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DIFFERENTIAL EQUATIONS AND APPLICATIONS
"IN ECOLOGY, EPIDEMICS, AND POPULATION PROBLEMS

MODELS OF POPULATION DISPERSAL

- Simon A. Levin

Sectlon of Ecology and Systematics
Cornell University
. - Ithacta, New York

i. INTRODUCTION

&he spetiotemporel etruoture of environment, and its ef-
) fect upon the movement patterns of individuals, are central
1ssues in ecologlcal theory. A knowledge of plant and animal
.dxspersal patterns is fundamental to an understandlng of the
.outbreaks of pest populat;ons, of the recovery of disturked
areas after periods of stress, and of the optlmal spatial de-
" gign of;agricultural systens to minimize herbivore effects,
similarly, Seea'and pdllen dispersal, together with the germi-
.natxon of dormant eeeds and the released growth of understory
plants,,can play . 1mportant roles in the secondary sucdcessional
' patterns of forest communities following dlsturbance. Mathe-
iﬂmatics hae an meortant role t0'play in the description of
'_movement patterns, and in an understandlng of their evolutlon.
: There are several dlstlnct approaches to modelling popu-
. lations in heterogeneous environments; the appropriate choice

Taea oy s

'Haepends upon'the system under_investigation, upon the tyves
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of questions being asked, and upon the scales of interest.
The most general development, and that most familiar to mathe-

maticians, is built upon the theory of diffusion egquations.

ITI, DIFFUSION MODELS

Random walk models have had a rich history in population
biologyy. Okubo,{1980), [59), who has written the state-of-
the-art text on the subject, traces their origin back to early
work of Pearson and Blakeman, (1906), [63], in evolutionary
thecory and Brownlee's, {(1911), (4], work on epidemics. In
population genetics, the theory of the wave of advance of an
advantageous allele prompted a number of fundamental theoreti-
cal papers (e.g. Fisher, (1937}, [19], Kolmogorov et al. 1937,
[361), and important early experiments by Dobzhansky and
Wright, (1943), [15], began to quantify the dispersal capabil-
ities of Drosophila.

The basic equation of diffusion-and growth utilized in

those early papers was of the form

nlz,t) _ '
5 = v n(g,t} + f(ﬁ(ﬁ,t)), (1}

in which nfg,t} 4is the population density at position x ati
time t. Eguation (1) was advanced in an ecological context

by Skellam, (1951}, [70], and by Kierstead and 8lohodkin,
(1953}, [34]: those papers have been cornerstones in the later
development of the subject. Since their appearance, diffusion

equations have been widely applied to describe movement, and
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they have formed the basis of most mathematical investiga~
tions. However, comparatively few experiments have been car-
ried out which would allow an evaluation of the validity of
such models.

Kareiva, (198la,b), [28},[29], in studying the movement of
flea beetles among ccllard plants, designed experiments to
critically evaluate the applicability of diffusion models by
means of mark and recapture experiments. In homogeneous en-
vironments, he found remarkable agreement between observation
and the predictions of diffusion models (see discussion in
Levin, (1981), [45]}. A comprehensive survey of the litera=-
ture concerning the foraging movements of phytoﬁhagous insects
‘(Kareiva (1981a),[28]) showed that seven of the eleven cases
examined were compatiﬁle with constant ccefficient diffusion
models.

With one exception, the deviafions from the simplest mo-
del showed distributions in point-release mark-recapture ex-
perimehts which were leptokurtic rather than normal (Kareiva,
{(198la), [28]). Normality would be predicted on the basis of
{1} with f = 0: leptokurtic distributions are more peaked.

Dobzhansky and Wright, (1943),115)}, also found leptokursis in

" their experiments and suggested heterogeneity of either pop-

ulation or habitat as being responsible. The probable impor-
tance of population heterogeneity in these earlier experiments
was borne out by later work (Dobzhansky and Powell, (1974),
[14}) with more homogenecus populations; in those studies,
leptokursis did not arise.

The problem of habitat heterogeneity is of profound im-

portance in understanding the movements of individuals under

natural circumstances. In deriving the appropriate modifica-
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tiohmﬁfftl},'it ié—critical to understand the mechanisms and

i'the Eaétcrs ‘that control movement The most familiar model
Eor 1ncorporat1ng heterogeneity simply allows the diffusion

'coeffzcient to depend on spatial posltlon, and (with f =

'takes the foxm 'T.

