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1. Introduction

The scenic affluence of nature is attributable to the fact that most
ecological communities contain a wide variety of species of organisms with
widely different abundance. Many ecologists have been interested in the
distribution of the abundance of different species found in a chosen area.
Commoniy the "species-abundance" curves obtained from the observed data

for a some taxonomie group, have been studied. They tried to find an
optimum form of frequency distribution with a small number of parameters
that fits the data from the majority of observed communities only by
adjusting the parameter values. Then, we can use these parameters as the
significant meagures to characterize the type of communities. Thus several
types of frequency distribution laws have been proposed by Fisher, Corbet
and Williams {(1943), Preston {1948), Brian (1953) and others; for examples,
logarithmic series discribution, lognormal distribution, negative binomial
distribution, Sometimes we encounter such cases that some of the distri-
bution give better fit to one community but other distributions fit to
another community and one cannct easily answer the question: which is the
optimum distribution as a general law?

However, roughly speaking, it is a commen qualitative feature of
species—abundance relation found in the majority of natural communities
that only a few species have large population sizes and many other rare
species have small numbers of individuals, that is, singleton species are
rumeyous, and doubletons and tripleton and so on are successively less
NUMETOUS - Thus, if we plot the number of species as a function of the
population size, it always gives a monotone decreasing concave curve.
Here a questien will immediately arizes: why the natural communities have
such 2 common qualitative feature of "species-abundance" relations?

MacArthur({1957) proposed the well known 'broken stick model’. by assuming
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random occupation of nonoverlapping niches and population size of species
proportional to the size of speciés'niche, and obtained a result which
gives a reasonable distribution pattern. As we shall state in the next
section, Utida (1943) derived a geometric series distribution by using a
very simple inter—specles competition model.

On the other hand, a similar distribution law has been also discussed
on quite different items and is known by the name of “zipf law". It
states that, in a collection of many subject of the same item, if we give
the rank x {integer) to each subject just in the order of its size, ¥,
then, in many cases, we have a rank-size relation xy = coanst. For
examples, English words ranked by the frequency of usage (the first rank
"the", the second rank "and" and so on), urban communities ranked by the
population size (the first rank "Tokyo", the second rank "Osaka" and so
on), and rivers ranked by their lemgth show approximately the Zipf relation
xy = const, If we consider the frequency distribution of size, £(y), it
is easily shown that the rank x of a subject with size y is given by
x =f;’f(y')dy'. Therefore, in terms of frequency distribution, Zipi's
rank-size relation cam be expressed by f(y) = c/yz. Yule{1924) also
discussed the size (number of species) distribution of the genera and
derived a hyper-geometric series distribution by taking into account the
Yspecific mutation' and the "gemeric mutation” as a stechastic birth
process. He showed that the frequency distribution has a form f(y) <=
y"(l+llp) (where p<l) for large value of y. The result was compared with
the observed data which was used by Willis(1922) in his discussion on the
evolution. As has been discussed by Rapaport(1978), Lif this type of the
distribution is commonly found in a wide variety of objects, there may
be a possibility that the distribution can be commonly characterized by
some special probabilistic model, just as in the case of normal distribu-
tion for the sum of independent random variables. The studies on the
species-abundance relation of ecological communities, which is also
characterized by similar monotone decreasing concave curves, arouse

theoretical interest also from this point of view.
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2. Geometric Series Distribution and Competition Model

In Japan, Motomura (19332) proposed the geometric series distribution
to fit the data of the bottom fauna of Japanese lakes obtained by Miyadi.

