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1. Introduction

Patchy distributions ¢of plankton in the sea and lakes have been
well documented (Cassie, 1963; Tonolli and Tonelli, 1960; Platt et al.,
1970; sSteele, 1976, 1977; Harris, 1980). However, the precise
mechanism that arises plankton patchiness is still a subject of
considerable controversy., To name some proposed mechanisms they are:
i} mechanical retention in wind-generated convective cells or frontal
zones (Langmuir, 1938; Stommel, 1949; Floodgate et al., 1981; Bowman
and Esaias, 1978), ii) behaviorial reaction to distributions of
environmental parameters such as temperature, salinity, light, and
nutrients (Cassie, 1959; Forward, 1976; Heaney and Eppley, 1981),

iii) exclusion of certain zooplankton by phytoplankton (Bainbridge,
1953}, iv) food-chain association in predator-prey relations (Tonolli,
1958), in particular the phenomenon of spontaneous pattern generation
through diffusive instability (levin and Segel, 1976}, and v) aggregative
behaviors (swarming, schooling) for breeding and feeding (Clutter, 1969;
Hamner and Carleton, 1979).

The patchiness itself most likely arises from a variety of
mechanisms and processes under varicus conditions. However, many
cases share in common a single process which acts generally as an
"anti-patchiness" agent. This process is diffusion due to turbulence
in surrounding media or random movements of organisms. Generally
speaking, diffusion tends to counteract the formation of organism

aggregation, and to give rise to a more uniform distributicn

{note an exception of diffusion-induced instability in predator-prey
interactions). Thus an endless interplay occurs between the aggregati#e
process of organism growth or reproduction and the antiaggregative
process of diffusion, and a dynamical balance may be established in
such a manner that the growth rate of organisms within a patch is
equal to the loss rate of organisms due to diffusion into.the sur-
roundings where organisms cannot survive. since the growth rate is
proportional to the velume of the patch and the diffusion rate is
proporticnal to the surface area of the patch, the patch size at the
dynamical balance must be a minimum critical size or simply critical
size, below which the population of plankton cannot be maintained

and the patch disappears.

2. Model by Kierstead, Slobodkin and Skellam (“KISS model")

A simple nonetheless useful mathematical medel for the critical
patch size was given by Kierstead and Slobodkin (1953) and Skellam
(1951) independently. This model is based on a simplé diffusion
and exponential growth equation for plankton goncentration, which is
expressed, in one-dimensional space, by
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If L < wm(D/e) *, Six,t) will approach zero as time progresses,
L L cno '
while if L > w(D/o) *, S{x,t) will increase indefinitely with time,
thus a plankton bloom may occur. Therefore the critical (minimum)

patch size Lc is determined frem the equality condition, i.e.,

b
L, = 7(D/u) " - (4)

The above is applied for a linear habitat. For twoe dimensional

space, e.g., a circular habitat, the critical diameter is obtained
by

L, = 4.82(n/0)" (5

This model has been a cornerstone in the later development of the
subject. Hereafter it refers to the KISS model {(KIerstead-slobodkin-
Skellam), and the critical size (4} refers to the KISS scale and
derpoted by Lo.

The further development has be§n made intoc varicus @irections.
It includes i) generalizatiorn of the growth rate function and
relaxation of the boundary ccndition; ii) scale and density
dependencies in diffusivity, iii) addition of advection, iv) nonlinear

Populaticn dynamics, and v) multispecies interactions. Interestingly

enough these generalizations and improvements on the original model

have shown that with a few ¢xceptions, the KISS model is robust as
a mathematical theory for the critical size problem.

In this article I will briefly review the main result of those
later developments and present a new model which attempts to eliminate
the arkitrariness of the boundary condition involved in the coriginal
Kiss model.

3. Generalization of the KISS model

Platt and Derman {1975) and Wroblewski et al. (1975) included
the effect of herbivore grazing on phytoplankton in the KISS model.
Using an Ivlev type grazing function, they calculated the critical

size to be

= D 4
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where R is the maximum grazing ratiocn of the herbivere and A is the
Ivlev constant. As is expected, the effect of herbivore grazing
reduces the net growth rate of the population, so that the critical
size becomes larger than the KISS scale. If a £ Rm AT all patches
mist vanish as time progresses.

