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STA3ILITY 75. ColPLonITY I LOLIL JOLIOTITION SulZUNITIeS

Pavel kindlmansr

INTLOLUSTIUY

The ,uesticn «f the su-zalled stability vs. ccmplexity relaticnstiy, if.e,
the yuesticn wheinar . 2ormrlex @rnsreten tends %r e more fr less stable thar
1 gimple eFme, was broadly disenssed ir last yesrs. In the 'fifties, ecclc tists
put frreard the ryiotresls trad ornplex ticlegics.l svacunities wesld be oore
sticle 1han simylz cnes (L arthar, 1455; zlton, reefy Hutnhinacn, 16657,
but recent thecreticsl investisations have aemonstratec tnat stability is not
a simple mathematical conseyuence of cumplexity. The contrary frequently seeus
+o be true (Jardner and ashoy, 19705 Lay, 1572).

The mattematical analysis of the stability vs. complexity relativnshiyp is
based on the zssumption that the populaticn dynamics of a system cf m inter-
acting species can he descridbel 4y a system of & \-in general nonlinear
first order differential eiuations of the follosinz form:

dn,(t}/dt = Fi(nlxt),nz(t},...,nm{t}); 1= 1,25eeesm, {1)

where ni(t) represents the population of i-th species at time t. This system

is said to be stable if the corresponding lineariged pystem
dx/dt = Ax : (2)

is locally asymptotically stable, i.e., if all the eigenvalues of the so-called

interaction or community matrix in (2) have negative real parts (or lie within

a unit oircle if, instead of (1), the corresponding discrete model ia analysed).
The first step t~ *he clarification of the stability vs. complexity

relationship was done by Jardner and ashby {1¢7¢) and by Kay (1572}, Yay assumed

A

that the intersctins matrix o of a4 great AlCaystem hal be considerued as being

& random matrix consisting of the elements

= U with probaoility 1-d,

4 U witl propability ¢, where a  's are chusen
v Tor if]
4. . frot rendon numoer distributien with mean (

[
——

=, standard deviaticn = 2,

= =1 for i=j.

He has chown taat for large m, m-ewe, the probability of stability of such

system, F tends to C if s¥md > 1 and Pstab approaches 1 if Vol < 1, where,

stab’
in the eacological sense, s {definad ﬁbove) repressnts the iveTaze interaction
strength near the ejuilibrium, m ie the number of species in the community,
and O is connectaznce (i.e., the fraction of non-zere off~disgenal elements
in the matrix a).

lay's criterion reflects tha asymptotic relationship of the largest real
part, R(i)max, of the eigenvilues of the random matrix A to m, s and s, for
> ol 3

R('A)max = a¥na + a5 14)
where ;;; denotes the mean of the uii‘s. In Lay's case, ;;; = =1,

This relationship hae been confirmed, by means of numericul simulation,
by Wehurtrie (1575). His similations indicate that for m» 1 the complex
eigzenvalues of a matrix of rank m, the elerents ¢f which are chosen from some
cistribution %ith the mean = O ang the mean sguare value = CFE, are uniformly
distributed in a cisc in the complex plane with the centre O and radius G V.
Specially, the complex eigenvalues of Kay's matrix a are, for m» 1, uniformly
distributed in a disc in the complex rlune with the centre -1 {dus to the choice
of the diagonal algments) and radius EVEE.

‘Ne have verified this conclusion for various matrices and distributions of
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Fig. 1. The eigenvalue distribution of 50 matrices gensrated randomly with the

elements chosen zs in (3). Here,

diagonzl is equal tc O.

m=10, 8 = 0.4, C = (.7 and the

their elements and the results supported those of LeXurtrie (see Fig. 1 for

example). as it was shown by hclurtrie,

the fraction of real eigenvalues in the

@izenvalue spectrum is scaling like 1/VE1 Therefore, if m3»» 1, this fraction

becomes nesligible.

n broad discussion arose with the aim to clarify the discrepancy between

May's and empirieal results. Une of the

matrices generated entirely randomly do

cystems in nmcst cases. The length of trophic

phenomena as "plant gating a carnivore”
construction. Tt is rather diffisult to
a biological plausible system with more
the analysis of sush systems would have

between numbers of species at different

3

arcuments in this discussion was that
not present ecologically plausinle
chzins is not limited and such
are not excluded in a Tandom

construct a randem matrix representing
thin one trorhic levels. Furthermore,
to take into uccount, e.ng., the ratios

trophic levels etc. But construeticn

and wnalysis of veh.viour of a randomly generiiea system with only one trophic

level is yuite eusy (Rejmének, Kindlmann and Lepd, 1983).

