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fAbstract.

The stability of nodels of age depepdent predation in
continuous time with predators exhibiting a functional response
are analyred. A number ot new features of biclogical importance
emerge that are not present in simpler models. These include
limits to the length of juvenile per1aq5 (both upper and lower)
4pr stability, and the possibility that increases or decreases in
any of the model parameters can be stabilizing or destabilizing.
Hence, increased delays are not necessarily destabilizing.

The variance in the length pf the juvenile period is shown to be
an important factor determining stability. Additionally, the
relative stability of predation only on juveniles or only on

adultes is compared.

™



INTRODUCTION

The study of predator prey systems began with the garly

wWwork of totka and Volterra, who treated the simplest cases., In

recent years, to understang better the dymamical behavier aof

predator prey systems various complications have been included

{see for erample the review, Murdoch and Daten, 197%). One

complication that is caertainly present is that predators do not

eat all ages or sizes gf prey indisqgriminately. Numerous

examples ranging from molluscs to insects to fish illustrate thisg

point.

Some of the best documented cases of age dependent
predation are from fish, Nielgsen (1980) discusses the

interaction between walleve and yellow perch, where the major

diet item for adult walleye is juvenile vellow perch {(see also

Le Cren et. al. 1977 and references in these papers). Faine

(1965) discusses how there is a maximum size to prey consumed by
Navarax Imermis, an opisthebranch. Dayton (1971) discusses how
Balanus cariosus and Mytilus californianus escape predation by

Thaisx by growing to a large enough size. Many insects are preyed

upon only as adults. A spectactular example of this is the

periodical cicada (Lloyd and Dyhas, 196&). Age dependent

predation is also important in cases where the prey is an

ungulate, as in the interaction between moose and wolves on Isie

Royale (Jordan et. al., 1971). O simple mocdel for this case was

analyzed by Gazis et. al. (1973,

Fradation only on juvenilies or only on adults has been

Lot

treated in a number of continuous time models in addition to
thosze mentioned above. . For the simple interaction terms used by
L.atka and Vcltérra, predation on only juveniles or only on adults
has been shown to act as a stabilizing influence. In fact, the
madel, which is originally neutrally stable, becomes stable for

all values of the prameters (May, 1974 and Smith and Mead, 1974).

Similar results obtain for the studies mentioned earlier.

Another model, whers the predator eats only "eggs", seems to
indicate that age dependent predation cannot be stabilizing, and
in fact may be destabilizimg (Gurtin and Levine, 1979;.

In fact, age dependent predation has been @itensivel y
discussed in the context of “prudent predation” (Slobodkin,
1974). This discussion centered on the evelution of prudent
predation, partly as & meéns of leading to stable predator prey
systems. Missing was a detailed agcount of the stability
properties of dynamical models with age dependent predation. A
particular set of models was analyzed by Maynard Smith apd
Slatkin (1973).

In the current paper, I will study age dependent predation
in continuous time models, but alsc include an arbitrary
functional response by the predator, Since many if¥ not most
reasonable functional responses are destabilizng (Murdoch and
Gaten, 19735), the question whether age dependent predation can
overcome the destabilizing effect and lead to a model with a
stable equilibrium is important. The answers turn out to be more
complex and intergsting than at first supposed. In a following

paper I will toncentrate on the analogous problem in discrete



time models.

Mire specific questions than whether age dependent
predation is stabilizing are also important. One question is
whether predation only on Juveniies or orly on adults is in some
sanse more stabilizing., Another question is whether the models
always become more stable as the proportion of the popul ation at
risk declines (or the proportion safe from predation i1hcreases) .

Other guestions will arise in the course of the analysis.

THE MODELS

The form of the investigation here will be tag examine a
series of models and compare the outcomes from each. A single
truly general model would be extremely complex, so I rescrt to
considering a number of specific models. The results will be
presented in the tollowing section, with all calculations
postponed to the appendix.