He found good fit to the data by introducing the rank-size relation
logy + ax = b,

where y is the population size of the species of rank x. Here all species
are ranked in the order of their population sizes, Obviocusly this
eXpresses a geometric progression with the ratio exp{-a) and gives the
size distribution f(y)= 1l/y, instead of lly2 (2ipf law). Typical examples
are shown in Figs. ! and 2. In order to explain the geometiric serjes
distribution, Utida (1943) considered a very simple competition model.
Consider an area which consists of M compartments and n individuals of
each species A,B,... randomly occupying these compartments. Here we
assume that more than twe individuals of the same species cannot occupy
the same compartment simultaneously (this assumption was removed later by

Motomura), Then we have the compartments with different species like
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{A,D), (A,B,D), (B,C) and so on. Furthermore, we suppose that these
species have a relative superiority of strengths for interspecies competi=-
tion just in the order of A,B,... and only one individual of the strongest
specileg can survive in each compartment. Then the above example is reduced
to {A),(A),(B)... Under these assumptions, all n individuals of species A
can obvicusly survive occupying n compartments, and among n individuals of
species B, in the average, n{i-n/M} individuals which entered the A-absent
compartments cam have the chance of survival. Similarly n{l-n/M -
%(1-n/M)} = n(l-n/H)2 individuals of the species C can survive. In this
way, it is easily shown that the populationsize distribution becomes a
geometric series with the ratic (I-n/M). There may be critical opinions
on the assumptions underlying this simple model. However, the effect

of the competition seems to be a possible key of rationale of common

type of species-abundance relation in the ecological communities. Thus,
in the following sections, we shall discuss this problem based on a polula-~

tion dynamical standpoint.

3. Competitive Multi-Species Model

Consider the Lotka-Volterra model of competitive multi-gspecies system

gzxi= &i-zuﬁxﬁxf i=1,2,,..,N (1)
where x, is the population density of the ith species, Si is its intrinsic
growth rate. My and uij (i#j) are the coefficients of intra- and inter-
specles competition, respectively. Here we introduce a conceptual assump-
tion that the competitive interaction consists of two factors, the intrinsic
power of interference {or attack) to other individuals and the inerinsic
ability of defense against the attack of other individuals. Thus we

agsume that the competition coefficients can be written in the form

Hyy = Bin for 1 # §,

(2)
= Biai for 1 = j,

where Yj is an intringsic factor of intereference of an individuals of the
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jth species and its effect on the ith species is reduced, due to the defense
ability of the ith species, by a <factor Bi( Bi< 1), and intra-species
competition is distinguished by using a different factor of interference
ui. Hereafter in our discussion we assume that

ai>*ri " i=1, 2,...,N (3)

This assumption is not sc unrealistic, because intra-species interference
in the same ecological niche seems to be severer, as they are depending
on the same resource.

Rewriting Eq. (1), we have

d
ar %g " (g - By - ) BYyxx (%)
J¥i
= fi(x)xi . i=1,2,...,N
where x denotes a set of variables Epr Xgreena X ai > Yi for all 4,

and the number is assigned to each species in the order as

m

!
H o=
™

2?12

£
>-B-g> > (5}
2

r

4. Dynamical Properties

Here we shall study the final state of the system given by the solutiom
of (4) when it starts with some irnitial state xo with all positive xg.
Eq.{4) have generally 2% critical points in the whole state space (-m<xi<
« for all i), including degenerated omes. First of all we shall consider

the condition of the existence of a positive critical point x* (x§> C for

all i). The critical point x* = (x*, xi,...,xﬁ } which satisfies the
equations
£.0) =€, - Bogx, - Biﬁﬂi"ﬂ =4J, i=1,2,...,N (6)

can be obtained as

5y “E _;E Ek £y
xf == + E--} i=1,2,...,N 0
i1 o+ g, i
k
where
Yy
Ej = W >0,

Thus, using the assumptions (3) and (5), we can easily derive the
following Lemma:

Lemma
The values of xi (i=1,2,...,N) at the critical point (7) satisfy
the relation

(@ - vIxf > (o, - Y xE > eee > (o - vy dub , (8)

and this gives the positive critical point (xi> 0 for'all 1) 1if and only
if the parameters satisfy the condition

_X(_k-_N)5+—N>0 9
Rl ©

As we can.see in the next section, this positive critical point is
globally stable. However, the relation (9) may be a very severe condition
especially for a many species system (large N). Actually the condition

(9) scarcely holds, except for such special cases that

€. E

(i} —BL - B—N «], for all k, or
k "N !