The boundary condition of the KISS model that the plankton patch
is surrounded by completely unsuitable water is rather arbitrary. In
reality the transition from favorable to unfavorable conditions is
gradual, and organisms move more or less freely both into and out of
the favorable region. Ludwig et al. {1979) and Evans {1978) {(unpublished

manuscript) calculated critical size assuming that organisms can



survive but net grow outside the favorable habitat, so that the

diffusion-reaction equation cutside is expressed by

%SE =D-“;3f'—: - A3 fo 12| > Lra
(7)
where 8 > 0 is the death rate of organisms. (7) is solved by coupling
with (1} subject to the continuity conditions for the population
density and its flux at the boundaries, |x| = L/2. As a result the
following criteriocn for critical size is obtained
le = L, {-;-!r_ﬁzw”éff)h} (8)

where tan—l(B/a]gtakes the value of the priancipal branch, For infinite
B the critical scale is reduced to the XKISS scale, Ib' For finite

B/a, Lc is less than Lo, decreasing to zero as /0 approaches zero;
this limiting situation corresponds to a Malthusian population
surrounded by reflecting barriers.

In reality for phyteplankten, a reaschnable value for B/a might
be 0.1 when population decay is simply due to planktorr respiraticn
outside the favorable area. For this value Lc is 20% of Lo' Thus
the critical size does not differ much from the KISS scale when the
conditions in the surrounding water are relaxed.

Gurney and Nisbet (1975) consiéer a model in which the growth

rate varies continuously in space, in particular varying with distance

from a habitat center in a parabolic fashicn, i.e.,

otixr = «u{ s = () )
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where a is the maximum growth rate at the center. The favorable
region extends from X, to X and beyond this region the death rate
progressingly dominates. Unlike the KISS model the boundary conditions
are applied only at infinity, i.e., S+0 at lx| <+ «, Gurney and
Nisbet solved the problem to cktain the minimum size of the favorable
region for the population to survive., It is given by 2xcr = 2(D/ao)&,
which is compared to the KISS scale.

The eritical size problem with spatially variable growth rates
¢an be treated in a general way. For simplicity we shall restrict
our attenticn to a largely hostile environment containing a single
central region of viable habitat; the growth rate is given by

rix) >0, 0= x= x,

(10}
r{x) < 0, %, < x
with the assumption that all the properties of the space is
symmetrical about the origin x = 0 so that the appropriate boundary
conditions for 5 read
at x =0, 38/3x=0
{11)
at x + o, s-+40
The basic equation for S can be written as
85 _ 8 {12)
<>t = D_b.;—l + Fr(3 S , a4 X



For further simplicity we consider r(x) to be a non-increasing
function of x. Iet a > 0 be the (maximum) value of r at x = 0, ang
express r(x} in terms of a non-decreasing function V(x) as

r{x) = o - oV{x)
with
Vie}=0, Vst o CERE X, VO > 1 for X, <%,
Viw) = fra 3z 07 (osp s

{12) is rewritten as
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We nondimensionalize (15) with respect to the independent variables
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Substituting (18) inte (17) we obtain
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(17)
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{19}

(20)
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{19) is just analogous to the Schr¥dinger wave equation with potential
V(E) and enexgy E {Schiff, 1955). Thus an eigenfunction ¢ that
satisfies the boundary conditions (21) can exist for a particular
value of E. There may be a finite or infinite number of discrete
values of E, but our concern is onhly to the minimum value of E (= Em),
which depends cnly on & and Eo' The minimum of E corresponds to the
maximum of A, i.e,, the largest eigenvalue Ao which deterﬁines whether

the pepulation ultimately grows or decays in an exponential fashion.

Therefore A = Ao =40, i,e., Em = 1 Getermines the critical size x,

for x
[}
Em(xcr/l, v) =1
or
x =L fnlv)
_ kl
= (D/a) ° fn(v} (22)
We will give some examples.
a) KISS model
o , 038z §,
Vis) =
oo ferPza) , 3 <% (23}

This corresponds to the case of one-dimensional square well potential
with a perfectly impenetrable wall at Eo. The minimum eigenvalue Em

is obtained by

Y _
Em = n/2§o

so that the critiecal size fer xo is formed by setting Em =1,

{

D"
3

=
]
[SIE]

cr



L = 2 x
cr

cr

which recovers the KISS scale.