I wiil first describe the spt of mpdels for the case where
predation is only on adults. Let H{t) denote the number of adult
prey at time t, and let F(t) dencte the number of predators at
time t. In the absence of predation, the prey will be assumed to
ohey the Fnllaw?ng linear equation, which allaws for a juvenile
periods

L
(1) dH/dt =r{H it 26 ome) ds - DH,
whare G(z) ig tﬁe probability that an individual survives to age
= antd matures from juvenile to adult at age z and D is the

death rate of adults,

If there is a predator with a functiocnal response, the

£n

o
(2 dH/dt =T5H(t~5)G(IDs)d5 - DH — P+ (H}

o
where f(H) is the funectional vesponse of predators to prey (see
2.g9. Murdoch and Oaten, 19795).

The predator population will obey the following equation:
{3 dR/dt = cPf(HY- kPR,

where ¢ represents the conversion rate of prey deaths into
predator births and k is the death rate for the predator
popul ation.

The specification of the model will be complete once the
maturity function G(t-s) and the functional response f{H} are
specified. I will leave the functional response general, since
only its derivative enters into the determination of stability.
In fact, for the gqualitative results herewhat is most important
i® whether the response is stabilizing or destabilizing as in the
work of Murdoth and Qaten (1975).

For the function B(z) one must be more specific. I will
choose several specific forms, including thpse distributions
which allow pne to convert the problem to an equivalent one with
extra ordinary differential equations (McDonald, 1978). I will
ccnc%%rate'on twe extreme cases, namely those leading to the
following two models, which are special cases of the model
described by equations (2) ang (3}. The caszes correspond to two
forms for Gi{z) that give no variance in the length of the
Juvenile period or very large variarce. The amount of variance
in the juvenile period will be extremely important in the

behavior of the models.



The models can be more easily understood by direct
derivation, howsver, The first one %$ays that the prey has a
juvenile period of fixed length T, Only adults are subject to

predaticon, and only adults can reproduce. This leads to the

following model:

(4al dH/dt = rH(E-T) — DH — F¥(H)

(4b) dF/dt

cPfH) —- kP

The other possibility that [ will consider in detail is
the case where there is a maturity rate from juvenile to adult,

instead of a fixed period. This leads to the following model:

{5a) dHD/dt = rHl - dOHO - aH0
(Sb) dHl/dt = aHO - le1 - P¥(H1)
(S dFsgt = cPf(H ) - kP,

1

The variables HO and H1 are the sizes of the juvenile prey
‘population and the adult prey population respectively. The new
symhols d0 and d1 represent predator independent death rates of
Juveniles ang adults respectivel y. The maturity rate is a, which
determines the mean length of the juvenile period,

A% a link between the two models abpve, I will also
briefly consider the following model, in which there are two
Juvenile stages. In fact, the model with a fixed juvenile period
can he thought of a5 one with an infinite number of Juvenile

stages (MoDonald, 1978), The model with two stages is:

(6a)  dH sdt = rH, = doHo - aH,
(6b)  dH /dt = aH, - d H - aH
(6cy  dH,/dt = aH, ~ d_H, = Pf(H)

{éel) dF/dt = cPf(H_,) - kF.

The meaning of the new symbols is analogous to the uses in the
previous models, where H2 is now the (size of the) adult stage.
Before proceeding to the models which include predation
only on juveniles, 1 will introduce the following model, which is
the analog of model (5) with one juvenile stage, but allowing
predation on all stages. This serves as a comparison for the
stabilizng influence pf age depednent predation. The model is:

(7a) dHOIdt = rH1 - dOHO - aHO - PF(HQ + H

1)H0/(Ho + Hl)

- F‘f(H0 + Hl)Hlf(H0 + Hl)

