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.. - Gontinuous Medels.of Populations -

3.0 Introduction - to Exponential: Growth

“.Let x {t} ‘denote the populativn size (or Eiomass):atjtimé' t;:,'
let b and d denote the birth rate and death rate respectively (that is, -
b .is the number of births per individual per unit time interval and

analngogs]y for d} on the time interval [t, t + AT 3, at >0
(3.1) Mt +ax) - x(t)=b x{t).At +d x(t) at

Dividing by A t in (3.1) anq letting 4 t approach zero,‘yields
(3.2) EEENO . x(t)

d

-:where r=1b - dis the intrinsic growth-rate of-the population. The

model (3.2) represents the traditional exponential growth (r > 0) or

decay (r < 0)'of a population. An important distinction between first
order linear difference equations with constant coefficients and the
analogous differential equation {3.2) is that (3.2) allowe no oscillations.
The deficiencies of (3.2) as a population model are delineated in Section

2.0.

2

.34 A‘Bensfty Dependent Growth Bafe

“1n;Section éiTﬁ'fdr'diffefence equations. the assuhption of .density

" dependence- was hadelledjby_ o= r(x). The'h&potﬁeses that ri{x} > & >0~

always leads to unbounded growth of the population while r{x) < -5 <0
always leads to extinction. As a canonical form for r{x), the function

represented by the graph in Figure 3.1 might serve as an'initial

approximation.
v (x)

Fig. 3.1 The graph.of a
density dependent per
capita growth rate.

\\\
Ey Es\\

It can be deémonstrated by using linearization that the equilibrium Eu

is unstable while the point ES is locally asymptotically stable.
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3.2 The Classical Logistic Equation

One of the first demographic studies that employed density dependent
growth rates is that done by Pierre-Francois Verhulst (1838). In his book,
G.£. Hutchinson (1978) eloquently presents the history of the ltogistic

-equation:
(3.3) B roox

where- r is a linear function r{x} = a - bx. To try to improve any
portioﬁ of that exposition is fruftiess. We proceed directly to the theory
of the equation (3.3)}. The traditional way of writing the logistic

equation is with r(x) = ro X - ia where o (> 0) 1is the intrinsic growth

rate and K (> 0) is called the carrying capacity of the population.

When L and K are constants, the equation may be solved by the variables

separable method. This leads to

KXO

-r t
Xg - (x0 -K)e o

*(t) =

The geometrical structure of the positive quadrant of trajectories is

given in Figure 3.1.

X
1\
X
Fig. 3.1 Graphs of typical

solutions of the logistic
equation,

k72 dx rox
E=X(|"0—L)

y
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The solution approaches the carrying capacity, K, as t approaches infinity,

independent of inftial population size, % The sigmoid behavior represented

o
by the bottom trajectory in Fig. 3.7 occurs for those solutjons with X,
satisfying 0 < x, < K/2 {K/2 is the ordinate at which any inflection

point of a sofution occurs}. When x is small, the solutions exhibit
exponential growth for a period of time, then density dependent effects

take over and the population saturates at carrying capacity. This saturation

effect occurs monotonically for all trajectories.

Many of the populations whose graphs are shown in Section 2 exhibit

the sigmoid characteristics of the logistic trajectories (e.g. Figures 1.4-1.12).

There are many hypotheses that a population must satisfy for the logistic
model to serve as a valid model. Most of these are not valid for any
population; neverthe1es§, the logistic remains the most widely used
population model. Some hypotheses that are employed in formulating the

logistic equation are given below.

1. Biotic and abiotic parameters are constant for all time. Birth
and death rates are affected by many exogenous factors and will tend to
vary with these effects so a constant intrinsic growth rate and carrying

capacity will not reflect this time variation.

2. Stochastic events are not considered in the model {of course not -

it is a deterministic model).

3. A1l individuals of the population are treated equivalently. They
are not differentiated by sex, age, social role, or physical location.

This ecological homogenity is probably not wvalid for any population.