=

= w(D/m)Lj = Lo

b) Evans and Ludwig et al. model

o c<}z§,
V(§J=i

") - P

§.< 5

This is the case of one-dimensional sguare well potential with

finite potential step, and the minimum eigenvalue Em is obtained by

LS.
tan(Em Eo) =

Setting Em =1, we get

L+v1-g)
m

%

X = (/)" tan 1 (g/e)”

or
L = 2(0/a)* tan 1 (g/m) T = L {2/ tan” 1 (8/a} %)
which agrees to (8), .
c) Gurney-Nisbet model
ViE) = (E/E )2

This corresponds to the familiar

potential for a harmonic oscillator,

and the minimum eigenvalue E is given by
E, = &
s¢ that
X, = &= (D/u)5
Lcr = 2{1:)/&)11

(24)

(25}

d) Sverdrup's model ¢ Sverdrur, r153)

In this model r(x) is taken as r(x) = a e—kx - B{0<a<B), so that

SRR -t
o

V{5) = - e + RN ) =(E4f%ﬂ.f}&.

2
It seems that the Schrédinger egquation with this potential has not

been studied.

2 SR P |
%%*-w—(1+vl—ek Y1 = 0

The solution satisfying the boundary condition at infinity is obtained

bf k'
-75

¢ = )

2
- JZy/k'(E' e
with A is constant and y = 1L+v 1 -E

The condition at £ = 0 leads to

The smallest positive root of (27) along with y(E=1) = 1+v !

determines critical size for Xt

t]
1]

b
or {(D/a) “fn(v)

or

2(D/u)&fn(v)

[
]

cxr

Since the oceanic motion consi;ts of a wide range of eddies, a
mathematical model appropriate for oceanic diffusion cannct be
described by a constant diffusivity; a more appropriate model should
account for the scale dependence of diffusion.

A crude approach is

to introduce an appropriate scale dependence of diffusivity to the

{26)

(27)
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critical size formula and te solve for the size. For instance take

the KISS scale formula for two-dimensional space

LC = 4.81 (D/u)% (28)
and use a scale dependent diffusivity
D= p(chz)' (29
where the linear dependence of D on the scale is after Joseph and
Sendneyr (1958} whése oceani¢ diffusion model is characterized by the
diffusion velccity P of order 1 cm/sec. Combining (28) with (29},
we obtain

L_ = 11.5 ®/a ' (30)

A more rigorous derivation relies on the following diffusion
eguation

3
at

35

=12 238
v (Pr ar) + as (31)

where Joseph-Sendner's theory is applied to the two-dimensional
horizontal diffusion with D = Pr. (31) is subject to the boundary
condition that at r = Lc/2, 5 = 0 and to an apprepriate initial

condition, Solving (31) under these conditions, we obtain

L, = 7.34 P/u (32

(Ckubo, 1978). For more general treatments with D = er™ (c: constant,
m 2 0), consult Ckubo (1978),
Estimated values of the critical size of phytoplankton for

various oceanic diffusicn mcdels range from 1 km toe 2 km for o = 1 div/day

-17-

and 20 ta 50 km for o.= 1 d4iv/10 days. These theoxetical models of
phytoplankton support the general observations that plankton patches
appear to ocour at scales of the order of 10-100 km in the open sea
(Steele, 1976) and at 1-10 km in a semi-enclosed bay (Platt et al.,
1970). It is important to note that no matter what the model may be,
the essential feature of the KISS model is preserved in the formulation
cf the critical SiFe' i,e,, the size is determined by the balance of
diffusion rate and net growth rate (MecMurtie, 1a78).

when advection cccurs in addition to diffusion, the critical
patch size may be quite different from the KISS scale. For example,
when a patch of plankton is placed in a zone of ceonvergence, a flow
pattern ladvection) which tends to act against diffusion is present,
Tt then becomes obvious to expect that the size of plankton kloom
may be significantly smaller than the KISS scale.

A mathematical model for this case is given by

35 ] a
e + {us) « =3 (33)

. -
where U(x) is the amplitude of the current converging to the center,
x = 0. (33) is subject to the same boundary conditions as before.
For a uniformly converging flow; u{x) = ¥ {constant), the critical

size is obtained by -

LC = w(D/a)&p (34)
where § is the smallest positive root cf the equation

1A i L - a
m i‘m;{(f—m) f'r/'-‘/zj' = (r-m} (35)
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with m = v2/4aDh (see Okubo, 1978 for detail). As m + 0, y + 1 and
as m*+ =, u+ 0, This model may explain the existence of very narrow
bands of phytoplankton bloom in frontal zones (Bainbridge, 19357;
Simpson and Pingree, 1978).