7 = .
(7h) dHI/dt aHO de

1

(7¢c) dF/dt = ﬂPF(Ho + Hl) - kP,

Fredation only on juveniles

The first model with predation only on juveniles that I
will describe is the analog of medel (4) . with a fixed juvenile
pericd. L.et hjla,t) be a density function on age a, at time t,
for the number of juvenile prey. Let T be the fength of the
juvenile period. Then the total number of juveniles is

T

a) Hyb) = (S}hj(a,.t) da.
Let Ha(t) be the number of adult prev at time t. Then the adult

prey population will obey the equation

£ dH /dt = h (a,TY - d H_,
A 1 a

a
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where d is the death rate of aduits. The juvenile poAul ation

wili phey a vonFoerstear type equation, namely:?

(o) In. + 3n T StHOE,
ELS Do ’

where the only cause of death in juveniles is predation,

Additionally, (10) hasg a boundary condition representing births,
namel v
(11) b (Q )= bH .

37 a

The predator popul ation will obey the eguation

(12) dF/dt = PHj - kF.

The model can be simplified somewhat by solving the partial

differential equation (10), using the boundary condition (111, assuming

and substituting in (% and (123, vyielding:

:
(13a)  oM_/dt = bHa(t—T)exp{—éF(t—ﬂ)ds} - aH

. T a
(13b)  dF/dt = P SbHa(t—a)exp{w fFit-srdsy da  —kp
(4] Q .

Un&ortunately, the madellrapresented by (13) is still quite
unwigldy, and will not be analyzed here. Clues to jtse almost

certain curious behavior are to be found below, however,

I will now develop models to illustrate the effects of
predation only on juveniles that can be analyzed, at least in
part. These are the analogs of models (5) and (&) with juvenile

stages. Hence, consider the fellowing two models:

Eldar OH, /At = rH] - dHG o aH = FE )

(14hb) dledt =.aH0.~-.c¢lHI
[ dF/dt = cFF(HO) - kF.
The appropriate amalog to model (&), is the following where

predation includes both juveniles stages, since it is the

extension of this model that would evietually lead to the model

embodied in (12) and ¢13), Hence, censider the following model:

{15a) dHOJdt

(15h) dH1/dt aHO - diHi

{15c) dH, /dt = aH
-

*
FHZ - dOHQ - aHO - PfO(HO)

#

¥
- aHl - Pfl(H }

1
1 T M

(15d) dR/dt = t:F'-F(Ho + HI) - kP.

where

X
Ha
(1&) fi(Hi) = 'F(HO + Hl)Hi/ (HO + H1
Although this model will prove too difficult to analyze in great
detail, some of its exciting behavior will become apparent in

special cases.

RESULTS

The results are in the form of a stability analysis of
the unigue nontrivial equilibrium point for all the models (when
the equilibr;um enists), supplemented by numerical integration.

All caleulations are postponed to the appendices.
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In all thé models the condition for ‘the existence of the
unigue nontrivial equilibrium is the same: that the prey
peopulation grows (without bound)

in the absernce of the predator.

This can 2asily be translated into AN appropriate algebraic

condition for all of the models. Another feature commen to all
the models is that the equilibrium level of the pray staée at
risk doas nat depend on the length of the juvenile peripd. This
is a consequence of the assumption of no interference among the
predators.  Only the equilibrium level of the group not at rigk
changes as the Llength 6# the quBnile Periad changes. In all
cazew the equilibrium baftavior is simpler when the prey class at
risk from predation has no other source of mortality. Im this
Case the survival gf the prey in the absence of the predator is
independent of the length of the Juvenile period.