(ii) Ei« 1 (ﬂi» Y.

Thus it has been shown that the competitive multi-species populations can
not be usually expected to realize the coexistence, as known by the name
of "Gause's competitive exclusion®. Therefore, as the next step, we shall

study more natural cases.
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Tn order to proceed with our discussion, here we shall introduce the

concept “sector stability" defined by Goh(1980).

Definition

Suppose a dynamical model of multi-species system
4, = £ (x)x i=1,2,...,N (10)
dt i i i’ re :

where all fi(x) have continuous partial derivatives. Considering a
nonnegative critical point x*=(xf, x%, ..., xﬁ), we define the subsets
Pand Q of T = {1,2,...,N} by

P={i] xy>ob, Q= {j] =5 -0}, an
and let I be the subspace

Q= {x!xi>o for 1eP; xg > 0 for jeql.

The nonnegative critical point x* {g globally sector stable, if every
solution of (10) which starts from @ remains in Q for all finite time

t and converges to x* as t + =,

If we use this prescription in our model (4), we can prove the following

thecrem {Proof in Appendix).

Theorem
In the system (4), by choosing an arbitrary number ne{l,2,...,K}, we

consider a set of equations

£,(x) =0 for 1=1,2,...,n
* (12)
xj =0 for j = n+l, n+2,...,N
Let
x*{n) = (Xf(n), xi(n),.... x;(n). G, 0,...,0),

7_

be the critical point given by (12) for each n=1,2,...,N and let s be the
maximum of n which satisties the condition

xi(n) >Q, x;(n) >0, ..., x;(n) >0,

Then x*{g) = (xf(s),xg(s),. ..,x;(s),o,...,o), where

] Sk
By ~k§1:5k £1
R e s PR CHE N @
1 1+ 1
Lo

is a globally secter stable critical point of the system (4) and they
satisfy the relations:

(al-BlJ xp(s) > (02—82) xx(s) > cevvc > (o -8B x*(s) > 0.-(14)

This theorem presents the criterion of tl:e survival of species in
competitive multispecies communities. Among N species ranked in the
order of values 81/81, starting from arbitrary initial population
densities xg>0 (1=1,2,...,N), only the species of rank up to s can
survive asymptotically approaching the finite stationary population
densities x’;(s) (i=1,2,...,5) and other species of ranks from s+l to N
go out of existence. Here it should be noted that the poplatiom sizes
realized at the final state do not necesdarily follow the order of ranks,
but satisfy the relation (14).

Here we shall consider the invasion of new specles in some chosen
area where already several former occupant species are living with the
stagjionary poplation densities. At the stage of invasion, we can apply
our theorem to the system of the community including the invader species.
Then it is clear that if the rank of the invader species in terms of Ei/Bi
is higher than that ¢f the former cccupant species with the lowest rank,
the invasion will succeed and some of the former occupant species with the
rank lower than the invader species become extinct unless the criterien of

survival given by the theorem is fulfilled again for this new system.
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Therefore, if N species considered in our theorem invade the given area x*p-(xfu, "ﬁu’ ., x*u, 0,.., 0), L=1,2,....K (18)
one after another in random oarder, the finai stahble community will be 8

established with the s surviving species satisfying the condition of where at the fimal stabie state, the patches obviously have different
theorem and other species will fail to invade or become extinct on some number of species s . As for the problem how this stable solution is
occasion. Therefore, it is conciuded that the theorem cam represent affected by the presence of migration terms, S. Levin{l976} and B.S. Goh
also the result of succession of the ecological community caused by the (1980) already discussed the same problem for more general systems. By
successive invasion of new species. using the theorem given by Levin, we can show that if all migration rates

are sufficiently small, there exists a sector stable solution {x*u(D)},

5. Environmental Heterogeneity and Species-Abupdance Relation and it continuously approaches the solution (16) as the migration rates