On the other hand, the critical size becomes larger than the
KISS scale when a patch is placed in a diverging flow; as a matter
of fact the critical size may become infinite, and a patch can never
exist {Ckubo, 1978). For a uniformly diverging flow, p in {34) is

the smallest positive roct of the equation
1A . 5 =
m }La'n'{{/-m}’ny‘/;j = = (r=-m)

Thus, fermz 1, i,e., v 2 Z(Da)%, U becomes infinite and so is Lc.
For example, if D = 10%em?/sec, a = 1 div/day, and v = 2 cm/sec,

then Lc -+ =, whereas the KISS scale is ahout 1 km. Even a relatively
weak convergence of a few centimeters per second in the sea is
capable of destroying phytoplankton blooms.

In passing density-dependent diffusion may create another dramatic
change in the critical size problem. Mathematical mo;els for density-
dependent dispersal of populaticn have been developed by Gurney and
Nishet (1975), Gurtin and MacCamy (1977}, Shigesada and Terramoto
(1978}, Sﬁegesada et al. (1979}, shigesada (1980) among others. 1In
particular Gurney and Nisbet (1975) investigated the effect of
density-dependent diffusion on the spatial distribution of population
undergoing spatially varying growth and death. For purely density-

dependent diffusion their model equation reads

(36)
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as _ 2 ' 28 i - 2
Y 3x(vs Bx) + mo{l (x/xo) 1s (3

where diffusivity is assumed to depend linearly on the population
density s, D = yS. Gurney and Nisbet (1975) then show that regardless
of the size of favorable region there always exists a non-trivial,
non-negative, stable steady-state solution to (29), i.e., there is no
minimum size of habitat for population survival.

The density-dependent diffusion plays an important role in
animal dispersal (Morishita, 1971}. sShigesada (1280C) compared her
mathematical model of density-dependent dispersal favorably with
experimental data on ant lion dispersion by Morishita. Zoopliankton
might as well exhibit density-dependent dispersai. Even though
phytoplankton are considered to be passive in their movement, many
dinoflagellates are able to migrate vertically by phototactic responses
(Blasco, 1978; Heaney and Eppley, 1981; Forward, 1976). Whether or
not any density-dependence operates in the dinoflagellate movement
is unclear. However, an analysis of the self-shading effect con algal
vertical distribution by shigesada and Okubo (198l1) suggests that the
self shading may give rise to some density dependence in the advective
flow of dinoflagellates, so that th? dispersal of dineoflagellates can
be modelled by a Burgers' type equation (Levin and Okubo, 1983).

The critical size problem has also been extended to more general
population growth processes such as logistic growth (Skellam, 1951,
Levandowsky and white, 1977; Ludwig et al., 1979} and asocial population

growth (Bradford and Philip, 1970 a, b).
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For a population undergoing logistic growth and diffusion the
KISS scale is still a minimum size of habitat required for survival.
More individuals to accommodate, larger the critical habitat size,
and to maintain the level of populaticn at the carrying capacity of
the resources, the habitat size must be infinitely large. An asocial
population is characterized by negative growth at small population
densities, positive growth at intermediate densities, and negative
growth at large densities. The critical habitat size is obtained as
c{D/ul}%, where a) is a growth rate at an intermediate population
density and ¢ is a numerical constant of order unity. Again a
formula similar to the KISS scale is applied to the critical size

for asocial populations.

4. vVertical-horizontal coupling in phytoplankton patchiness

Though fairly robust, +he KISS model is by no means immune to
flaws. & particular weakness of the model is found in its arbitrary
boundary conditicns, i.e., two distinct water masses,-one favorable
and the other unfavorable for orgapisms. Even the improved models
which can relax this boundary condition are still unable to interpret
the occurrence of plankton patches in the sea where the oceanographical
conditicns are seemingly uniform in the horizental direction.

The previously mentioned models including the KISS are concerned

primarily with the horizontal diffusion of plankton patches by hori-

zontal turbulence. This is the main reason why the model needs the

-16~

arbitrary boundary conditions. In the sea the vertical and horizontal
processes are strongly coupled in such a manner that the combined
action of vertical shear in horizontal curyents and transverse
vertical mixing can produce an effective dispersion in the horizontal
direction (Bowden, 1965). This "shear effect" claims that the
vertical and horizontal processes of dispersion cannot be treated
independently, but rather the advection—diffusion in.the vertical
direction is responsible for the dispersion of plankton in the
horizontal directicn.

mnalyzing chlorophyll-a data obtained in central Long Island
Sound, Wilson and Okubo (1980} demonstrated that the horizontal
distribution of phytoplankton was generated by the interaction of the
vertical structure with a vertical shear in horizontal currents at
gemi-diurnal and lower freguencies and possibly by short periad
internal waves. 1In shorp,horizontal patchiness is a manifestation
of vertical patchiness.