The model (4) with a fixed juvenile period has the
following behavigr. as can be shown using recent results of Cooke
and Growsman (1962). [f the ﬂuuctiuﬁ&l.respunue-is stabilizing,
then the equilibrius io stable for all values of all the
parameters whern it exigts, It is far the destabilizing
functional response that the curicus befravior is present. Then
when the jfuvenile period T=0, the nontriviad equilibrium is
unstable, As T increases the equilibeium may become stable,
then unstable, stable, etc, with any number of switches poussible.
(This is illustrated for Some examples in Table 1). For
sufficiently large values of T the equilibrium is unstable. The
results can be understood as an interplay betweas a resonance

affect and the destabilizing effect of time dalays. The time

11

deiayg for which the medel 15”uﬁ5table_répresehtlthe ianqtb of

the predator prey osciilation fsee tablé i). Hence the First_sat‘
af switches is bimlnglcallv most meaningful. Note that

depending on the tength of the juvenile period, cither an

increase or a decrease in the Jjuvenile period can be either
stabhilizring or destabilizing.

Another consepquence of the switching behavior i= apparent
fram table 1. £fi1ther ar increase or a decrease in the other
parameters aof the mpodel, navely the birth rate b, and adul € death
rate d, can be either stebilizing or destabiliizing. In a similar
fashion either an increase or a decrease in the death rate of the
predator can be stabilizing or destabilizing.

For almost all parameter values encept those with very
large values of r/k (prey birth rate to predator death rate) or
extremely destabilizing functional responses there ig at least
one interval of stability (in terms of the length of the juvenile
period.}? Multiple switches require small values of r/k or only
slightly destabilizing functional responses. Here small values
of r/¢ are those in the range O to to .1, which would represent
very long lived prey,. Large values would be greater than 10
representing very short lived prey. A very destabilizing
functional response would have a slppe significantly less than
half that of the Lotka-Volterra (linpar) response at the
equilibrium,

Numerical integration of this model indicates that the
trajectories get very close to the axes for those parameter
values for which the equilibrium is unstable. Hence, the

stability of the equilibrium point here may be a good indication

12



of the possibility for persistence of the system,

The behavior of the model with a single juvenile period is
simple by comparison. Only one switech from instability to
stability is possible. 1+ the functional response is stabilizing
stable for all parameter values. If the functional response is
destabilizing, then stable i+ and only if the maturation rate is
slow enough.

Not surprisingly, the model with two Juvenile stages is
already complex enough to allow several switches., This is
expected, since the model (4) can be represented as one with an
infinite number of juvenile stages. The variance in the juvenile
period is already small enough in this case for the resonance
effect to occur.

The stability of the equilibrium of the madel (7)) with two
prey stages and age independent predation provides a standard.
Here stability is determined solely by whether the functional
response is stablizing or destabilizing.

The behavior of the models with predation only on juveniles
is of similar compiexity, but with some impartant differences. I
wll first consider the model with one juvenile stage. Again, if
the funmctional response is stabilizing, tbe model is stable
independent of ghe length of the juvenile period. However, if
the functional response is destabilizing there are two

possibilities, The first is that the madel has a stable

nontrivial equilibrium only if the Juvenile period is short

encough. The other possibility occurs when the functional

response 1s extremely destabilizing. Then, the model i= unstable

13

no matter how short the juvenile period is. The reason for this
difference will be discussed below.

The model with predation on juveniles with two stages, which
represents a raeproduction in the variance in the length of the
juvenile period, already has very complex behavior. This iz
apparent even when the functional response is of the simplest
form, namely the linegar Lotka—Volterra response. Even this model
is too complex to study in detail, so I will discuss saveral
particular cases illustrating the possibilities. First ASELMEe
that the only cause of death in the juvenile stages is predation,
S0 dﬂ=d!=o' Next, assume (possibility after suitable _
normalizations, see appendix) that &=k=1. Finally, in both cases
the death rate of the adult prey will be small, with d2=9.1,’(1)
Then, if r=1, the model is stable anly if the juvenile stages are
short enough. (2) However, if r=3.%, the madel is stable only i+
the juvenile stages are neither tag short nor too long. In
particular the necessary and sufficient condition for stability

iS5 approximately:

(17> L0035 < oa 4 02,

3 8till more complicated behavior 1s possible. If r=2.5, then
the equilibrium is stable if the Juvenile period is axtremely

shart, or of intermediate length, with a region of instability in
betwaen. The necessary and sufficient condition for gtability is

appraximatel vz

14



(18a) 0.291 < a,

(18b) Q0046 a £ 0.061.

