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1. Intreduction

Ecological models incorporating spatial heterogeneity of habitats are of
profound importance in understanding the movements of organisms and their
effects on the stability of spatial distributions of populations under natural
circumstances. Equations describing the time development of the spatial
distribution of a population in a heterogeneous environment fundamentally
involves two terms, dispersal and growth, which are both functions of space.
There have been several distinct approaches to the analysis of such models
depending on the system under investigation and the type of method being
applied (See reviews by Okubo {1980) and Levin (1981)). Among them, models for
a single species in one dimensional space have been extensively studied for
various types of ecolegical systems. Okubo (1980} analyzed effects of various
kinds of spatially varying dispersal on the spatial structure of populations.
Gurney and Nisbet (1974) and Namba {1980) included a spatially varying growth
term in their model. In population genetics, Fleming (1975} studied the
effect of environmental heterogeneity on the viability of individuals of a
single species and presented the condition for the existence of clines 1in a
one-dimensional space. As for two-species systems, the effect of dispersal
with directed movements was taken into consideration by Comins and Blatt (1974)

and Shigesada et al. (1979}, and the effect of spatially varying growth was

considered by Pacala and Roughgarden {1982) and Kawasaki and Teramoto (1979).
However, these models incorporated the effect of heterogeneity either in
dispersal or growth, but not in both procasses.

Recently, Fife and Peletier (1981} studied a single species model in popu-
lation genetics, 1in which effects of environmental heterogeneity were incor-
porated in both dispersal and growih processes. Shigesada and Roughgarden
{1982) also considered these effects in a two-competing species model. The

latter authors analyzed the time d:velopment of spatial distribution and its

‘stab111ty for the special case in which the dispersal process occurs much

rapidly compared with the growth process of the species. In this paper we
examine Shigesada and Roughgarden's model on a more mathematical basis by using
a multiple scale method, and present a genera) formula for the time development
of spatial distributions of populations. From the assumption of rapid disper-
sal, the original partial differential equation is reduced to an ordinary
differential equation so that the analysis becomes much easier. We apply this
method to a few systems with a single and with two competing species, and

compare the results from this methad with those from computer calculations.

2. Application of the multiple scale method to a single species population
dynamics with dispersal

Consider a single-species population in & bounded heterogenecus habitat.
Individuals of the species underge dispersal both by random motion and by
directed movement toward favorable places in the habitat. The population
density also changes due to birth and death, which are usually dependent on
both the pesition and population density. 1f n(t,x) denotes the population
density at time t and position x, the dynamical equation for the spatial
distribution of the population in a one-dimensional bounded region o= [0,L] is

given by



Zn(ean) =200 + e6lxn)s xeo, m
where
o_ 8 di{x),
dxan) =masn - G20 (2)

The term J(x,n) is the flux of population due to the dispersal process.
Kamely, - o %; n (x is a positive constant) represents the flow associated with
random movements of individuals, and the term -%;—U(x)in (where we assume that
U(x) has a continuous derivative) represents the flow due to directed movements
of individuals toward favorable environments. Here we designate U{x} as the
"environmental potential”, which 1induces the advection velocity, -Ehzu(x),
toward favorable regions. The second term of (1), eG{x.n) represents the net
growth rate due to birth and death. For convenience in later discussions, we
express the net growth rate by the product of the factor € and G so that the
dispersai term —%;—J and G are of the same order of magnitude. We assume here
that G{x,n) is a bounded piecewise continuous function of x and has a continu-
ous derivative with respect to n. We also incorporate an intraspecific compe-
tition in the function G such that G becomes negative as n exceeds a certain
positive number k.

We assume that some animals are Tocated initially in the closed region o,
where there is no population flow through the boundaries, so that the model is

AN
subject to the initial and boundary conditions:

n(0,x)

s{x}>0 (z0) ,
J(x,n) = 0 at x=0 and L,

where s{x} is continuous in o.