4. The pef capita growth rate responds instantaneously to changes
in density. The assumption that no time delays occur in any process is

probably invalid as well.



f;

5. Resources are nonexpendable or are continuousiy renewed.

Each of these general objectiens to the logistic can be overcome
through meodification of the model. There are other changes that also
need to be implemented. For example, if v is not restricted to be
positive, weird things can happen; when r is negative, any solution with
%, » K is unbounded. How cam a population, which cannot survive under
ideal conditions of mo intraspecific competition, (rU < () thrive and
explode when the density dependence is strong? The logistic equation
presents one way but, froma modelling perspective, it is not a feasible
one.

The logistic esquation has provided motivation for some of the early
theoretical developments in evolutionary ecclogy. The idea of r- and K-
selaction are in direct reference to the parameters of the logistic
equation (Roughgarden, 1979). Theoretical developments direct from this
classical form of the lagistic eguation are frought with difficulties.
These difficulties are explored in Section 3.4 on the non-autonomous

logistic equation.

6

3.3 The Logistic Equation with Harvesting

Suppose there 1s an exogenecus force which removes members of a popu-

lation at a constant rate h. This physical process is called harvesting

. and can, for example, be effected by hunters or fisherperchildren. If

the populatdon is governed by the logistic equation the model is (3.3) with

harvesting included:
dx _
{3.4) E-xla-bx)-h

Harvesting models have played an important role in the management of
renewable resources (C. Clark, 1976) and are developed later by Dr. J.
Conrad in these notes.

Equation (3.4) can be analyzed by employing a stability analysis.
The equilibria are given as roots of b x2 - ax+h=0. The roots of
this equation, X4a X* are real if and only if h satisfies the ineguality
0 < h <a’4b. The smaller root x, = [ a - (a® - 4bh) 1% 2b is unstable
and the root. x* = [ a + (a2 - 4bh)%] / 2b is asymptotically stable. The

selution space of {3.4) has a configuration given in Figure 3.2,

x*

e
o+

Fig. 3.2 The solution space of the logistic equation with harvesting.
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The model has a threshold of extinction (x,) below which extinction
occurs in a finite time. If the initial population exceeds this threshold,
the solution, x(t}, approaches the equilibrium population, x*, as t tends to
infinity.

Much will be said later about this situation but one concluding
remark i$ given here. When the harvesting rate exceeds the critical
value h = 32 / 4b, extinction results independent of the initial population;
hence, if (3.4) is biologically meaningful there is a critical harvesting
rate. Certainly, for values of the harvest rate parameter near eritical
value, the model is interesting both from a mathematical and a biceconomic
viewpoint,

A discussion of this situation and an interesting application may

be found in Brauer 1976.

g

3.4 The Nonautonomous Logistic Equation

Mearly Constant Ceefficients

An hypothesis of the classical logistic model is that the ecology
of the population is constant. The time-varying version of the logistic

equation is

(a.5)  SE - e x(e) 01 - BH

This equation is of Bernoulli-type and is solvable in closed form if r and

K are piecewise continuous on R, = [0, »}. The solution of (3,5)

+
which passes through (to.xo) is t

X, exp [tl r(s) ds ]

t 5 .
1+ x I exp [ J r(sl)ds,] ris) ds
Kis

(3.6) x(ts ty, x ) =
o

to to
When r and K satisfy the inequalities

inf K(t) < K(t) < K" = sup K(t} < =

(3.7a) 0<r
" teR, t.€R,

it

(3.7b) 0 < X, = inf K{t) < K(t) < K* = sup K(t) < =
t, € ]R_'_ t € IR+

theri the asymptotic behavior of {3.5) is much like the logistic with

constant ecology {Coleman, 1979). There exists a solution of (3.5)

?c'(t)=[rexp[-rr(t~§)dy]£1§_

Q o



that is globally asymptotically stable.- The solation X depends upon
the complete past history of r and K. If r and K are periodic

. W
then so is  ¥.

A Deteriorating Environment

The behavior of the nonautonomous Togistic equation is not always
similar to the classical logistic model. This can be demonstrated by
considering the deteriorating environment situation.

A deteriorating environment is modelled here by functions K with

the properties that K > 0 on R_+ and 1im k(t) = 0. For convenience of
B t s
iltustration, assume for the present that r > 0 on R,.