Twa other possisle behaviors are clearly possible in models with
Mmore complex functiognal responses, namely stability far all
lengths of juvenile period, or instability for all Iengths of
Juvenilez period.

This last example illustrates another way in which
predation only on juvenilies is less stable than predation cnly @n
adults. With predation only on adults, and a iinear {Lotka—
Yolterra) functional response the model is stable. With
predation only on juveniles, and a linear functional responce,
the nontrivial equilibrium can be either stable or unstable,
depending on the parameters. This confirms in part the results
of Burtin and tevine (1979) far & very different model, but
suggests a more comples sitoation. In their medel, predation
only on eggs always destabilired a Lotka-Volterra model. For the
model here, the results are dependent. on the length of the

juvenile period and the other parameters of the model.

DISCUSSION

Here | will provide heuristic esplanations and hiologicail

implications for the resul ts here. I will begin with a general

‘discussion ot the destabilizing role of delays, and then contifnue

with some of the more specific results in this paper.

The ecological literature has often contained statements
to the effect that time delays are destabilzing. The models in
this paper do not illustrate this. I should first note that
McDonald (19746) discussed the possibility of at least a single
switch from stability to instability to stability for a predator
prey model with “lag”® in the predator response, and that Cushing
and Saleem (1982) discussed htw a shorter Juvenile period could
lead to instability in a similar model, Additionally, Cushing
{1982} discussed how longer maturatian periods might be
stabilizing in a model for a ®ingle species with age structure
consuming a Iinstiﬁally renswing resource. These esarlier results
combined with those in this paper based in part on the
mathematical apalysis of Covke and Grossman (1982) should put to
rest once and for all the simple nofinn that delays are
destabilizing. Reality is far more complex. A system can switch
between instability and stability several times as a delay is
increased. There is a simple heuristic explanation for this
complex behavior, namely that there is a resonance interaction
tetween the inherent periodic nature of the predator pray
interaction and the length of the delay. This is illustrated by
the fact that delays corresponding to multiples of the period of
the predator prey system (as determined by linearization) are
those that lead to instability. Additionally, the possibhility of
mualtiple switches hetween stability and instability is increased
as the variance in the delay is decreased. The phenomenon under
discussion may be of great importance in ecological systems,
since even competitive systems with more than two species can

exhibit oscillations (May and Leonard, 1975), leading to the

16



passibility of similar interactions with lengths of juvenile
periods (delays).

The results in this paper indicate a new kind of limit on
the length of juvenile periods, namely that imposed by stability
considerations., Farticularly for the model with a fived juvenile
period and destabilizing functiomal response, only certain length
juvenile periods lead to stability. Predator prey systems with
prey having a juvenile period of the ‘wrong® length would not be
found, as prey and predator would not coexist. Additionally, as
indicated above, this restriction on the length of juvenile
pericds is likely to he present in many multispecies systems as
well., Thus the restriction on the tength of juvenile period
indicated here may prove to be important for many speties,
proviging an explanation independent of physiological or
optimization arguements, or discussions based on coevalution
(e.g. Wilbur, 1980).

