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Expanded'Outline-and Bibliography
..I. Introduction and Qverview

These notes are intended as an introduction to the biological questions,
mathematical analyses, and biolegical conclusions of stochastic models for
multispecies assemblages. Little attentfon will be_devoted to detailed
analysis of particular models. Instead, I will actempt a survey of the key
ideas and provide references for further study. The presentation will be
organized according to the mechanism{s) creating the probabilistic effects.

The three classes to be consldered are:

1. Demographic stochasticity (or "within individual stochasticity",
Chesson, 1978) — Whether or not God plays dice, apparently identical individuals
have different life lengths and produce different numbers of offspring.
Integer—valued stochastic models are typically used to investigate the conse=
quences of this variatien.

2, Environmental stochasticity - Environments vary unpredictably through
time in ways that affect all individuals equally. Most analyses of the conse-
gquences begin by introducing random variation into the parameters of a stamdard
deterministic model.

3. Joint effects of demographic and environmental stochasticity.

For a more thorough classification see the excellent review by Chesson (1978).

In addition to reciting some standard results, I weuld like to convey one
key idea. The gualitative answers to broad questions like, "Does envircnmental
variability limit the similarity of competitors?" can depend critically on
both the model analyzed and the method of analysis used. Hence it behooves the
modeller to carefully suit the analysis to the biclogical question addressed
and to determine the robustnmess of conclusions to the details of the model
considered. All modellers should read Pielou's (1981) eritical assessment aof

the field.

The references given are. a very limited and uneven sample of those
available. Emphasis is placed on references that are biologically well-
motivated or mathematically elegant, provide extensive bibliographies, or were

written by me. References to parailel work in population genetics are provided

at random.

II. Demographic Stochasticity.

Both continuous-time and discrete-time models have been analyzed. Essen-
tially all are stochastic generalizations of standard deterministic models and,
therefore, have natural "deterministic analogs'". The random variation is
essentlally always Markovian, i.e. the future is Independent of the past once
present condirions are specified. No attempt will be made to describe the
models or analyses in detall; most of the key mathematical ideas will reappear
in the discussion of environmental stochasticity. The central comclusion is
that demographic stochasticity produces little departure from detertiniscic
dynamics 1f initial population sizes are large and the deterministic analog
treats a collection of homogeneously interacting populations (see Chesson,
1978, 1981) wheose jeoint deterministic dynamics possess a globally stable
equilibrivwm at which all populations remain large. Conversely, if initial
population sizes or equilibria are small, the populations are subdivided, or
there are several or no deterministically stable equilibria, demographic
stochasticity plays a central role in population dynamics and community
structure. Slight elaborations of each of these items and references follow.

A. Demographic stochasticity is mathematically interesting (i.e.
relatively tractable) but biologically fairly boring if all populations are
initially large, individuals interact homogeneously {(i.e. each individual
experiences the total population density, rather than only local density),

and the deterministic analog has a globally stable equilibrium with all



populations large. There {s a large body of mathematically sophisticated
analyses that demonstrate this. The basic 1dea is that the populations tend
to settle into long—term "quasi-statiomary" fluctuations about the deterministic
equilibrium. These fluctuations can be nicely approximated by Orunstein-
Unlenbeck processes and the coefficient of variation (variance/(mean)z)

for each species is roughly proportional to the inverse of its equilibrium
population size. The fluctuations are only "quasi-stationary” because
ultimate extinction for each species 1s certain in the absence of recurrent
immigration. However, the expected extinction time due to demographic stocha-
sticity will be of geological proportions for large populations and thus
ecologically irrelevant.

References: Barbour, 1976; Bartlett, 1960; Kurtz, 1981; May, 1973, Ch. 2;

McNeil and Schach, 1973; Nishet and Gurney, 1982; Wang, 1975.

B. If initial population sizes are small or species have low equilibrium
abundances {on the order of 10), relatively rapid extinction due to demographic
stochasticity becomes likely. This represents a gqualitative departure from
deterministic results. Most analyses concern the dynamics of colonizing species.
The likelihood of successful invasion and long-term persistence are semsitive
to the presence of competitors that slow growth rates and lower equilibrium
population sizes. Typical meltispecies analyses involve heuristic applications
of single-species results obtained from birth and death processes or branching
processes. The basic theme is reminiscent of the classic observation by
Fisher, Haldane, and Wright that selectively advantageous, rare mutations
are coften eliminated by chance (see Ewens, 1979, Ch. 1).

References: Becker, 1973; Goel and Richter-Dym, 1974, Ch. &; Tudwig, 1976;

MacArthur, 1972, Ch. 5 Appendix; Turelli, 1980.

c. Demographic stochasticity can play a decisive role in determining
to which of multiple stable equilibria a population is attracted. Park's
classical competition experiments with Tribolium, in which apparently identical
replicates gave different outcomes, are the srtandard paradigm. The fate of
communities near a deterministic separatrix Is subject to chance fluctuatioms
in abundances.