Generally any area where we are interested in the ecological community cend Lo zero, Therefore, we can say that, so far as the migraticn rates
does not have uniform envirommental conditions, but it has a complex are sufficiently small, the number of specles and their population sizes
heterogeneous structure consisting of many different ecclogical niches. can be approximately given by the stable solution (16). Thus the species-
The structure of ecolegical niche may continuously change from place to abundance relation as the result of our competition model can be pbtained
place in the given area. However, in order to take into account this by calculating the populations cf surviving species in the whole area

complexity in a similar way, here we shall assume that the niche space
xt = T ot i=1,2,...,N (an
can be divided into M patches and in each patch there are intra- and i i T ’
inter-species competitions among the invader species but no competition where obviously xgu=0 for i>s. .
between those of different patches. "

It seems to be natural teo assume that the parameters in Eq.(4) for a
El

6. Numerical Simulation of Resgults

given species i have different values € OlI;, B:, ‘: (QI;>Y§) depending

In order to see the qualitative feature of species-abundamce relation,

h h = . h. th ti
on the patches u=1,2, M Then we .=_1ve @ equations we assumed, In our computer calculations, that the parameters except E;l

d B pH MMM H_M U (v=1,2,...,M) have the same values independently of the patch and used
de s (ei Biaixi Bl‘Einxj ) 1 H=1,2,...,H% the values U, =8¢, =1 and =R =0.5 for all i and j For values

3 ) 13) 117 P1% Hyy = ByYy =0 1
Mty ;Duu'xu' i=1,2,...,N of parameters €5y we considered a frequency distribution of the values of

X - A
T e (u=1,2,...,M),
where the migration ig taken into consideraticn by introducing the rate Prof{e < EJ]_':< g+de) = pi(e)dg, 1=1,2,...,N

r L
of migration "™ from the patch #' to U and Di= ZU#LI'D s

i and actually used a box type distribution
When the migration scarcely occur and all patches can be regarded
as isolated systems, we can apply our thecrem directly to each set of pi(E) = 1/g for Ei -gl2<E < Ei +al2,
equations for patchup=1,2,...,M. Then we have the set of globally (18)

=0 otherwise .

1 O

sector stable solutions




N real numbers randomly chosen from the interval (5 10) were assigned to
the mean values Ei in the order of their magnitude. Then the values g
(u=1,2,...,M) were randomly selected according to the frequency distribu-
tion (18) for each species, respectively. Using these parameter values
and N=200, o=2.5, stable pepulations at every patch were calculated by
the procedure stated in our theorem. Fig.3 shows our result of the
species-abundance relation which expresses the population sizes of surviv-
ing species given by (17) as a function of their ranks. Here al)
surviving species are ranked in the order of their population sizes, so

it should be noticed that the rank r does not necessarily coincide with
the suffix i which specifies the species.

We can conclude from the result shown in these figures that when the
area consists of many patches (M>10), the legarithm of the populaticn
size shows the linear relaticn with the species rank, namely the geometric
series discribution becomes a plausible approximation in a wide range of
rank. This qualitative feature of the distribution was not altered
by different choice of parameter values.

In conclusion, we can say that the common qualitative feature of
species-abundance relation of the ecological community thart it usually
consists of a few species with large population sizes and many rare
species with small population sizes can be expected wherever the niche

space of given area has a complex patchy structure.

|

L g
I.nxr

Fig.3.