For the model with a fixed juvenile period as well as any
other model with a small enough variance in the juvenile period,
the dependence of stability on the parameters is quite complex.
Here too, generalizations based on the intuition from simpler
models is shpwn to be dangerous. Increases or decreases in any
of the paraweters in the model can he either stabilizing or
destahilizing. This provides an pasy explanation for a wide
variety of potential behaviors of predator prey systems,

The importance of the variance in the length of the
Juvenile period on the stability of the systems analyzed here is

one of the few generalizations possible for the models in thig

17

paper. At least in some cases, an increase in the varianece in
the length of the juvenile period has a stabilizing infiuence.
Contrast the behavior of the fwo models with predatian only on
aduits with a fixed juvenile period and & juvenile period
determined by an Brponential process. With a fixed duvenile
period, the system ie unstable if the juvenile period is too
long. However, with the large variance in the Jjuvenile period
with the exponential process, the system is stable if the
juvenile period is long enough. As a passible illustration of
this theme, many amphibians have long and extréemely variable
Juvenile periods (Wilbur, 1980). Ferhaps, this is a stabilizing
influence.

Finally, it is shown here that predation on juveniles anly
is in several senses less stablg than predation on adults only,
Why? A heuristic explanation is pussible, if the idea of
extinction replaces stability. Fredator prey systems collapse,
in general, when the pradator eats all (or almost all) of the
prey, and then starves. If the predator eats juveniles only, a
steady supply of food will be present until the adults die off,
leading to the collapse of the system. If the predator eats only
adults, however, and the juvenile period of the prey is naot short
compared to the mean lifetime of the predator, then the predator
cannot (virtually) eliminate the prey. Thus the system duss noat
collapse. The effect described in this paragraph is more
important than any destabilizing effect of delay, at least when
the variance in the length of the juvenile pericd of the prey is

large.

The results in this paper indicate some of the myriad

18



complexities possible with age dependent predation. For all of
the natural systems mentioned in the introduction, the dynamical
behavior and in particular the dependence on the various
parameters describing the interaction will almost certainly be
complex.  Much further work needs tg be done. One additional
facet of this praoblem will be discussed in a future paper that
will consider discrete time versions of the models discussed
here, which will allow a more complete digcussion of predation

only on juveniles. Other, more complex models are currently

under study.

AFPENDI X

I will discuss the stability analysis of model (4) in
detail. I will outline the stability analysis +or the other
models, as the techniques are standard and the algebra complex.

The stability analysis of (4) follows the analysis uf Coocke
and Grossman (1982}, who analyred the stability properties

(presence of roots A with positive real part) of the following

equation:

(Bl AX B A eup(-dt) +C = o

which is a special case of equation (12) in their paper. Az a

tirst step in the analysis of the model {(4) I will scale time and

H to eliminate c and &, After appropriate redefinitions of the

ie

parameters and the functicnal response t. the model (4) becomes

fwhere all the parameters have been rescaled):

(AZa) dH /ot

I

rHE=T) =~ DH ~ F¥f (M)

{AZh} dF/dt = FF(H) - F,

This has at maost a single nontrivial equilibrium point:

(AZa)  H = + 11

(AZb) F = (r-D)H.

Linearization of (A2) about the equilibrium (A3) yvields

{Ada) gh/dt = rh{t-T) - Dh - p - PF’(H)h

(Adb)  dpsdt = Ff* (MR,

Here h and p represent deviations from the equilibrium values of
H and P, respectivwly. Substitute solutions of the form of a
canstant times exp({At) for g and h, and find admissible lambda's
to determine the (local asymptotic) stability of the Ryguilibrium.
I+ all solutions lambda have negative real part, then the
solution is stable, if there is a lambda with positive rasal part,
then the solution is unstable. (For a mathematical discussion of
all this, see El’sgol'ts and Norkin, 1973).

The manipulations indicated above show that lambda

satisfies an equation of the form (A1) where:

20



‘response is stabilizing, the model is table for ali T.

(ASal A =D + (r-Dhg
(ASb) B= —r

(ASc) C=Gr-Diqg

and q is defined as

(B6Y g = HET D .