References: Barbour, 1976; Barclett, 1960, Ch. 5; Mangel and Ludwig, 1977.

D. If deterministic mechanisms of species interaction are ignored or
assumed to be relatively weak, demographic fluctuations (interpreted here as
random replacement processes) beccme key determinants of relative abundances.
Caswell (1976) exploited the elaborate machinery of the 'meutral theory" of
proteln evolution (see Ewens, 1979) to analyze a "neutral" model of community
structure that ignores biological interactions. This analysis is philoso-
phically closely allied to the new wave hypothesis-testing scheool of ecology
chempioned by the sc-called Florida State Mafia (see, for instance, Simberloff
and Connor, 1981). Horn (1975) and Hubbell (1979) analyzed mathematically
related models of forest communities. Unlike much of stochastic community
theory, this area is dominated by analyses tallored to specific ecosystems
{principally those governed by competition for space) and empirically moti-
vated questiouns concerning the role of disturbance (Horn, 1975; Hubbell,
1979) and particular sorts of interactions (Karlsen and Jackson, 1981).
Depending on whether immigration is allowed from a species pool of invariant
composition, either transient or steady-state patterns of diversity are

investigated.

E. Like much of mathematical ecology, the analyses above assume that

all individuals respond to the total numbers of their population and the
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populaticns with which they interact. Real populations exhibit spatial structure

and the local density experienced by an individual can differ appreciably

from the average density of the entire population. Chesson {1978) catalogs
this as "within patch variability”. When local densities rather than average
densities govern dynamics, the effects of demographic stochasticity can persist
even In infinitely large populations if local densities remain small. Within-
patch variability induced by local demographic effects can qualitatively alter
the outcome of interspecific interactions (e.g. Hastings, 1977) and natural
selection (e.g. Wilson, 1980).

References: Caswell, 1978; Chesson, 1981; Crowley, 1978; Slatkin, 1974,

ITI. Envirommental Stochasticity

A. Sample Questions

1. A quantum leap in the mathematical sophistication of ecological
modelling occurred when May (May and MacArthur, 1972; May, 1974) intro-
duced stochastic differential equations {SDEs) to investigate limits
to niche overlap in randomly fluctuating environments. This guestion
hag now been addressed with a wide range of models and mathematical
techniques, Interestingly, the supposedly widespread pattern that the
original papers sought to explain may not exist (Simberloff and Boecklen,
1981).

2. Environmental fluctuations ineluctably produce fluctuations
in population levels. A general question is to determine how species
dynamics and interactions translate environmental fluctuations inte
temporal and spatial patterns. For "low levels” of noise, stochastic
linearization procedures suffice (see Roughgarden, 1979, Ch. 20; Nisbet

and Gurney, 1982, Ch. 7).

B. A central obstacle in stochastic community theory is the general
intractability of nonlinear multidimensional stochastic processes. A critical
problem then is to incorporate noise Into a deterministic model in a way that
is biologically meaningful yet mathematically tractable. Because mathematical

ecology was traditionally phrased in differential equations and Markov processes

are relatively "nice", SDEs, which represent multidimensional diffusion processes,

appear as natural candidates for study. Unfortunately, they impose artificial
biclogical constraints (e.g. nolse can only be eagily introduced into parameters
that enter linearly) and are mathematically treacherous (see Feldman and
Roughgarden, 1975; Turelli, 1977). Difference equations provide more latitutde
{and realism) but their stochastic analogs are less well characterized, even

when Markovian (see Chesson, 1982; Ellner, 1982},

C. A critical step in mathematically unravelling the consequences of
environmental stochasticity is determining whether or not a local analysis
will suffice (see Turelli, 1978)}. If it will, you're im luck.

1. Local analysis of fluctuations about a deterministically stable
equilibrium is straightforward, at least in principle, for both SPE and
discrete-time stochastic models (see May, 1973, Ch, 5; Bartlett et al.,
1960). SDE applications produce Ornstein-llhlenbeck processes, i.e.
diffusion processes with infinitesimal mean and variance-covariance
structures of the form

n
Mi(xl,...,xn)= La,

X
1= 1173
with negative real parts for all the eigenvalues of A=(aij), and

for i=1,...,n,

vij(xl""’xn)sbij for 1,3=1,...,n

with B=(bij) symmetric and positive definite. Here %, measures

departures from the deterministic equilibrium Xi’ e.g. xi(t)-(xi(t)—Xi)/Xi.
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The stationary distribution for this process is multivariate normal with
mean vector O and variance-covariance matrix I satisfying
Ta+alL = 23,
In the discrete case, one arrives at a first order autoregressive

process, l.e.

L
where 2z denotes the introduced moise processes. In either case, the
mathematics reduces to (possibly herrendous) linear algebra.

