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1. 1Intreduction. Of the stability concepts assoclated with population dyna-
mics models, the notion of persistence seems to have emerged as most important teo
ecologists. (See, for example, Holling (1973), Botkin and Sobel {1974), Innis
(1974), Maynard Smith (1974) ) ?ersistence; generally, refers to that quality of
such models whereby population density 1evels remain within cex_'tain acceptable
bounds despite perturbations of ‘medel parameters or initial values, Various speci-
fic mathematical formulations of persistence have been given by Innis (1974},
Zotlin and Sobel (1574), Wu (1974}, Freedman and Waltman (1977), ¥McGehee and
Armstrong (1977), and Harrison (1979a) for models taking the form of systems of
ordinary differential equations. All of these definitions of persistence are
closely related to the dynamical system conceph of'flow;invariance. Here this
relationship will be discussed, and an extension to food webs of Freedman and
Waltman's definition of food chain persistence will be exhibited for the Lotka-
Volterra case. In partiecular, a sufficient condition for top predator persistence
in terms of model parameters will be given. Although the discussion will be re=
stricted to ordinary differential equation models, some brief remarks abeut per-

sistence in dynamical models of other types are in order first.

For stochastic systems, in particular systems subject to random perturbations,
Ludwig (1975) has suggested the exit time from a specified set as a measure of
system persistence. The exit time is a random variable whose statistics can be
estimated using perturbation techniques in this case. Tier and Hanson (1981) have
carried out such a program, for example, for a single species population under-
going demographic as well as envirormental random fluctuations. Allen (1981) has
extended the Freedman-Waltman definition of persistence to systems incorporating
gpatial effects via different diffusion mechanisms. She has studied both discrete
(patch type), and contlnuous (reaction-diffusion) models for prey-predator, compe-
tition, and mutualism systems. The importance of taking into account random fluc-
tuations and spatial heterogeneity in ecosystem wodels, along with the development
of mathematical tools for the analysis of stochastic and reaction-diffusion models,

makes this a promising area for future research.

2. Persistence and flow-invariance. &ll of the persistence definitiouns
cited above for models involving ordinary differential equations require or have
as an immediate consequence the existence of a flow-inmvariant set in state space,

To be precise, in this case the model takes the form

42 o £ix(r),alt)) W

where for each t,
x(t) = x,(B)} € Ry = (x = {x;}. € R'|x,20, 110},

representing the population densities of n specles at time t, and a belongs
to some admissible class & so that a(t) = {aj (t)}. € %% glves the state of the
environment at time t; the functlen f = {fi}: Ri x B + " denotes the species’
net groﬁth rates. Under mild assumptfons on f and ¢, given an & €& and

®g € Rr_:_ there exists a unique solution x(r) of (1) which satisfies

x(to) = x, and represents the evolution of species' population densitles on some
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time interval. A set M C Ri is flow-invariant with respect tc (1} 1if each solu-
tion =x={t) of (1) baving initial value =x{0} € M satisfies =x(t) €M for all

t > 0. Equilibrium peints and periodic trajectoriles are examples of flow-invariant
sets, Redheffer and Walter (1975), Seifert (1976), and Gard (1980) review the
mathematical literature on flow—invariancé. Most of the results give criteria for
checking whether or not a given set is flow-invariant. Generally, determining
flow-invariant sets for a particular model is a difficult task.

Harrison (1979a) defines a subset M of

R_I::Q = {x = {xi}lxi> O’ liiin} .

(sometimes referred to as the feasible region), as persistent with respect te (1)
and an admissible class & provided M 1is flow-invariant with respect to (1)
for each a € «; he also allows M to vary with time (i.e., require =x(t) € M(1),
if x(0), € M(0)) and points out that the persistence definitions given by Innis
(1974), Botkin and Sobel {1974), and Wu (1974) are special cases of his definition.
Furthermore Harrison (1979b) has shown how persistent sets can be determined from
Lyapunov functions; the sets so obtained are Lyapunov-stable. "It seems reason-—
able to require the asserted flow-invariant set to be stable for persistence;
otherwise, for example, a system which preserves, under various enviromments, an
equilibrium, even an unstable one, would be ruled persistent. The existence of a
stable flow-invariant set in R:’o corresponds to the definition of persistence
used by McGhee and Armstrong (1977) in their treatment of competition systems.
Freedman and Waltman (1977) take a different approach in thelr amalysis of
food chain models. Persistence here means that for each solution =(t) = {xi(t)}

of (1) with Initial value x(O),_ € R:’O, and maximal interval of existence [0,T),

lin sup x,(t) > 0 (3]
T

for each 1, 1 2 i <n, and each T, € (0,T}. That is, persistence means that no

solution having all components positive initially experiences any component tending

