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INTRODUCTION
Although the use of similarity principles has a long and
fascinating history going back at least as far as Galileo, this
lecture is intended mainly to describe the current state of the
art and to make some guesses as to what will happen in the future.
The organization of the lecture is as follows:
1) wWhat are we talking about?"
2) Why -- of what value is it?
3) what has been done so far?

4} What comes next?

WHAT ARE SIMILARITY PRINCIPLES?

A similarity principle is any kind of general rule about the
relationship between different objects. This means that we can use
one object as a model for another and use a similarity principle

to scale the results. A simple example is the relationship between

mass and weight in physics; if we know that the gravitational
force on a 1 kg mass is about 10 Newtons, then we can predict that
the weight of a 100 kg mass should be about 1000 M. However, we
have to be sure that we specify the class of objects to which the
similarity principle applies. So long as we deal with objects near
the surface of the earth, the above calculation is valid, but if
we are dealing with a 100 kg mass near the surface of the moon it
is very misleading -~ the correct weight is actually only 140 N.

Most similarity principles in biology are expressed as
allometric laws of the form

y-axb

where x is some measure of size (weight, length, etc.) and y is
some physiological varjable such as growth or respiration. The
congtants a and b depend on the class of organisms to which the
principle applies, which has been a constant source of confusion
and frustration to biologists. Whereas physicists can usually
agree on the c¢lass of objects they are describing (e.g., Newton's
law of gravitation applies to "all material bodies"), biologists
get results which tend to reflect individual research interests.
For example, a similarity principle connecting two variables like
body size and respiration will usually have different constants
depending on whether it is fitted to data on humans, mammals,
vertebrates, all animals, or living organisms in general. In light

of this problem, it is fair to ask:

OF WHAT USE ARE SIMILARITY PRINCIPLES IN ECOLOGY?
The use of similarity in physics and geometry is well

established and goes back to the dawn of scientifie work in both



Eastern and Western civilizations (Gamow 1961, Mason 1962).
Perhaps the first scientist to use it for gquantitative
physioleogical calculations was Galilec (1638), who showed that
bone size had to increase faster than body size in large
terrestrial animals. The dominant figure in modern times is
unguestionably D'Arcy Thompson (1942), who clearly showed that
allemetric relations are widely found among living crganisms.
Thompson concerned himself chiefly with morphological
characteristics, but in more recent times there has been a growth
of interest in the relationships between dynamic processes in
different organisms, and most recent work has focussed on
physiological rates. The existence of ailometric relationships
governing such rates has been shown time and again, but because
different researchers tend to consider different groups of
animals, there is no agreement on the precise form of these
relationships. Purthermore, these laws are only approximate, and
the large degree of scatter that is usually encountered has made
many scientists sceptical of their value, or even of their
underlying validity,

From the viewpoint of the ecclogist the imprecision of most
similarity principles is more than compensated by their
generality. There may be thousands of different species present in
a single ecosystem, and it ig not possible to obtain detailed
physiolegical data on all of them. There is however a need to
estimate such variables as community respiration and preductivity,
and similarity principles often provide a way to obtain such
estimates from the kind of data which are available. Thus they can

play an important utilitarian role in ecology. However, there is

considerably greater value than this in the study of similarity,
It seems to many of us that these principles reflect fundamental
properties of living organisms. If this is true, then
understanding of mechanisms which can explain similaricy
principles as well as deviations from them may play an important

role in helping us learn how ecosystems evolve,

QUR PRESENT UNDERSTANDING OF SIMILARITY PRINCIPLES

The basic method used in the physical sciences for deriving
similarity principles is dimensional analysis, and the same
approach has been tried in biology (Stahl 1961, schmidt-Nielsen
1970, Gunther 1975, Platt and Silvert 1981). Analysis of the
simple pendulum provides a familiar example of the method. This
consists of a point mass m at the end of a weightless string of
length 1. The period of the pendulum, t, can depend only on m, 1,
the gravitational field g, and dimensionless pnumerical constants.
It follows that this dependence must be of the form

t=amblcgd

where a, b, ¢ and d are pure dimensionless numbers (Bridgeman
1931). Since the dimensions of the two sides of the equations must
balance, it turns out that the only possible values for the latter
three constants are b=0, c=1/2, and d=-1/2. Thus the three
exponents are uniquely determined by dimensional considerations,
while the coefficient a cannot be derived without using further
theoretical or experimental information.