In general, local analyses about internal deterministic equilibria
cannot be relied on to provide conditions for species coexistence, which
unavoidably involves global dynamic behavior (Turelli, 1978). When
dealing with specific models, such as Lotka-Volterra systems, the inter—
action observed between deterministic parameters and stochastic fluctuations
will depend on the way noise is incorporated. Generalizations based on
specific models are unlikely to be valid. An unavoidable consequence
of interior (as opposed to boundary point) linearizations is that
envirermental srechasticity is viewed as a destabilizing factor which
jostles populations away from their deterministic equilibria (May,

1973, Ch. 5). For additional applications of linearization and
refinements thereof see Bylmer (1976), Nisbet and Gurney (1982, Ch. 7},
Poole (1978), and topilc 2b below.

2. Global analyses are much more delicate. The key problem is
that incorporating environmental stochasticity in a meaningful way usually
eliminates all internal equilibrium points (or cycles). Hence stochastic
convergence concepts that generalize the standard deterministic conver~
gence~to-point-equilibria ideas are generally inapplicable. One is
forced to apply persistence and coexistence critefia that allow populations

to undergo undiminishing fluctuations without extinction. A1l eriteria

have some weaknesses, either biclogical or mathematical.
a) An extremely appealing stochastic analog of deterministic
global convergence is the existence of a unique nondegenerate
statlonary distriburion that describes persistent long-term
fluctuations. Unfortunately, very little machinery is available for
disctete-time medels, even Markovian ones. (See Chesson (1982) and
Ellner (1982) for particular one-dimensional examples.) The situation
is only slightly better for $DEs, Turelli and Gillespie (1980)
provide heuristic conditions for two-dimensional processes that
look like exponential growth in a random environment near the extinc-
tion boundaries. Kushner (1972) has shown thar Liapunov=-1ike functions
can yield sufficient conditions. Applications of this technique
appear in Polansky (1979), Turell{i and Gillespie (1980), and
Turelld (1981a). On rare circumstances, one can guess the functional
form of the stationary density by generalizing results from one-
dimension or symmetric models (e.g., Turelli, 1§81b).
b} In desperation, ore can ignore mathematical rigor, devise a
heuristic criterion, then do simulations and hope for the best.
One example is the heuristic invasion analysis applied in Turelli
(1981a) and Turelli and Petry (1980). This criterion is based on
the conjecture that a stationary distribution is likely to exist
if each species can invade when rare and the remaining species are
fluctuating at steady-state. The weaknesses of this approach are
described in Turelli (198la) and a one-dimensional counterexample
is provided by Chesson (1982). Nevertheless, the technique appears
to be useful for analyzimg stochastic models built by injecting

small amouncs of possibly autocorrelated noise (e.g., CV<.1) into
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difference equations. Like local linearization, this technique
perturbations.)
is built on Taylor series approximations, but it takes into account

beth linear and quadratic terms. The necessity of complementing

D. Sample applications., Three approaches to understanding the conse-
this sort of analysis with computer simulations cannot be over-

quences of environmental stochasticity on the coexistence of competitors
emphasized.

will be reviewed: 1) May and MacArthur's (1972) original linearization
c) Chesson (1978) has proposed a stochastic persistence criterion

analysis; i1} Turelli's (1981) invasion analysis; and iii) Chesson and Warner's
that is weaker thanm the existence of a nondegenerate stationary

(1981} analysis of "lottery competition”,
distribution but retains its biological content by requiring that

stochastic fluctuations lead to neither population extinction nor

IV. Joint Effects of Demographic and Environmental Stochasticity
explosion. A population X(t} is said to be stochastically bounded

Clearly in the real world both demographic and envirommental stochasticity
if for every e£>0, there exist time independent constants LE>0 and U£<m

are unavoldable. Given the difficulties of analyzing each separately, it
such that
should come as no surprise that relatively few multispecies analyses have heen
P{L_<X{t)<U )>l-¢
€ € performed.
for all t. Unlike the hack heuristic approaches, application of
A, Invasion analyses have relied on the machinaery avatlable for
this criterion requires some mathematical talent and training and

branching processes in random enviromments.
is extremely ¢ifficult in multiple dimeunsions,

References: Keiding, 1975, 1976; Turelli, 1980.
d) Recognizing that ultimate extinction is cerrain in the presence

of demographic fluctuations, Ludwig (1975) proposed calculating

B. Persistence time analyses typically start with diffusion approxi-
the mean extinction time (measured as the mean time to reach a low

marions and are carried out via asymptotic expansions,
population threshold) as 3 measure of persistence. This general
References: Chesson, 1982; Hanson and Tier, 1981; Ludwig, 1976; Tier and
approach 1s also supported by Nisbet and Gurney (1982). Here
Hanson, 1981.
again the mathematical difficulty of applying the criterion is

formidable, even for multidimensional diffusioms. Chesson {1982)

Acknowledgments
and Turelli (1980, 198la) discuss relationships among the persistence

The organization of topics and the reference list were significantly
criteria and the nontrivial difficulties associated with their

improved by suggestions from P. L., Chesson, J. F. Quinn, and T. W. Schoener.
application to ecological problems, (See Hanson and Tuckwell

(1978) for a discussion of persistence times under large random
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