%% = ¥ {DUn}, {2)

: yhé?gn:Qf débéﬁds on éasitidn. Under homogeneous boundary
';;condtti6£é, the steady states of such models are spatially
“;Lﬁnifatﬁ;_aﬁdfthis'is a hint:thatISOmething may be wrong with
. _(2) as 4 désgription of population movements. In general, in
*Zheterogeneous env1ronments one expects to see accumulations of
' ';qdlylduals in more favo;ablerenv1ronments, and this implies

tténfgﬂifqrm distributions; this is what is observed under na-

'“t&tii¥tonditidhs (Kareiva,{1981c), [30], Kareiva,(1981b,c, [29]
1-~f39])}:-1ffqné:passes to the continucus limit from a random

‘Waik.modéi'iﬁ whitﬁ'émigtation is locally determined, then in

' place of (2) one’ obtalns {Patlak, (1943),[62], Dobzhansky et al

o (1979).[141, Okubo (1930;.[591)

”:S% =y (Dn) _ _ (3)

”whlch supports steady states in whlch n is inversely relat-
ed to :2.‘ Thls is 1n better agreement with data in experiment-~
tal 31tuat10ns, as has been reemphasized by Lapidus and Levan-
dowsky,(l991),[381, w1th regard to models of chemotaxis. La-

pidus and Levandowsky discuss the parallels between the dis-
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tinction made above and that made between the Stratonovich
and Ito stochastic calculi.
The model (3} was dlscretlzed and used by Dobzhansky et al

(1979}, [14}, as a basis for describing dispersal in heterogen—

eous environments, and similar discrete models were utilized

by Kareiva (1981 b),[29) and DeAngelis, (1978),[11]. Kareiva's
is the onlj work which provides the basis for a test of model
validity, and even in his work any such test must be incom-
plete.

The relationship between (2} and (3) can bé understood by
expanding (3), which is then seem to be equivalent to the mo-
del

- v (D) o+ U (nTD), (4)

in which vettor ) - v2 is an advective influence driving the
population towaras environments with lower D. Equation (4}
is seen to be a special case of a more general class of models
in which advective factors are added to (2). Alternative

forms dre discussed in Okubo, (1980),[59].

In one experiment described by Kareiva, (1981 a),|28], plat-

- ykurgis rather than leptokuris is found, and the likgly ex-

planatidn lies in density-dependent influences upon dispersal,.
The potential importance of density dependence is also 1llus~
trated in the work of Morisita (19%0,1954),(52),([53), 1to
(1952, [26], Kono (1952}, (371, Watanabe et al,{1952),({75], and
Taylor (1977),[71]. Appropriate variants on (3} in which
is allowed to depend explicitly on »n héve been intensively

studied recently by mathematicians (Gurney and Nisbet (1976},
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{51], Newman and Sagan (1981),[57]). A somewhat different

model has been put forward by Cohen and Murray (1981),[9].
Other modifications of the basic medel may also be neces-
sary in other situations, and a variety of approaches have

been taken. Jones et al

{1980} ,[27], develop a discrete si-
mulation model to describe butterfly foraging movements in
which the probability of leaving a grid unit in a particular
direction is related to the direction in which the individual
entered the unit. In earlier work, Patlak (1953),[62), de-
veloped a variant on (4) (with an additional advection term
imposed) to describe, in inhomogeneous environments, movement
in which there is correlation between successive steps. Under
somewhat different assumptions (and in a homogeneous environ-

ment), Goldstein (1951),[20], derived the telegraph equation

2 2
1 3

— = D e .y == (5)
2 2 Btg *

in which (Okuko (1980},[59]) 7 is the characteristic time

of step cerrelation. Numercus other authors have considered
simulations in which individuals move typically in fixed di-
rections, but with the possibility of "turning" in response

to cues. Taxis, in which individuals follow gradients of one

sort or another, is an important biological complication, and

has been dealt with for example by Keller and Segel {1971 a,b)

1321, 133), and Lapidus and Levandowsky (1981),[38].

Swarming, schooling, and other group responses have béen

examined by various authors (Sakai (1973),[381, Okubo and

Chiang (1974),[60], Okubo et al. (1977),[611);: but, in gener—
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al, uncertainty as to the exact behavioral mechanisms by which
individuals orient to each other or to each other's movements
makes it difficult to develop definitive models for grouping
behavior. There remain a number of important mathematical
questions, in particular regarding the exact forms of the

equations and the nature of the theoretical population "fronts'

such models would predict.