&4
to zerp in finite or infite time. This is a stronger requirement than the defi-

nition given previously; for autonomous systems having bounded trajectories in

n,o
R+’ )
R:’o, toward which all trajectories must move as t + =, It is easy to see, for

it implies the existence of a one or more stable flow-invariant sets in

food chain models, that this definitfon of persistence is equivalent to persistence
of the top predator; that is, if x, denotes the density of the top predator, (2)
is equivalent te

lim sup xn(t) >0, (3)

T

for each 1, € (0,T], for each solution x(t) = {xi(t)} with initial value
x(0), &€ Rf:'_o and maximum interval of existence [0,T). For food web models, a
natural extension of this persistence definition is, then, that given any popula-
tion with all species initially pre_sent, at least some top predator survives inde-
finitely, which one survives being possibly dependent on the initial population
configuration. This notlon of persistence asserts the preservation of the web's
trophic structure rather than all species in the web, which may be significant from
the point of view of assessing ecological effects. (Paine (1966), In his studies
of intertidal communities, has shown that removal of a top predator can drastically
reduce community structure.) A disadvantage of this approach to persistence ls
that, although the exis:en;:e of flow-lnvariant sets 1s asserted, the location of
such sets In the feasible region is not addressed. Indeed, for food webs, these
sets will not necessarily be situated in R_l:_’o 3 however, at least one species from
each troéhic level will be represented in each such set. The situation 1s somewhat
mitigated by the improved mathematical tractability of the problem which is demon-
gtrated in the next section where a criterion in terms of model parameters is
deduced for Lotka-Volterra food webs. It is emphasized that these models are pri-
marily of theoretical, as opposed to predictive, value at least at their current
stage of development. Freedman (1980) has given a detailed mathematical treatment

of the basic properties of Lotka-Volterra models.
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3. Persistence in Lotka-Volterra food webs. In this section, the Lotka-

Volterra food web, represented by the system of ordinary differential equations

d.xi k m

B a - b -

o = *qlay jzl 15%5 jzl egy¥P.  12iczk

dyi k

__._-y(.d+zex-§fz), l<i<m (4)
dt A Y T t i 2ig

dz n

i (g, + ) & ) 1ei<

at 21 81 j=1 inJ E = <P

is considered. In this model xi(t), yi(t), and zi(t) denote the population
densities at time t of the {th prey, intermediate predator, and top predator
respectively; the '.'-11, bi{l’ c:l.j’ di’ eij’ fij’ By and hij are positive con-
stants representing the various intrinsic growth and interaction rates., Solutions

of (4) with initial values in

n o -
R+- {(xlsO"lxksylu-'°; Ym lzll"‘! zp)l xilot yiio Zi?_o, each 1} *

n=k+m+p,

are unique, bounded, and remain in Ri on their entire interval of existence.
(These facts are easily deduced from the basic theory of ordinary differential

equations.) Of primary interest here are solutions of (4) with Initial values in
%= {(
" Xyseees K aFpaeess Yy oZpseeey 2y ] x; >0, 5 >0,z >0, each i}

Top predator persistence means that for any solution
PLEY = Gy (), eeey X1 (0,73 (0D 5y ¥ (0,2 () ey 2 (D)
with fnitial value @(0), € R:"’

lim sup zi(t) >0 (3
t>1

6
for any 7t € (0,7], the maximal interval of exlstence of @(t), and some index i,
1 < 1 < p, which may depend on choice of @(0), Similarly to the corresponding
procf in Gard and Hallam (1979) for food chain models, it can be shown that any
such solution @{t) 1is defined on the entire interval [0,») and remains in Rz'o

for all finite time., Thus top predator persistence (5) becomes, for some 1,

lim sup zi(t) > 0. (6)

s
The basic problem addressed here 1s to obtain a criterion in terms of the model
parameters which will guarantee (6).