Steele (1976, 1978), Kvans, Steele and Kullenberg (1977), Evans
{1978) and Kullenberg (1978) attempted to couple the vertical and
horizontal processes in interpretation of plankton patchiness. Yet
a unified mathematical medel has noF been developed to evaluate the
critical size of phytoplankton in the sea. In this article I will
outline a simple model of vertical-horizontal coupling; a full
expleration of the model will be presented elsewhere.

The concept of a critical depth for phytoplankton blooming is

relatively old (Gran and Bracrud, 1915). Sverdrup (1953) first
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presented a mathematical model dealing with conditiogs for the vernal
blooming of phytoplankton: coincidentally in the same year as XKierstead
and Slobodkin's work., Sverdrup's approach is based on a comparison
between the depth of upper mixed layer and the "critical depth” at
which the total production of plant beneath a unit surface is equal
to the total respiration.

In the upper layer of the ocean the photosynthesls exceeds the
destruction by respiration, while in the lower layer the loss exceeds
the production, The two layers are separated by the depth of com-
pensation at which the rate of production exactly balances the rate
of loss. In this sense the medified KISS model] with relaxed boundary
conditions can be applied to determine the critical depth of com-
pensaticn for phytoplankton blooming. Note that this critical depth
of compensaticn is not the same as Sverdrup's critical depth. To
this end let a and b be respectively the net growth rate in the upper
layer and net loss rate in the lower layer, and Kz be vertical
diffusivity.

Then the same argument as before leads to the following

result for the critical depth of compensation

H = (Kz/a)% tan-l(b/a)%

If the observed depth of compensation zZ is shallower than Hcr'
phytoplankton population tends to decay. On the other hand, if zc
is deeper than Hcr, phytoplankton blooming may occur.

To make only an order of magnitude estimate for Hcr' we take

KZ = 10 em?/sec, a = 10 >~ 10 ®/seec, b/a~1l, as typical

38
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for the open ocean. These values yield

H = 10 m for 1 cell division per day
cr 30 m for 1 cell division per 10 days

As a result of the shear effect this critical depth can manifest
itself into the horizontal patch scale. A simple model will explain
the process (Ckubo, 1980). Consider a small patch of phytoplarkton
starting to diffuse in a layer where exists a uniform vertical shear
given by the velocity profile u = {z. In time t the patch will diffuse
vertically a distance of the order of {Kzt)%. Accordingly the
effective shear, i.e., wertical velocity difference, acting on the
patch amounts to Q(Kzt}H, and the patch will disperse horizontally,

%

in time t, a distance equal to n(xzt) t. 1In other words the horizontal

scale of the patch L increases with time as Lﬁ:ﬂK2¥t3Q, while the
Y

vertical scale grows with time as HﬂaK:t , 8o that we find the

relationship between L and H by eliminating t from both expressions,

L = 0K 1n3
z

go far as the order of magnitude is concerned.

The ¢ritical horizontal scale Lcr is cbtained when H = Hcr, i.e.,

L = gk m
cr

cr

Using (38) for Hcr' we can rewrite (41) as
L /4. = 0/a (tan"le/a)") n o/a
cr cr

since usually tan_l(b/a)a is order unity.

(39)

(40)

(41)

(42}
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The above expression indicates that the horizontal critical scale since our concern is primarily with the relationship between

is proportional to the {vertical) critical depth of compensation; the vertical and horizontal scales associated with a patch of plankton,

proportionality constant is the ratio of the vertical current shear we transform (44} into a set of moment eguations. Define the ith

(rhysical parameter) to the net growth rate (biological parameter) moments (j 2 @)

in the upper layer. Typically R = 10 3/sec. For a = 10 S/sec {1 div/cay),

m,{z,t) = %38 (x,z, t)dx (48)
= 10 & i ; —ee
Lcr/}lcrfblOO, and for a 10 ®/sec {1 div/10 days), Lcr/HcrmlOOO.