Foliowing Cooke and Grossman (19892) define w+ and w  as the
larger and smaller roots afg

- - -
a7 W+ a2 - B* - 20)w® + 2 = O

Then define the twno sequences

A8a> T = tcos ' -A/E) + 2Wni /et

1

—1 -

(ABL) ’t'n 2 = fees T —asB) o+ 2T,

N

-1
where cos i1s evaluated for an angle betwesen Trand 2Win
{ABa), and for an anglie between U and Tr in (ABD). (This

condition is not indigated at this point in Cooke and Grossman, but

is indicated in their sarlier =xample.) Finally, note that the

mdoel is unstable for T = D it the functional response is

destabilizing (sensy Murdoch and Oaten, 1975). If the functional

If the

functional response is destabitizing, then the model is stable

21

for values of T that satisfy

(A9 ?k,z T ﬁ?k,..

Cooke and Grossman (1982) show that the inequality

(A10) tk,z <:?L___‘,

is sither valid feor no values of ky, or for all k L K where K is a
finite integer tand no other values of k). The results reported
in Table ! of the text are abtained by a numerical computation of

the condition (&9,

The analysis of all the other moﬁelg in the paper is
quite straightforward. In all tases the model is linearized
about the nontrivial egquilibrium point. The stability of the
equilibrium is examined by applying the Routh-Hurwitz criteria
{pg. 1119 in Gradshteyn and Ryzhik, 1980) to the chracteristic
eguation of the Jacobian matris that determines the
linearization, In every case, the critical (stability
determining condition) turns out to be the one that corresponds
to having an eigenvalue on the imaginary axis, It is this
condition which is discrussed explicitly with refernce to model
(13, I will not discuss the very messy algebraic details.

Az an illustration of the techniques, I will discuss the
staling used to analyze the model (14) and the resulting
stability conditions.

The first step is to change the model to

one where dn = 0. This is accomplished by defining

[l
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(All) a = a + do
and

. ¥ _ _ L
(A12) HO = (1 do/a )HO.

Then by rescaling time and the variable Fy suitably redefining £,
and the other “rescaled’ parameters, one arrives at a model pf
the form (14), but with dOﬁO andg c=k=1. This simplifies the
algebra considerably. Finally, note that if only @ is allowed to
vary, the quantity Pf°, at equilibrium, is a constant times g.
Mence, define:

(A1) z=F¥" /a.

Then the appropriate Routh-Hurwits criteria for stability are all
slways satisfied except the one corresponding to & root crossing
the imaginary axis, which becomes:

2 2, 2 2 2
{AL4) a” (z+d+2zd-r+z +z"d-zr) + a(d® + zd* -rz) > O.

Hencet, there are three cases. 1f

(ALED d{l+z) > r

(AlS) is satisfied for all a. I
(Als) dil+z) + z > r » d¢l+z)

then (Al4) is satisfied only for sufficeintly large a. If

(Al7) x> dil+z) + =z,

then (A14) is satified for po positive values of a. Using the
equilibrium value af F to interpret these conditions in light of
stabilizing versus destabilizing functional responses, one

obtains the results reported in the test.

Pl
o]

Other cases discusseq in the text are similar.
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Tablie 1.

Juvenile period and predatien only on adults,

Stability results +ar the model (4) with a fined

The esguilibrium

point is stable only for T values (Juvenile periods) lying

between TH,E and tn,l’ a8 given below,

The last column is

multiples of the perind of the predator prey oscillation with no

juvenile peried,

as determined by lingarization,

e D q n ) tn,2 Tﬁ,l . (n+1)periad
Q.04 ¢, 02 0.8 8] F.82 43.04 49,68
i 97.03 89.41 9. 34
2 110,25 135.77 149,04
3 163,44 182.14 198.72
4 216,468 228,51 248, 40
S 26%9.89 274,88 298,08
0.2 1 0,8 Q 1,84 17,49 22,23
1 27.76 36.74 44, 44
2 5935. 64 35.79 Bé, 658
2.0 1.0 0.8 < 0,81 4.08 7.07
10,0 &.0 0.8 0 .58 1.27 .60
[ 0,1 [ 1 Q 2.4% .39 14.54
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