A procedure for obtaining such a criterion involves the construction of a

Lyapunov type function

p(xl,...,xk,yl,..., AL TR zp)
which 1is positive on R:’o and satisfies

p + 0 if any zi-'-O )]

Assuming, by way of contradiction, that there is a sclution @(E) of (4) with
initial value (0), € R}" which exhibits z,(c) >0, as t~ =, for all {,

1 < i 2 p, one considere the function

plp(t)) = p(xl(t),...,xk(t),yl(t),...,ym(t),zl(t),...,zp(t)) .

If a differential inequality of the foram

dx dx, dy dy dz dz
c el _ o . SR e W Y W
e dt Vo o gpe g rder o dr v de) LM &

for some positive comstant ), can be established for sufficiently large t, then
the required contradiction is obtained. Indeed, inequality (8) holding for suf-
ficiently large t implies p(p(t)) # 0 as t > = which itself contradicts

that zi(t) -0 as t -+ =,



For the food web medel (4} one chooses p of the form

k P
p= T x n yii i z'ii
i=1 ~1i=1 " i=]

where the constants Ty and s are to be determined. Then

i
& k m
P - "{,-,El(a jzl Pyg*s = 321 %437y
m
s 7 ey ): - Y (9)
1=1 =

+ f ( f
g, {~g. + h )}
gm1 1074 =1 137

follows from (4). It 1s convenient to rewrite (9) as

n-ﬂ{ia Zdr fsii

=1 i=1 =1
It )
+ x( e, .r, — b,,)
1=1 lgap I4I5 M
(10)
+ ( f %t
¥ h,,5, = e,,)
1= 1 i =1 HE 3=1 34

E PR S

Now let the constants r, and = 1 be nonnegative numbers satisfying the inequali-

1
ties
m k
3sleiirﬂ jZlbji_o, 1<1<k an
k
3 hyysy I cy20, 1cizm (12)
3 =1
and let

Theorem, Top predator persistence holds im (4) if
p=ulr}{s}) >0 (13)

Proof. Suppose @(t) 1s a solution of (4) with initial value (0), € R:’o

having z -component zi(t) tending to zero as t -+ » , for all 4. Taking »p
defined as above with the 1 and 8y satisfying (11} and (12), it follows from
{10) that
dole(e)) plp(t)) > plp(t)){u - E z {t) } f£,.r} {14)
de g 1 §=1 1i7

The assumption that zi(t) +0 as t+=, forall 4, 1< 1< p means that the
second term In the bracket in (14) becomes arbitrariljv small for sufficilently

large t. Therefore if A is any positive constant less than yu,

pLR(E)) > Ap(ep(t))

for sufficiently large t, and this completes the proof.

The biological interpretation of (13} is straightforward: if t:he combined
Intrinsic growth rate of the prey exceeds a linear combination of the i;rltrinsic
death rates of the predators where the coefficients of the 1iﬁmr combination
are required to satiafy certain yvelations invelving the interaction rates, then
top predator persistence is assured, It is ¢clear that the "best" such persis-

tence criterion (13) is obtained by choosing coefficients r, and s

1 which

i
solve the limear programming problem:

m
ninimize dr, + E 2454
i=1
subject to the constraints T, a, 8y > 0, (11} and (12). The corresponding
criterion is "best” in the sense that it places the weakest restriction on the
prey growth rates possible. That the result 4is sharp is indicated by the fact
that for u obtained in the same way for food chains in Gard and Hallam {1979),

it was shown that u < 0 implied top predator extinction.
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The main result can be extended te food webs with more than three trophic E‘11']_ + €aTy >b a7
levels, food webs exhibiting competition for space among predators, and food and
webs with arbitrary degrees of omnivory. It is not difficult to see the modifi- hys > e; , i=1,2. (18)

cations of the persistence criterion and constraints required in each of these

The sharpest such criterion obtains from a solution of the problem
situations. In particular, that omnivory enhances top predator persistence can

be readily observed from the form of the corresponding constraint relations. minimize dlrl + dzr2 + gs