Attempts to apply the same type of reasoning to bioleogical
systems are complicated by the fact that these systems are so

complex that it is difficult to identify a small set of



dimensgional variables which play the fundamental role of m, 1, and
g in the above example, However, if living organisms really are as
complex as they seem, then it is difficult to understand why they
exhibit the high degree of reqularity indicated by the existence
of simple allometric laws governing physiological rates (Fenchel
1974, Humphreys 1979, Banse and Mosher 1980, Banse 1982). This
regularity seems to jndicate that these rates may in fact depend
on just a few dimensional quantities, only one of which is a
variable (Platt and Silvert 1982). The constant quantities appear
to be the caloric content of living tissue and the density of
tissue, while the variable is some measure of size; most authors
have reported data based on some measurement of mass, such as wet
or dry weight, but it may be that surface area is a more
fundamental variable (Harding 1977, Brodie 1982).

Clearly this type of analysis, even if valid, c¢an only be
approximately true, Neither of the two "constants™ described above
are true constants, and practically any quantity one might choose
to define as a constant for biological systems is likely to vary
by perhaps a factor of two. Furthermore it would be foolish to
pretend that taxonomic differences are totally insignificant, In
fact the same is true in physics, and the period of a "simple"
pendulum really does depend on the mass when realistic factors
(the weight and elasticity of the string, air resistance, etc.)
are taken into account,

A further complication is that the allometrie exponent of
mass appears to be somewhat greater for terrestrial ocganisms than

for aquatic ones. Platt and Silvert (1981) have suggested that

since terrestrial organisms have to cope with gravity whereas
aquatic animals are instead required to displace water in order to
move, the density should be expressed in terms of weight on land
and of mass in water. The dimensional difference between the two
quantities leads to different exponents; for example, for specific
rates with dimensions of (time)-l the exponents of mass are -1/4
for terrestrial organisms and -1/3 for aguatic ones. These values
are fully consistent with observation. However, despite the
satisfactory agreement we may guestion whether caloric content and
density really are the most important quantities affecting the
physiclogical dynamics of living creatures. In particular,
although the effort of displacing a mass of water must be a major
metabolic cost for large marine vertebrates, it is probably less
important than viscosity for small animals (S. Pearre, personal
communication). If we replace density by viscosity in the
dimensional formula (Platt and Silvert 1981) we obtain an exponent
of ~1/2. Data on small invertebrates are inconclusive on this
point (Banse 1982), but it would not be surprising to see a change
in the allometric exponent with Reynold's number,

At present it seems that the existence of similarity
principles governing not only shape but alsc dynamical rates such
as productieon, respiration, growth and related physiological
quantities, are well-established in biology, even though there are
certainly many other sources of variation in these quantities. The
allometric exponents corresponding to these similarity principles
can be derived from first principles using assumptions which are
plausible {f not totally convincing, and the results agree

satisfactorily with experiment. If these assumptions prove valid



they provide a valuable insight into the forces facing the
evolution of living forms. Even if the assumptions underlying the
derivation of the allometric exponents prove false, however, we
may still treat the allometric laws as phenomenclogical models
which let us estimate such quantities as total preduction for
ecological communities when we lack enocugh detailed physioclogical

data to estimate production directly.

WHERE DO WE GO FROM HERE?

