwithstanding its postulatien of
entirely density independent birth and death rates the model {when equipped
with a sensible functional form for E(F}) exhibits stable stationary states
over large vegions of its parameter space. The reason for this is very
easy to understand: the density dependent length of the larval stage,
eombined with the loss of a constant fraction of the larval population per
unit time, implies styong density dependence of egg to adult survival,

and this "implicit density dependence’ is just as capable of populatien

stabilization as straightforwardly demsity dependent vital rates.

5. CONCLUSIONS

We have constructed a framework within which age and/or size structured
populations can be modelled with a high degree of mathematical rigour using
simple and comprehensible delay-differential equations. It cannot be over—
emphasized that the difference between such models and previously published
2d hoc delay-differential models is that models formulated using our
prescription are rigorously linked to am exact mathematical underpinning
by a series of well-defined modelling assumptions, the principle one being
that all members of each sub-population are functionally identical. Thus
our prescription enables modellers to avoid the errors.and pi;falls which
so often accempany ad hog model formulation — think on the time-delayed

logistic model and be warnped!
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Figure Captions
Figure 1 AGE DEPENDENT TRANSITLONS
Figure 2 SIZE DEPENDENT TRANSITIONS

Figure 3 LIFE CYCLE QF DAMSELFLY THEORETICA
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