III. NON-UNIFORM STATIONARY SCOLUTIONS IN MODELS OF DISPERSAL

AND GROWTH

The mathematical investigation of diffusion-reaction mo-
dels, even within the context of population medels, is volum-
inous, and no attempt will be mode to survey it in this short
paper {see however Levin (1976 a,b}, 140],(41],{1%78),[42],
(1979}, [43); Fife (1979),{17]; Okubc {1980),[57]). Models
of diffusion and reaction arise, as extensions of (1}, when
populations disperse and interact. Extensions to allow for
age-dependent effects, delays and other historical effects,
and genetic structure have been widely used (see for example
Webb, and Green and Stech, this volume).

Twe classes of problems have received the most extensive

study in regard to such systems. The first, which has been

" examined primarily within the context of population genetics

theory and, to a lesser extent, the spread of epidemics (e.q.
Luéwig et al. {1979),149]), concerns the existence of wave
or pulse solutions; related work of considerable importance
exists within the literature regarding signal transport along

axons (see Rinzel {1978), [64]). There is a substantial re-
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cent mathematical literature concerning such problems {Evans
(1972) ,{24); Aronson and Weinberger (1975),[2],{(1978),(31;
Conley (1975),[10]; Carpenter (1977 a,b}, [5],[6]: Hadeler
(1977),1[24]; Fife (1979),[171).

The second class of problems, the existence of non-uniform
stationary solutions, has been of interest in a wide variety
of biological situations, but especially regarding developmen-
tal pattern formation, and the existence of clines (see for
example Nagylaki (1975),[54]) and other nen-uniform distribu-
tions in gene frequencies and in ecological dispersion,

The problem of the existence of non-uniform stationary
solutions under homogeneous Neumann boundary conditions has
been a problem of great interest to mathematicians, and is re-
viewed in Levin (1979),[45). Chafee (1975),[8] demonstrated

that the problem

2
au _ 8%u
_at "' f(u) + D ;;-5' {6)

cannot possess stable non-uniform stationary solutions
{RUSSes), and Casten and Holland (1978),[7] extended this re-
sult to convex regions in several dimensions. _Howefer, Matano
{1979}, [50] demonstrated by example that this result depen.ed
critically on convexity, and gave sufficient conditions that
stable NUSSes could exist for two-dimensional extensions of
(6). The major ingredients of his examples were bistability,
that is the existence of two homogenecus stable states for (6)
with D = ¢, and constrictions ("bottlenecks™) in the regions

of interest. Although the existence of such sclutions was an
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open guestion until Matano's work, in retrespect it should
have been intuitively clear by analcegy with known results for
spatially discrete systems in both continuous time (Levin
(1974),139]1,(1979),1043]1) and discrete time {Karlin and Mc-
Gregor (1972),[31]). The constrictions on the region neces-
sary in Matano's scheme effectively render the regions approx-
imations to discrete ones, in which mixing within convex sub-
sets (for example) will be much more effective than flow be-
tween them. This suggested (Levin ({1979),([43]1}) that for con-
vex regions (indeed, even in one dimension) such NUSSes are
possible if flow is severely restricted in suitaﬁle portions
of the region, and this has been demonstrated by Fife and
Peletier (1980}, (18] by reduction to a problem invelving con-
stant diffusion but spatially varying growth. In this form,
the problem is similar to cones involving the existence of
clines in population genetics {e.g.- Nagylaki (1978),[55]}).
Stable stationary solutions when dispersal is density depen-
dent have been investigated by Namba (1980),(52] and Shigesada
(1980) ,[68].

When systems of equations of the form (1) are considered
(n is then a vector), it is well known that non-uniform pat-
terns can arise as dissipative structures, bifurcating from
uniform solutions as the result of differential diffusion
rates. Such ideas were first put forth by Turing (1952),[74]
within the context of developmental biology, and the nonlinear
consequences were explored by Segel and Levin (1976),[67].