As was pointed out previously, one of the difficulties in
studying similarity principles in biolegy is that the forms of
allemetric laws depend on the groups of organisms to which they
are applied. If we look at a plot of a specific rate, r, as a
function of body size, m, for many different types of animals,
then we find that we can either fit a single allometric law

r-amb
to all the data, or we can fit a set of different laws
individually to distinct groups such as unicellular organisms,
invertebrates, and mammals. However, if we f£it these major taxa
separately we find that the values of b are roughly the same for
all of them, even though the values of a are different; in other
words, the different allometric lines are parallél on a log-log
plot (Fenchel 1974, Banse and Mosher 1580). As we proceed from the
smallest unicellular organisms to the the largest mammals in size,
the value of any specific rate follows a zig-zag trajectory as-’
shown in Fig. 1, As we go from an invertebrate to a fish or from a
fish to a2 mammal of the same size we find that the physiolegical

rates (e.g., growth, respiration, etc.) increase to reflect the

greater metabolic cost of a higher degree of complexity and
organization. If on the other hand we simply look at all organisms
together then we identify a single line with a somewhat larger
(more positive) slope, and the taxonomic differences mentioned
earlier appear simply as scatter about the dashed line in Fig. 1.
If we went to a more detailed and less aggregated description then
we might identify more lines scattered about the solid lines
shown; if we compare Fig., 2 of the Fenchel (1974) paper with Fig.
6 of Banse and Mosher (1980} we see just this, as the latter
authors use several categories which are much more detailed than
Fenchel's.

If we think of different groups of organisms as representing
different design strategies, then we can view the existence of
similarity principles in nature as in a sense an engineering
problem. when an engineer designs a bridge he needs to find the
type of bridge which will suffice at reascnable cost. For the
largest distances he has to build a suspension bridge, but these
aré too expensive to use for small distances, and in this part of
the size range they cannot compete with cantilever or other
designs. Similarly, it appears that mammals represent ﬁhe only
physiological strategy that is sufficient for the largest animals,
but the costs of the mammalian design are great; the smaller
mammals, the smaller shrews for example, are extremely inefficient
and can survive only where conditions are ideal and food is
abundant. At the other extreme of size, the smallest organisms are
of course unicellular, but there is a limit ~_Pow lazge a single

N
cell can be and still be viable. Thus each broad\taxonomic

.‘\
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grouping represents a design strategy which is potentially optimal
over a certain size range, and there is some degree of overlap
between these size ranges, This is similar to the bridge analogy
mentioned above, since bridges of a certain design tend to lie
within a restricted range of lengths, but for a given length there
may be several possible designs, depending on secondary factors.
However, the fact that all of these separate curves seem to
cluster about a universal one, the dashed line in Fig. 1, suggests
that there are some globally valid considerations which can he
used to deduce the kinds of "design" which are likely to be
optimal within a given size range. This idea of a global =set of
coﬁstraints on organisms which may be completely different in
terms of structure and function is supported by the similarity of
the slopes of the solid lines in Fig. 1, which represent the
allometric exponents for these different groups.

The type of design limitations which can give rise to these
types of regularities is a matter of conjecture, but there are
some considerations which are obviously likely to be important.
These include the problem of extracting nutrients from the
surroundings and distributing them throughout the organism. Since
the surface/volume ratio and the physical size of corganisms
increase with increasing mass, we find that larger organisms have
deieloped complex methods for increasing their effective surface
area {e.g., lungs and guts), as well as sophisticated transport
systems for distributing nutrients throughout the body. These in
turn call for more and more elaborate control systems, such as the
central nervous system. These control systems in turn impose an

additional metabolic cost, and that is why we see the

physiclogical rates shown in Fig. 1 jump as we move from a solid
line representing one level of complexity to another,

Underlying the above discussion is the idea that similarity
principles and the allometric laws which express them are not
merely convenient patterns which can be used by ecelogists in lieu
of satisfactory experimental data, but that they reflect
fundamental aspects ahout the organization of living organisms, If
this is true, then we should try to identify what the basis of
these principles is and to understand the nature of deviations
from the patterns they represent. It was after all through the
study of analogous patterns in planetary motion that Newton was
able to identify the fundamental principle of universal
gravitation and deduce his laws of motion (Gamow 1961); if there
are any fundamental laws underlying the science of biology then
the study of similarity principles is likely to prove an effective

way to discover them.
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FIGURE CAPTION

Figure 1. Typical log-log plot of a physiclogical rate having

-1

dimension (time) vs. body size. After Fenchel (1974) and

Banse and Mosher {1980} .
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