In some ecological situations, dispersal and growth processes take place in

different time scales. It is freguently seen in nature that the change in
popu]atiun density as a result of the dispersal process occurs more rapidly
than the change due to the growth process. For example, some animals undergo
daily migration, seeking resources and settling places, while they reproduce
once or twice a year. Here we focus our attention on the cases where £ is
small enough so that a rapid change in the spatigl distribution of populaticn
due to the dispersal process occurs initially, followed by a slow Jong-term
change in the population size due to the growth process. We can choose the
scales of independent variables so as to set the order of magnitude of the
dispersal rate to be 0{1). In this case we can analyze our model by the
multiple scale (two-timing) method (Meyfeh,1973), and abtain a truncated expan-
sion valid for all t up to 0{1/¢).

Let us introduce the following two different time scales, Ty, T; defined as
T0 = t, T-l = et

We consider the solution of {1) as a function of these two time scales,
n{t.,x} = n(To,TI,x;e) and we attempt to find the solution in the following

form, which is valid for times as large as 0{1/e}:
n{t,x} = n(TosT] SX3€) = nO{TD sT'| X) + 5n1 (TUaT] JX) 4 e, (4)

where the remainder is 0(32) and n1 is bounded for all TO‘ We now carry out a
perturbation procedure by noting that the time derivative 1is transformed

according to

9 3 3
IR (5)
ot BTG 3T1 .

Upon inserting (4) and (5) into (1} and equating coefficients of like powers of

£, we obtain



o = gt (6)
n0(0,0,%) = s(x),
J(x,nol =0 at x=0 and L;

3 1.3 gy 3 0 0

B N+ J{x,n') T n- + G{x,n"), (7}

n'(0,0,x) = 0,
J(x,n]) =0 atx=0andL.
The general solution of (6) is written in the form
nO(T

oo Tyox) = MRTL0 (8)

where f(TU,x) is the solution of the following equation,

g—T-af = - 2009, (9)
flo) = S
fcs(x)dx

J{x,f) =0 at x=0 and L.

By integrating (9) over o, we find fc f(TU,x)dx = 1. Thus, f(1b,x) may be
regarded as the probability density of the spatial distribution of population
in g, since f(Ty,x)>0. Equation (9) is a so-called regular Sturm-liouville

problem, and its solution is written as
f(TO’X) = 1_§]c1-te><|a{- AiTotes (x) s (0

where ¢; are the eigenfunctions of (9) and Ay are the eigenvalues, which are
nonnegative and can be arranged in the following increasing sequence (Berg and

McGregor, 1966 :

Thus f(TO,x) is beunded for all x and TD and asymptotically approaches an

equilibrium f(x), which is the solution of J{x,f*)=0:
expi{ - %—"l}

Lexp{- IU} dx

The function NO(T1) remains arbitrary, but we can determine it at the next

T, + =
f(Tgx) Loor Fr(x) = an

stage of the perturbation.
To this end, 1let us integrate (7) over ¢ and put N](TO,T1)=
Lrn}(TO,T],x)dx. We then have

B URE S UT £ 6l (T RT 0Nk (12)

Since n](TO,T],x) is required to be bounded for all T., Nl(TO,T1) should also
be bounded for all Ty, 'However, the solution of {12}, N](TO,T]), will become
unbounded, because of the occurrence of secular terms, unless we require the
right hand side of (12) to tend to zerc as T0-+0. So Tet us try to set the
unknown function ND{Tx) equal to the solution of the following equation,
371- W (Ty) = [ 80aNO(T))F* () )dx .
ND(O) = %_s(x)dx,
which is obtained if we substitute f*{x) into f(TO,x) in (12) and set the
right hand side of {12) equal to zero. The solution of (13), NU(T1), is
bounded for all T1 because we imposed the condition that G(x,n) becomes nega-
tive for large n.
Now Jet us examine whether the solution of (12), N1{T0,T]), is actually
bounded for all Ty. By substituting {13) into (12), and integrating over TO’

we obtain the egquation,

1 To
W T2y = L2 (-6luNOR () + BonOr(Tg ) DTy (18)

The right hand side is verified to be bounded for all T0 if we apply the



mean value theorem and take Eq.(10) into consideration. Thus the assumption
of N0 as the solution of (13) proves to be appropriate. However, it should
be noted here that N](w,T1) becomes divergent as the length of the habit&t L
becomes infinite, since the eigenvalue Ap + Bas L+,