Remark 1. If J ) r(s)ds = = then each solution of {3.5) satisfies
liT . x(t,to,xo} = 0. Hence, a relatively Targe growth rate coupled with
a deterjorating environment causes a population to track its environment
to extinction. This plausible and expected result can be demonstrated
directly from (3.6) by using L'Hospitals Rule.
Remark 2. If J m'l«(t)dt <= then each solution of (3.5) converges;

o}
that 1is, ]im‘ x(t, t xo) = X_. This result is valid even without the
deterioraE;:g environment hypothesis. In the case that K is constant,
it can be shown that given any terminal value X with x_ < K {1 - exp

[-[m r(s)ds ] }'Iz M, Hence, if J r(s)ds s sufficiently small,
to to

M can be arbitrarily large and K is exceeded by the limit of any solution
that is initially above X. For a deteriorating environment, there exist
cases where the terminal value of every solution of (3.5} exceeds the

terminal density of the carrying capacity.

12

If one attempts to interpret the abuvefcomméﬁtsjbiulbg{calTy, the
following puzzle arises. A growth rate that is 1érge can lead to extinction
while a small growth rate can result in persistence independent of
initial population (and can lead to large terminal densities which. exceed
tﬁe terminal values of the carrying capacity). By interpreting r as
the growth rate of the population in the absense of environmental stress,
a situation arises where a population, because of a small intrinsic growth
rate, is barely able to persist under the best of conditions. However,
it is able to survive and even flourish in an intolerable environment.
These conclusions again vividly indicate the inadequacy of {3.2) as a
model of logistic growth. The difficulties here are easy to bypass in
that a proper parameterization 6f the logistic equation does not lead

to these dilemmas.
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3.5 A Modified Logistic Equation

Modelling deficiencies of the c¢lassical logistic equation [ {3.5),
with constant coefficients ], are promulgated by ﬁhe role of both model
parameters r and K. The model defects in the preyvious section are
consequences of the domination of the intrinsic growth rate r in the
equation. An equation, of modified logistic type, which does not allow

solution behavior to be subjugated by r is

‘(3.8) %%il = x(t)(’r - %x(t))

In equation {3.8), the 1ntriﬁsic growth rate, r, is expressed in units
(t‘ime)_.' as is the positive parameter c¢. This new independent parameter
¢ is a measure of the population response to environmental stress as
represented by the ratio x/K.

A problem with the parameter K in the classical logistic equation
is that it can be ambiguously interpreted as either a population carrying
capacity or a steady state of the population. Since these interpretations

need not be equivalent, it is convenient to reformulate the model as

(3.9) dggt) - x(t){r{t) - Cﬁ%%%]

where B denotes the maximum population which the environment can
support; that is, the environment can provide all necessary requirements
for the maintenance of B individuals but it wili not support B + 1

individuals. When r and B are constants, equation (3.9) has a stable

12

equilibrium at x = vB/c. This.mdt{vateslthe}definition-of-the;(u]timate)

population level parameter K -as

(3.10) K=1"8/c g5
0 if

It must be the case that r < c in equation (3.9). For species that
have evolved in a manner which allows the population to exploit the full
potential of the environment, one would expect to have K =B and r = c;
that is, the traditional Togistic equation is applicable.

Equation {(3.9) can be shown to palliate some of the modélling
difficulties associated with the classical logistic equation as it yields
plausible results in many instances where the traditional logistic does not.
For example, when r < 0, all solutions of the autonomous equation (3.9)
approach zero as t approaches infinity while for the logistic some
solutions blow up in a finite time.

In the nonautonomous case, it can be shown that the undesirable
attributes exhibited in the deteriorating environment setting no. longer
hold (Hallam and Clark, 1982}, For example, either a deteriorating growth
rate or a deteriorating environment assures extinction of the population.

There have been many who criticize the logistic equation for its l
deficiencies {e.g. Gray, 1929; Kavénagh and Richards, 1934; Andrewartha
and Birth, 1945; Pielou, 1977; Murray, 19749},  However, despite the crit-
icisms and obvious deficiencies, the equation continues to he the most
frequently used continuous deterministic model of single species population
growth in & limfted environment. Its advantages are its analytical

simplicity, the elementary - interpretation of its biological parameters,
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and the fact that it often can be fit to data.
The reparameterization suggested in (3.9) might prove beneficial
for modelling populations with small growth rates or where the environment

is changing in an unfavorable manner.