Within an ecological context, such diffusive instabilities

have been studied as regards predator-prey systems {Segel and

Jackson (1972),[66], Levin (1974),[39], Okubo (1974),[58],
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Levin and Segel (1976),[47], Levin and Segal (1976),[67]). It
is also the case, as a simple linearization analysis will
show, that such bifurcation when diffusion rates are increased
cannot take place when all species have identical diffusion
rates; in this case the effect of increasing diffusion is sim-
ply te shift the spectrum of the linear operator uniformly to
the left in the complex plane.

However, the possibility remains that NUSSes could exist
which are far from equilibrium, and which would neot arise by
bifurcation from feasible homogeneous soluticns as diffusicn
rates were varied. Indeed, Matano's method immediately pro-
vides trivial examples (not involving interaction} of such
NUSSes for systems, and it is clear that numercus more com§1i~
cated examples ccould be constructed for non-convex regions.
For convex regicns, a conjecture is that NUSSes cannot be sta-
ble if all species have identical diffusion coefficients.

This remains open, although Kishimoto (1981),[35] has recently
proved nonexistence results for competitive systems of a bar-
ticular form, for regions which are parallelepipeds.

Other recent work extends the above considerations by al-
lowing reaction terms to depend on spatial position, the an-
alogue of the clinal problem (e.g. Hodgson, this volume, [25]),
or by allowing diffusion to depend on position in analogy with
{3} (Shigesada et al. (1979),169]1, Mimura (1981),151]1}. Shig-
esada et al. (1979}, [69] demonstrated numerically the exis-
tence of NUS solutioms in the bistable case of the Lotka-
Volterra dq@petitipn egquations, but also assuming an under-
tying engjxqqmenta{ hetexogeneity. Mimura (19%81),151] consid-

®red the -same equétions, but under the assumption that a sta-
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ble solution involving both species exists in the absence of
diffusion. For computaticnal convenience, Mimura assumes a

partial symmetry, and considers the equations

'n
S E

BLR, -au-bvju+ {(1+av)ul, .,

434
(7)
ov 2
Fr i r}?g-au-bu)v+a Vo
and shows the existence of non-uniform stationary solutions
satisfying homogeneous Neumann conditions when [ and/or -«
are sufficiently small and
R )
%>§~1-'>§' (B)
2

Mimura was unable to resolve analytically the problem cof the
stability of the non-uniform solutions, although simulations

showed an apparent trend to a NUSS.

IV. GENERALIZATIONS AND CONCLUSIONS

The models considered in this paper are basically all
variants on diffusion-reaction eguations, and these have cer-
tainly formed the bulk of the mathematical literature. How-
ever, important alternatives exist, and are necessary when

assumptions vary from those applicable above.

One important class of models arises when transport may
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be long-range. In discrete time, for example, the model

Uy (%) = [mlz-ylglu (y))dy {9)

has been treated in the theory of epidemics and in genetics
{see for example Thieme (1977},[72], Diekmann (1978),[121,

Weinberger (1980)},[77]; and a continuous version

EE%%;EL = -afx,t)uf{z,t) + J VY(x,yluly,tlaly,t)dy (10)

was utilized by Levin and Segel {(1981),[48] to describe
switching behavior in predator search image. ufz,t) is the
density function of individuals with search image =z, and 8
defines the switching rate, For simplicity of presentation,
only transport is shown in (10); appropriate growth terms can
be added. An age-structured version was'introduced by Levin,
Cohen, and Hastings (1981),[46] (see Levin (1980},[44]) to de-
scribe seed dispersal in temporal habitats.

Transport models are playing an increasingly important
role in bicolegical investigations, and a growing number of
field studies are being developed to test and to quantify
them. Quantification of dispersal is of both theoretical and
applied importance, with apélications ranging from analysis of
the northern advances of forest species following glaciations
te investigations of the evoluticnary adaptations of annual
plants and marine invertebrates, to the controi of forest and
agricultural pest species. As partnerships between mathema-

ticians and biologists increase, such studies will also in-
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crease in number; and there is little doubt that the role of
mathematics will grow in such investigations. The past de-
cade has seen important theoretical advances of a general na-
ture, and the maturation of the subject can be seen by even a
casual reading of Okubo's 1980 survey. The general theory

has laid the basic foundations, and the advances now will come
from the development of more special versions and variations
more closely tuned to the needs of particular biological pro-
bléms aﬁd situations. In this quest, the need for and chal-

lenge to mathematics in the development of the appropriate

theory will be even greater than it has already been.
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