To summarize the above analysis, we can conclude that:

The selution of (1), which is valid for times up to 0(1/€), is given by
n(t.x) = Net)f(t,x) + o(e) | (15)

where f(t,x) is the probability density of the spatial distribution given by
(10}, and No(et} s the solution of the ordinary differential equation (13),
which usually can be solved easily, as will be shown in the following sections.

Note here that [ n(t,x)dx = NO(Et) +0(e), since [ f(t,x}dx = 1, so that
we can regard NO{Et) as the total size of the populatiecn in o, Thus we can
see from [15) that when we focus our attention on the behavior of the rapid
dispersal process (in the time range of 0(1)), the distributional pattern
changes so as to satisfy (10), approaching an equilibrium f*(x) without change
in the total popuiation size ; on the other hand, when we turn our attention to
the Tong-term behavior (in the time range of 0(1/¢)), the total pepulation size
No(et) changes so as to satisfy Eg.(13), while the probability density of the
spatial distributjon always remains in the stationary state, f*(x). In the
following section, we will apply the above method to a typical system of a

single species.

3. Population with general Togistic growth
Here we will consider the case in which the growth term is of the general

Togistic type,

G{x,n) = {a{x) - b{x)n}n {16}

where a(x} and b{x} (>0} are assumed to be piecewise continuous functions of x
in o. The 1intrinsic growth rate a(x} may have both positive and negative
values in the habitat and if regions satisfying a{x)< 0 predominate in o, the
population may fail to grow in this habitat as a whole. Thus we are inter-
ested in the conditions under which the population can grow in the habitat and
how the total population size changes to approach an equilibrium state.
Substituting (16) into (13), we have the equation for the total population

size No(et) that

4 NO(ry) = (a - 800 (17)
1 .
ND(O) = {Is(x)dx .

where

A= [ alx)f*(x)dx, B = £ b(x)F(x)dx,

f(x) = expl- 3} / [ exnl- Y ax

The selution of (17) s given by

0
W(et) = ; AL (18)
BN™(Q) + (A-BN-(0))exp{-ctA}

which becomes, as et + =

Piet) -

o3|

when A >0,
(19)
> 0 when A < 0.

Thus if the average growth rate with respect to f*(x) is positive i.e.

A= L}a(x)f*(x)dx > 0, (20)



then the population can grow in this habitat, and otherwise, the poputation
becomes extinct. In other words, the condition A>0 represents the invasion
condition for the population. The value of A depends on the function U(x),
and hence even if the average of the intrinsic growth rate a(x) over o,
)La(x)dx, is negative, A may be positive when U(x) has such an appropriate form
that directed movements are induced toward the region where a{x) is positive.
As we noted previously, the two-timing expansion (15) is applicable as long
as we are concerned with the time scale up to 0{1/e}, so that it 1is not
necessarily wuniformly valid for all time, However, in the case of the
logistic growth of (16), it turns out to be a fairly good approximation even
for a longer time range when = is sufficiently small. Fig.1 shows that the

truncated solutions (18} agree well with numerical resultis derived from

(1.

E=0.01 Fig.t1. Time variation of the
—— N ’ total population sizes of single
species. The solid curves are

—=-NW P FHnma N{t)= G n{t,x)dx derived from (1)
by computer <calcutation. The
broken curves are the truncated
solutions of (18), NO. Parameter
values are a=1, b{x)=1, =0.01,
L=4 and advection velocity,
~-dU/dx=1, so that animals are
attracted 1in the positive direc-
tion of the x axis. The intrinsic
growth rate is a{x)=B +x. Results

B=-3

for 8=-1.5, -2, -3 and -3.5 are
I plotted. The critical value of B
fz-35 for invasion in themultiple scale
0 100 200 300 400~ 500 method is -3.074 at which A=0.