74,

3.6 What Should a "Discrete" Logistic Model Look Like?

A comparison between the discrete logistic equation and the c¢lassical
logistic equation indicates that the behaviors are considerably different.
To find a difference equation that has the same behavior as the logistic,

£.C. Pielou (1979} starts with the solution

Kx0

_ . -r t
Xy {xo Kle” "o

x(t} =

and considers this as the solution to the desired difference equation:

K

. _ T
Yn= 1+t {r=e"0)

It can be shown that

Y n

Yp+1 " A-T1
1+ 7K ¥y

This equation has a behavior that is similar to the traditional logistic

equation.
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3.7 Density Dependent Representations

Smith's Modification of the Logistic Model.

The per capita growth rate of the logistic egquation is a Tinear
function of the population density. F. E. Smith {1983), studying a
population of Daphnia magna by an etegant set of experiments found that

his data did not support the Tinearity hypothesis {Figure 3.3).

— - 0cr-0Ec.i%60 Fig. 3.3 Observed densities of B.
Ao 4 JUNAUG, 195+ magna at various specific rates
oo AUGOHOV. 196 of growth, using number of
individuals as the measure of
density. Data are combined
from three sets of experiments.

AN/N4T

a0 ad 120 180 200 =240 280 320 360
NUMBER/10OCC

To find an adequate model, Smith argues as follows. The classical

logistic equation contains the assumption that the growth rate is proportional

to (K - x)/K, the proportion of maximal attainable population size still
unrealized. This seems somewhat unrealistic and it might be more appropriate
to have a growth rate that depends on the proporticn of some Timiting

factor not yet consumed. A natural candidate for a limiting factor is the
food supply not yet utilized. The hypothesis employed by Smith is that the
per capita growth rate of a population is proportional to the rate of food

supply not momentarily being used. This results in the model:

76

where F s the rate at which a population of biomass x consumes
resources, and T 1is the rate at which the population uses food when it
is at the equilibrium K.

At this point, it is prudent to observe that this model shares some
modelling difficulties whth the logistic equation. The proportionality
constant factor r can result in false feedback when r is negative or
in suspecious behavior if r is ciose to zero., Hence we assume that the
per capita growth rate is a linear function of the ratio of the rates F/T;

consequently,
1 dx _
(3.11} ;a?—a-b%.

The rates of comsumption, F and T, depend, at least, upon the population
biomass and upon the rate at which the population is growing. As a first
approximation, let F = €y X+ €y %% . Since T 1is the rate of consumption
at equilibrium K, T = ¢;K.. Substitution of these values into (3.11)

gives

Qu

1 dx
=32 =3 - b (Cyx + cpdx)

€K

Simplifying the equation results in

b

o, [278 X
dat = % ”"”"BEE
1+E]_Bx

This formulation, in an analoguous manner to the logistic, yields a population
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carrying capacity .K_Adé%inéd‘byu

(a8 .o L s

K = ST
0 ifaz<g. o

- It can be readily demonstrated that each solution-of this mode] approaches
K as t tends to infinity.
This medel emphasizes a new saturation aspect to the role of density
dependence in the theary of populations. There are in the literature many
other representations of the per capita growth rate that reflect effects

of density dependence. These inclyde:

1. 8. Gompertz {1825) used
_ B
r(x) = cx(In % 3.

2. M. Rosenzweig (1971) used

r) = e H9.1), 0cgan.

3. Goel, Maitra, and Montroll (1971) use the negative of Rosenzweig's
model :
- N.g
rx) ~ 1 - (M9, 0cgat.

4. T. Schoener (1973) takes g = -1 in the above formulatioh of

Rosenzweig.

R rﬁtnad&b;ieq

Resource: - Comsufmér .Dynamics

L Thé quantity and‘qdé1%tyubf“ékquﬁJatiqpfsrngsqqﬁges déterm{he'f '
mﬁny aspects of the growth of the population. bf‘the‘pﬁpﬁ?éfionfmbdéTésxf';'
described previously, only the Smith model makes any pretence to explicitly
consider the food supply as an important parameter. In this‘section, we
will explore the dynamics of resource - consumer interactions from a
modelling perspective:

" First, some general principles that govern most resource - consumer

re1atibnships are indicated.