Thus the magnification factor ranges from 100 to 1000. Using (39} J

Multiplying (44) by x° and integrating over x, we obtain

for H _ we estimate
cr

‘ amy . o "
_._--—-“t :JM(ZJMJ'_’ PR M Ry -T.E—:’ +P‘(IJ?’1‘}' (47)
L "~ 1 km for a =1 div/day h
cr (43)
L., ™ 30 km for a = 1 div/10 days subject to
at t =0, m, = 6(2)6.0 (6.0: Kronecker delta}
Hence this coupling model predicts minimum scales of horizontal J ] ]
at z = 0, 3m./22 =0 (48}
patchiness of roughly the right crder of magnitude. J
at z > =, m. + 0Q
A more rigorous mathematical analysis of the vertical~horizontal J
coupling in patchiness depends on the following shear diffusion The set of equations (47) subject +o (48} can be sclved
equation with population growth successively starting with the zero-order moment equation
25 _ 2,35 23 o am >
Gt T TUIMET e KaTh f KR aruE |, g (44) 52 - Ka 22 o iz - (49)
—oaa & £ w0 &
og 2
where u{z) is the horizontal velocity varyingwith depth, Kx and K, at t =9, Mo © §(2)
. \ . L , . = = (50}
are horizontal and vertical diffusivities, respectively, r(z) is the at 2z 0, Bmo/az ©
depth variable net growth rate. {44) is subject to at z + =, e *-0
= . 2 . N . -
at £t = 0, S = §{x)é(=) The vertical variance 9z associated with m o is obtained from
at z = 0, 35/3z = © (45)

2 2z
Ty (£} = Bom,i2,t)da

o

at |x| +w, or z+e, §+0

(51)
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and the horizontal variance‘ci from

- o

Fy
V}rﬂ—-fmgrz,éuz »—{ m,(z,t)dzj

- ]

2

The square root of the variance gives us the scale of the patch in

the corresponding direction,

5. Further extensions

For proper moaeling of an ecosystem it is often necessary to
deal with interacting populations of two or more species. Thus Dubois
(1975) attempted to explain the horizontal structure of zooplankton-
phytoplankton populations in environments containing a patch of
physiclogically suitable water surrocunded by hostile conditions,
although he did not pay attention to the critical size problem.
Armstrong (personal communication) has made an attempt tc remove the
arbitrary boundary conditions of the XISS model by coupling phytoplankton
and nutrient dynamics. Armstrong's model allows both patch expansion
by diffusion and limitation of growth by nutrient exhaustion.

Levin and Segel (1976) and Okubo (1974, 1978) suggest that
plankton patchiness may arise from diffusive instability, in which
initially stable uniform distributions of predator and prey populations,
e.qg., zooblankton and phytoplankton, are destabilized by the differ-
ential dispersal rates of the species, The basic idea derives from
the celebrated work by Turing (1952) on morphogenesis and first
advanced in an ecological context by Segel and Jackson {1972) and

Levin (1974).

(52)
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Levin and Segel's model (1976) is based on the system

3
2s. . _ 28
5z SlataS-b2Z) + 7, %% (53)

2Z d 32
— = - +~ b + D, 2=
>t Z{(-¢c2 32 ) 2 5
where § and 2 are respectively phytoplankton and zooplankton population
densities, D; and D; are respective diffusivities, and ay, by, bs,

¢y, © are all positive constants, This predator-prey system admits

a spatially unifoém stable equilibrium (5%,2*%) in the absence of

diffusion: 8* = ajey/ (bibs - €102}

n

Zx aibs/(b1by - ciop)

e b
by <

provided 1 >

We now impose to the stable state small perturbations of the
initial form
€' = pcoskx, 2" = qcoskx

The @iffusive instability of Turing's sense arises when

e

. -2
&y /a
Dz/p, 7{(1”'/:;) - (b'/"_‘ - /b.) j = fc._ (54)

For R slightly greater than Rcr’ a perturbation will destabilize
the system and start to growth if its initial wavelength is

approximately equal to LCI:

-1
" A In . b
b & L
L(,:JTT(DIA‘) zj'l'/c,)_(f/c,"/‘lu]—fj {55}
It is important to remark that the above expression for the critical
wavelength is very much analogous to the KISS scale, although in

levin and Segel's model no such assumption is made that a viable
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water is surrounded by totally hostile environments. As a matter of
fact the original state is spatially uniform and the initial perturbation
is assawed to be periodic in space.,

Segel and Levin (1976) also developed a nonlinear analysis for
the system (52) and have shown that the destabilized equilibrium is
replaced by a spatially non-uniform steady state. Thus a pattern of
patchiness can arise from a uniform pattern of phytoplankton-~zoopl ankton
system due to the effects of diffusivity-driven instability.

Mimura (19278), Mimura and Murray (1979) and Mimura et al. (1979}
considered a generalized predator-prey model with dispersal to study

in detail the Qevelopment of patchiness.
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