To further examine the validity of our expansion, we will compare the
invasion condition (20} with the exact one which is analytically derived from
Eq.{1) combined with (16). When the population is rare throughout the whote
habitat, we obtain the invasion condition for the population satisfying Eq.(1)

with (16) by analysing the following Tinearized equation about the solution

n=0:

5 .o 8
ol e~ J(x,n) +ea(x)n, xeo {21)

Jix,n) =0 at x=0 and L.

If the equilibrium state n=0 is dynamically unstabie, the populaticn can grow
in the habitat; namely, the population, even when rare, can invade the habitat.
If n=0 is stable, on the other hand, the population finally becomes extinct in
the habitat. Previously, Fleming (1975) performed a stability analysis of
(21) for the special case of U{x}=0 and has presented a useful theorem on the
stability condition. By applying his theorem with slight modifications to our

model, we have invasions conditions for our system as follows:

i) A>0, or

2 U
);jnx exp{- E}dx 22)

i1} when A <0, g > inf{

2 U (
[ a{x)n“expl- ~}dx >0}
,ga(x)nzexp{- g}dx 9 &

Now if ¢ tends to zero, the above condition is reduced to A>0, which exactly
coincides with our conc]us'ion (20).

To comfirm the above result for a specific example, Tet us consider the
special case that has been analytically solved by Pacala and Roughgarden
{1982):

a{x) = 5]>0 {const.) for 02 x< Ly, (23)
= 5,<0 (const.) for Lij<xsly + Ly,
Uix) =0

The invasion condition derived from (21} was given by the above authors as
Ly Ly
E.I_Tan(/—ﬁ'/a_s‘f) - s, Tanh(ﬁaf-"e—s'z)> 0 (24)

When we are concerned with the case,

10



€S -£5
L.I —Oti « 1, L2 (12 « 1,

(24) is expanded as

e i,

where A=51L] + 52L2. As expected, we have again A> 0 as the invasion condi-

tion with a correction of order Q(g).

4. Multi-species system.
We now extend the previous study to multi-species systems. Consider an M-

species system which satisfies the following equatian,

Fem = - B di0an) + e (0 nyan,) o xe [0,0] = g (25)

for 1 = 1,2,...,M,

where we put

=g, g L .
Jpxang) = —ep e my - g2 Up(x)n,. (26)

n; (t.x) is the population density of the i-th species, and ag s Ui(x) andeG, are
respectively the diffusion constant, the environmental potential and the growth
rate of the i-th species. These parameters are defined in the same way as in
the single species system. The model is subject to the following initial and
boundary conditions:

ny(0,x) = s;(x)> 0 {z0),

Ji(x’"i) =0 atx=0andL.

The muitiple scale method can be applied to the above equation in a similar way
as in the case of the single species system, and the solution, which is valid

for all t up to 0(1/e), is given by

11

nftod = W00 () 00e) L 12,00, (27)

where fi(t,x) is the probability density for the spatial distribution of the i-

th species and satisfies the following equation:

] =z -E.u. i= 8
Fra PRI M C0 % IR £ IV JOURRN | (28)
5;(x)
fi(G,x) = —_—
‘[jsi(x)dx

Ji(x’fi) =0 atx=0andL.

N?(t) is the total population size of the i-th species in ¢ and satisfies the

dynamical system,

d 0. v} 0 0 iz
_E'Ni = ELyGi(x’leT’N2f§"‘"NMfﬁ)dx’ i=1,2,...,M (29)
0 -
N(0) = [ s, (x)ex,
where

"

U, U,
f%‘(x) exp{- #} / %exp{- 6'1._}“

Now, let us consider a special case of a two competing species system,
which has the following generalized Lotka-Volterra type growth functions,

Gi(x,nl,nz) = {ai(x) - § bij(x)nj} M i=1,2, (30}

where we assume that a1(x) and bij(x)(>0) depend on position x.
As is well known, if neither of these two species undergoes dispersal

(namely when J]=J2=0), they can coexist at a position x if and only if

b-”(x)_ > a]()c} > b]z(X) (31}
by () 35(x] byp(]

and otherwise, one of the species always becomes extinct at x. Since the

enviromment is heterogeneous, (31) may be satisfied at some places in the

12



habitat, but not at other places. In such a case, we are interested in how
the total population sizes of the two species in the habitat change with time,
if both species undergo dispersal according to equation {26).