1. When a resource is rare relative to the magnitude of the consumer
population, the rate of consumption should be determined solely by the

amount of available resources.

2, When the resource is ébundant, the rate of consumption is determined

solely by the density of the consumer population.

3. When the resource is neither rare nor abundant, the rate of con-
sumption is a function of both the amount of available resources and the

density of the consumers,

4.1 ﬂ_Mode] of a Resource - Consumer Interaction

Gatlopin (1971) developed a rudimentary model that utilizes some
of these principles to describe a single dynamic resource and a consumer

population.
The Resource, A.

The exogeneous rate of input of resource into the system is assumed to
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be f(t}; actually, in the analysis, lf Cis takenifdfﬁe-tonsfdnt; 'Thé‘_

' amoﬁnt of avai]able.resource A s, by .2 conservation of mass, tﬁé
difference between the resource that has entered the system and the
resource that has been ingested by consumers. It is assumed that thé
excreted resource is not available for consumption.

The ingestion rate, ¢, should be a function of the amount of avail-
able food A; some measure of the population, either density or biomass,
M the rate of change of the population (growing organisms consume more
resources per unit mass than nongrowing ones}; and, perhaps, other factars.

Thus, |
c=ca, M ;o

In order to further specify c, it is convenient to introduce the
parameter a, the ingestion rate per unit mass which corresponds to
maintenance at complete satiation. If a pepulation is satiated, an increase
in food supply will not increase the ingestion rate. However, if the
population is hungry, an increase in food will produce a significant increase
in the ingestion rate. [t is assumed that the change in the ingestion rate
per unit change in available food is propertienal to the hunger of the

population:
8c _
(4.7) =& = hiMA) (aM - ¢).
The proporticnality parameter h depends only upon biomass M and

available resources A, HNote aM is the total ingestion rate at satiation.

A choice of h that results in many desirable properties of resource -

20

 consumer systems. is that made. by. Gallopin h = o/M. For example, an
~ingrease in A hds*a—greater:éffection.conédmptian,when M- is small than

" When M ‘is§1ar§e. lEduatioﬁ (8.7) with h(H;M)fﬁ;anl'Cinfféct;.For

arbitrary h) is solvable as a first order differehtiaT-equatTun in ¢

for ¥ > 0, this yields

c{AsM) = aM + K{M} exp(-ah/M}

whére X{M) is a constant of integration that may depend upon M (beeausg
the integration is with respect to A). Since c¢(0,M) =0 for all

M>0, K(M) = -aM; hence -
{4.2) CLA,M) = aM(1 - exp(-aA/M})

This formulatien for rate of consumption has the following properties:

1. When food is abundant {A large) the ingestion rate is a

function of M only: Tim C(A.M) = aM.
Ao

2. When resources are scarce (A small) the ingestion rate is small:
lim C(A,M) = 0.
Poveo

3. When population biomass is small, the consumption rate is also:
lim C{A.,M) = 0.
M0
A#O

4. When the biomass is very large, consumption rate will be pro-

portional to available food: T1im C(A,M} =2 a A.

M-)-w
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Population Dynamics:

Conservation of mass impiies that

(2.3 S cAM) - AAM

where 2 represents the losses of resource from the population. The
losses include egestion, respiration, excretion, and mortality.

The following hypotheses are imposed. Egestion rate is proportional
to consumption rate. The totality of the remaining losses are reguired to
be proportional to the population biomass. The equation (4.3) with these

hypotheses imposed becomes
dM _ -
(4.4} 5= (1 - ulc + kM = Be +.kM

The conservation of mass law can be used to find a dynamic equation for

When (4.2) is substituted in (4.4} the differential equations become

a Eoupled system for A and M:

(4.5) i}% - BaM(1 - E’a - exp(-cA/M))

W= £ am1 - exp(-oh/M))

The system (4.5) can be analyzed by analytical methods if f(t) = fo

is a positive constant. There exists an equilibrium

22

(4.6) B,
M=

_ "o k
AO = —E 1[\{] - E‘—ﬂ)

provided k < ag. If k> ap then no (positive) equilibrium exists and
extinction may be demonstrated by use of the comparison principle for
differential inequalities (Lakshmikantham and Leela, 1969} applied to
the M-equation in (4.5). The parameter k 1is a maintenance cost per
unit mass of the population; extinction results if the maintenance cost
exceeds the assimilation rate per unit mass (ag). [Most ecologists
could have told us this before the mathematics started].