(19
Example. Consider the Lotka-Volterra model of the two intermediate predator subject to r,, T and s >0, (17), and (18).
food web given by
The solution of (19) consists of taking
dx
i - x(a -bx - €Y1 — eg¥y) 8 = max {cllhl,cthz} .
dy -
d_ti - yi(_di + ex - fiz) ,1=1,2 (15) and 2z o, T, % 0 minimizing dlrl + d21-2 subject to (17), i.e., either
d . - -
E-:. = z(-g + hyy, + hyy,) . Ty =ble; and r, =0 if dje, <dge ,
r. r, s r, =0 and r, = bfe, if d.e, > d or
For p = xyllyzzz , (10) has the form 1 2 2 172 2% )

Ty and T, are the coordinates of any point on the
o = -4 -d _
o= la 171 2f2 8% - line e,y + ey, = b in the nonnegative quadrant_ if

+ x(elrl + eyr, ~ b) diey = doey.
+ yl(hls - cl) + 3'2(“25 - cz) The corresponding persistence criterion then is
- z{fr; + fzrz)} a = b min {dllel’dzlez} - g max {cllhl,czlhz} > 0,
Then, from the theorem,
u-a—dlrl“dzrz—gs>0 {(16)

implies persistence if the nonnegative counstants T1s Tos and s are chosen so

that Acknowledgement

This research was supported, in part, by the U.§. Envircnmental Protection

Agency under Cooperative Agreement No. CR 807830.




Literature Cited

Allen, L. {1981). Applications of differeatial inequalities to persistence
and extinction problems for feaction;diffusion systems. Ph.D. diasertation.
Univ. of Tennessee.

Botkin, D.B. and Sobel, M.J. (1974). The complexity of ecosystem stability.

Ecosystem Analysis and Prediction. 8. Levin (ed.), SIAM, Philadelphia.

Freedman, H.I. (1980). Deterministic Mathematical Models in Population
Ecology, Marcel Dekker, New York.

Freedman, H.I. and Waltman, P. (1977). Mathematical analysis of some three-
species food-chain models. Math. Biogei. 33: 257-276.

Gard, T.C, (1980). Strongly flow-invariant sets. Appl. Analysis 10: 285-
293,

Gard, T.C. and Hallam, T.G. (1979). Persistence in food webs: I. Lotka-

Volterra food chains. Bull. Math. Biol. 41: 877-891.
. Harrisen, G.W. {1979a). 8tability under envirommental stress: Resistance,

resilience, persistence, and variability, Amer. Natur. 113: 659-669.

Harrisom, G.W. (1979h). Persistent sets via Lyapunov functions. Nonlinear
Analysis 3: 73-80.

Holling, C.S. (1973). Resilience and stability of ecological systems.
Amnu. Rev. Ecol. Syst. 4: 1-24.

Innis, G, (1974). Stabilicy, sensitivity, resilience, persistence. What is
of interest? Ecogsystem Analysis and Prediction. S. Levin (ed.). SIAM, Philadelphia.

Ludwig, D, (1975). Persistence of dynamical systems under random perturba-

. 17: 605-640.

Maynard Smith, J. (1974), Models In Ecology. Cambridge University Press,

Cambridge.

Mcqﬁee, R. and Armstrong, R.A. (1977). Some mathematical problems concerning

the ecological principle of competitive exclusion, J. Diff. Eq. 23: 30-52.

Paine, R.T. (1966). Food web complexity and species diversity. Amer, Natur,
100: 65-76.

Redheffer, R. and Walter, W. (1973), Flow-invariant sets and differential
inequalities in normal spaces. Appl. Analysis 3: 149-161.

Seifert, G. (1976). Positively invariant closed sets for systems of delay
differential equations. J. Diff. Eg. 22: 292-304.

Tier, ¢, and Hangon, F.B. (1981). ©Persistence in density dependent stechastic
populations. Math. Biosci. 33: 89-117.

Wu, L. (1374). On the stability of ecosystems, Ecosystem Analysis and

Prediction. 5. Levin (ed.). SIAM, Philadelphia,