The equations for the population sizes in the multiple scale method are

obtained by substituting (30) into (29):

d 0 _ 0,,0 .
at Ni = E{Ai - § Biij]Ni ' i=1,2, (32)
where
A; = %,ai(x)f$(x)dx
Bij = L bij(x)f${x}F§(x}dx
Thus if
B A B
11 1 12
—L s s _le 33
21 Ay Bz > (32)

the two species can coexist at least for times as large as 0{1/e), and other-

wise, one of the species tends to extinction.

Here it should be noted that Eq.(32) is analogous to the niche-partitioning
theory of the MacArthur and Levins (1967), if we take the rea} habitat space as
the niche space. Namely, we can see that fg(x) and eai(x) correspond to their
utilization function and resource function. Thus (32} may be interpreted as
a behavioral version of the MacArthur-Levins formula for habitat partitioning
by competing species.

Now we carry out a numerical calculation of (28) for a two competing
species system with the following parameters:

= .0.52

= _pcd_ -
1% 0'53x n - 0.2nT . J Mt ny . L =2,

2

; {34)

i

{1 -0.1x - n - "2)"1 . G2 = (1 + 0.5x - no- "2)”2'

We alsc calculate the total population sizes N1(t) = ﬂ) n](t,x}dx, Nz(t)

13

L,nz(t,x)dx, and compare them with the truncated solution by the multiple
scale method given by (32), N?(t) and Ng(t}. With the parameters chosen in
(34}, 61(X)/32(X)< by1/bays Byp/by, for any xea, and hence only the 2nd
species can survive everywhere in ¢ in the absence of dispersal. However, if
both species undergo dispersal, (32) has a stable positive equilibrium state,
because the condition (33) 1s satisfied (A]=0.91, A2=l.77, B11=0.53,
B]2=BZI=O'40’ B22=1.O4), s0 that both species tend to coexist as a whole in
the multiple scale method. In Fig.2, we show the time developments of the
population sizes for three cases, € =0.01, 1 and 10. The solid and broken
lines represent the numerical solutions of NI(t) and Nz(t} derived from (25)
for the case of {34} {hereafter called the exact solution), and the truncated
solutions of (32), respectively. From this figure, we can see that for
e=0.01, the dynamical behavior of the truncated solution closely coincides with
that of the exact solutien, and the coincidence persists even for times longer
than 0(1/e). However, as € increases so that the growth term becomes dominant
in &q.(25), the truncated solution deviates from the exact one with the lapse
of time, and finally the first species becomes extinct in the exact solution,
whereas in the truncated solution it remains positive for all time (the case of
£=10). In the above example, we chose parameters such that the two species
undergo dispersal with directed movement toward different favorable places.
Thus they segregate their habitats from each other, occupying those places in
which they can grow at higher rates. This segregation facilitates the coexis-
tence of species by relaxing the competition between the species.

Further computer calculations with various parameter values have shown that
as long as £ is small, the time developments of population sizes according to
(32) approximate exact anes fairly well for various kinds of potential func-

tions U;{x) and growth functicn G-
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Fig. 2: Time variations of the total population sizes of the two
competing species. The solid curves are Ny(t) =L (t,x)dx  and
Na(t) =fna(t,x)dx derived from Eq. (25) for the case of M=2 by
computer ga]cu]ation. Thesbroken curves are the truncated solu-
tions derived from (32), Nj(t), N3(t). Parameter values are
given by (34). Results for e= 0.G1, 1 and 10 are plotted. The
agreement between the two curves becomes better as ¢ decreases.
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