Persistence can occur for the population whose dynamics are modelled
by (4.5). A linearization shows that the equilibrium (4.6} is Tlocally
asymptotically stable if and only if k < ag.

The Dulac-Bendixson Nonexistence Criteria {with auxiliary function
M'1) can be used to demonstrate that no Timit cycles exist for (4.5).
Consequently’, by the Poincare-Bendixson Theorem, (A,,Mg) is globally
asymptotically stable.

There is a relationship between the hypotheses of the model of
Smith (Section 3.7} and this one in that both formulations are concerned
with consumption rates at a variable density and at equilibrium or

satiation.
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4.2 Qther Model Mechanisms_for Feeding Relationships F= fxc(1 - e %)

Representations without Consumer Interference Mass Action.

The models of Monod (1949}, Watt (1959), and Holling (1959) all

Among the earliest modelling efforts devoted to feeding mechanisms relate to the formulation
were important contributions of A. Lotka, an American bioTogist, and V.
XX
Volterra, an Italian mathematician. They assumed that the ingestion F=f Esxrk

rate, F, is proportional to the product of the magnitudes of consumer

density, Aos and resource density, x : )
r This representation is referred to as a Michaelis-Menten-Monod formulation

(M3 for short; M2 got into the act from enzyme kinetics).

Sigmoid Responses

One criticism of this feeding representation is that when the resource

Holling .(1959), Murdoch and Qaten {1975} describe a sigmoid type
is abundant, the rate of consumption does not depend solely upon the

functional response.
consumer population. Holling (1959) overcomes this objection by maintain-

ing the linear response for low density resource but imposes at saturatiom consumption

effect for large densities {Figure 4.1}. rate

consumptio
rate

resource

Fig. 4.2 A sigmoid response for resource-consumer interactions
resource

" Fig, 4.1 A linear functi Holling}. ‘ .
1 inear functional response (Holling) The hyperbolic response seems to be most prevalent and occurs in

some insects, some invertebrates {snails on mussels, starfish on snails)
Hyperbolic Responses

and some vertebrates (carp on bream roe); see Murdoch and Oaten {1975).
In a model of a fishery V. S. [vlev (1961) used a formulation that Some phytoplankton respond in this way to various nutrients (Frost, 1974).
allowed consumers to feed at a mass rate when food is abundant: The signotd respon;e has been observed in some parasitic insects

and some vertebrates {deermouse on sawfly pupae). Hassell (1977} argues
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'{hat’thﬁsff}pé:6f?re§h0ﬁée5is.ﬁore-commoh ihén d?i§1n511y‘55fiévea

The linear response type is cTa1med to. occur for: §ome 1nvertehrates h

(crustacea on algae or yeast) although it is difficult to d1fferent1ate

data fits to the linear response and the hyperbolic response.

4.3 Representations with Consumer Interference

Situations can occur in which consumer density increases but the

feeding rate does not ncrease proportionately because of mutual interference

between consumers. Consumption efficiency must decrease in these settings.

Salt (1967, 1974), in studies of the effects of the ciliate Woodruffia

metabolica, on the species Paramecium and Didinium nasutum on Paramecium
aurelia, found that feeding rates per unit consumer F/xc react strongiy
to changes in density of consumers. Hassell {1971) has demonstrated that

the searching effeciency of the insect parasite Nemeritis canescens

decreases at high parasite densities.
_With these examples in mind, Defngelis, Goldstein, and 0'Neill (1975}
suggest that F/xC should depend upon x. and propose a consumption

formulation of

F= fxr‘xc
b + Xt dxr

It should be recalied that Gallopin's formulation also has this

censumer-interference feature with his formulation

=aX

F= ax, (1-e% ).
X

]