Rank r

4L,

Species-abundance relations for the cases M=1, 2, 5, 10 and 40.
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Appendix (Proof of Theorem)

Let P={1,2,..,8} and Q= {a+,8+2,..,N} where s is the number defined inm
Theorem, and consider a domain defined as (1= {x|xi>0 for 1gP; szo for jeqQ}.
It is evident that the golution of Eq.{4) which begins in the set R remains
in & for all finite values of t, since ‘—’d?xi-o at xi-O for i=1,2,...,N,

* Im order to prove the stability of the solution of Eq. (4} confined in
{l, we will show that any solution of Eq.(4) starting from {2 converges to

x*(3) as t+=, To this end, we propose the following Lyapunov function,
A ' n
V(x)= 7 E-E: {xi.- xf(s) - x;(s) lnxi/xi(s) } +jEQ 23_’ Ile 20, (a~-1)

where equality sign holds only at the point x=x*(s) = (xi(s),xa (8),...,
x*(5},0,...,0) in Q, which is given by

£ £ €
i I (g} _
x4(s) = i 1 keP 1 7k for i=1,2,...,s. (4-2)
1+ Z‘Ek ~
keP

The time derivative of Eq.(A-1) is caleculated as
d 1 2 1 2
V@ =-{ Ty (x, -2} - 27 (a, -v,) 7, (x, -x%(s))
dt 2 461 i i i 2181 1 i i i i

Y.
+75 s-{e. -8 T y.xx(s) I x, (s}, (a-3)
jeq ZBj I Tiggp it i
where I=P+Q={1,2,...,N}). Thus if
£ x*(e)) 2, - By ] v,x¥(s) 2 0 for all zeq, (a-4)
iep
then

d
EV(X) <0,

where equality sign holds only at x=x*(s), and hence x*(3) becomes

globally sector stable.
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Hereafter we will prove the relation (A-4).
(A-4), we obtain
5 g,
—E
kep B _*

X
1+ } &
kr-;Pk

fz(x*(s)) =€,- 8

£
s
B, (- 1 ( )E }
¢ ke{P,2} Bk BZ kB

Substituting (A-2) into

1+ 1 &
kep ©

To describe this equation more concisely, let

set of equations for ZeQ,

EBYx—O for 1i=1,

-E.ax
i#1 1373

fi(x) EE

The solution of (A-6), x*(s|l)= (xi(sil),xi(ﬂ
xi‘(s]l),O,...,D), is given by

&y fx &4 i
- I (g-g5 }
relny at ke®,2) P By By
: 1+ 7 £
ke{P, 1)k

for 2eqQ . (A-5)

us introduce the following

2,...,8 and 1,
{A-6)

for j=s+l,s+2,...,N except L.

1).--.,x§(5f1).0.---,0.

for ie {P,1}. (A-7)

Especially, the I-th element x;(s|l) is written as

£ 4
l k 1 Z
- (go-g=) & +5-}
Y B B k B
x+(s|2) = 1 keflp,I1} "k I
L 1+ 7 £
ke{P, A

. (a-8)

Hote that the parenthesized term in the numerator of (A-8) is exactly

the same as that of (4-5).

Ny

Thus fz(x*(s)) can be rewritten as

148,14+ § £
i kE{P,l}k

E,(1+ 1 &)
t kng

£;(x#(s)) = x;(s|l) for 1eQ . (a-9)

Now we will show that
' x’i(sll) Z0 for all Zeq,

which assure fZ (x*{s)} <0 for all Leq. By using Eq.(A-6) and the
relation (3}, we find the following equation,

x*+1-cs|s+1)xzs+lx(1+ ! Ek)-x*(slz)xlx(u L&)

s e+l xe{P,e+1} ¢ & ke{P,1} &
E E

=(Es—+l--é}-)(1+zsk)go for 1eQ .  {A-10)
s+l A keP

Comparing the set of equations of (A-6) with that of (12) in the
text, we find that (A-6) for the case of I =s+l is idential to (12)

for the case of ne=g+l. Thus we have the following equation ™

x* i (sfs+l) = xk  (s+1) .

Furtheremore, recalling the definition of s in Theorem and the relation
(8) in Lemma in the text, we have
x* . (s+1) s 0,

and hence from (A-10), we can conclude

x’i(s[Z) <0 for all ZeqQ .