COEPETITIVE SuiLUNITIsS

e nave constructed raindor matrices the elements of which were set eyual to:

- LAVU
b, =
J -]

where the values of Ra¥D wers chusen from 4 normal distrioution with the mean

for igj],

for i=j

= 0 and standard deviation = s. The connectance J (%1) had been introduced by
zeroing a cestain number of randomly chosen off-diagomnal bij-bji pairs. Such
"oompetitive matrices'" represent models of gquite general pultispecies

competitive communities.

j /
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...21 -3 II . PR . .
C‘E 1.1 i * . / .. -
f. o /..
2 I.. / .
/ >
LS Iy Se® - _y
0.0 - / s9° PN
xS /. y - . o P |
[ of’/'/
=41 / '}C!.s A __‘__:}C:-.S : u-.,’ —)ies
-8t -.-2}(::1 f .._:}C"l //’ __g‘jln.','_

3 40 .2 .4 .6 .8 1
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Fig. 2. The mean largest real parts, R(a)max, 0f :igenvalues of competitive
matrices | see (5) for construction) against VE, g 2ndYZ, The ocircles

are results of our simulations, the lines are Kay's prediction.

¥e have determined the lurgest real parts, R(a)max, of eigenvalues of

interaction matrices B consisting of the elements defined in (5). Samples of
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200 matrices were generated tor each selected cowvination of m, 8 and C values.

Hesults of this analysis are presented in Fig. 2. The dependence of mean Rx)
mnax

on ¥m and on s is pusitive und linear, differiny more or leas from May's

prediction, depending on connectanse. un tie contrary, the relativnship between
mean R(A)max and ¥ is sonspicucnsly non-linsar ang partly in direct
contradiction to hkay's rule. Woi only does it indicate decrease of stability
until connectance ¥C 2 0.5 ia achieved, but it ulsc indicates an increase in
stability (aecrease of mean h(x)max with the subseguent ingrease in .

In the same way as Jardner and ashoy (1970}, we huve eapressed the proportion

of gtzble systems A and B (estimate of Pﬁtdb of o anu B) against C for three

different m values {mee Mig. 3}, The extent of the interval of T within which

P

gtap inereasea with C depends on m, & and bose in Fig. 3, s = 0.4 and b,; = -1,

1.84

e

as, =
s o9

Propartion of stable sysiems

Ll m = il
\
alk \ — COMPETITIVE
\ MRTRICES
2k m = 38 y " - 38 cenERAL
\ MRTRICES
1k N ’
AN
a8 N L . [ ) " . P
® -
[ = ny Al - :Ji o ™™ = -9 =

Connectance, C

Fig. 3. Froporticn of st=ble systems against cornectainze for general and

corpetitive matrices (see {3) and (-} for 2orstruction). Brcl print

represénts the propcrrion of stdqule matrlices ir
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2 rample of 200 matrices.

For m = 1C and for m = 11 the increase of s*..1lity with increasing connectance
for hi-va> values of ¢ v+ *1mca is obvious. Fur m = 3C =nd higher values of
connectance, the probability of stability is zero. There also occurs decrease
of ﬁ(x)max in nigher values of connectance, but ﬂ(x)max raemaine positive. But
if suitable s or b,, weTe chosen, the same phenomenon could be cbserved for
m = 30 or for any other m. Furthermore, from Fig. 3. it is evident that « mcre
complex competitive system, i.e., 1 more connected system having more species
{m =1l and C = 1 in our case) may be more stable thun a simpier one (i.e. the
system with m = 10 and C being about 0.6},

By coﬁtrsst to the trophic webs, the values of C under discusasion (within
the interval €0.6;1)) are not rare in real competition communities.

kany natural systems aTe organized in such a way that the zercs are not
distributed symmatrically along the main diagonal of the interaction matrix,
i.¢., that not only competitive but alao amensalistic interactions ocour in
the system. In this case, our computer simulations resulted in a similar
qualitative behaviour as that shown in Figs. 2 and 3: increass of stability
with complexity in some cases. Moreover, such systems sr'e a better aubject
for analytical investigation than pure competitive onps.

I shall rastrict my analysig only to the critical case of the transition
from stable to urstuble systems. ss I shall show, this transition ccours
for the values Cms2 not being very large in tihe competitive/amengalistic
systems, too. Xoreover, it is clearly seen that if for given O, m and 8
the correspondirg matrix is almost certain to be unstable, then a randow matrix
with the same rank and connectance and standard deviation 2" > s is almcet
certain tc be unstable, toc. Therefore, 1 shall assume that thers exists such
a gonat:nt K, > K > 1, that for each matria under question Cms2 < K.
The matrices excluded are almost certain to pe unatable.

Let tLe elements b;i of the "competitive/amensalistic” mairix B’be chusen
in the same way 3s the slements of B with the exception that the zBros are

distributed entirely randomly and asymmetrically along the muin diagonals

6



= 0 with the provaoility 1 - Gy

# O with the probability @, then for ifj

s .
b;J = "ixls A~ §0O,8 )s
= ~1 for i=j.

The mean of the slsments b;j is u- ce¥2/T  for ifj and -1 ror i=j. The
variance of the slements bj'_j is & = Ca9(1 - 232/17) for ifj and O for isj.

We shall denote the eigenvalues of 3° as Als 12,..., lm' Let A®* = B 4-(1 Im
where ('-& is the meun of non-diagonal elements of B” and Im is 4 matrix of rank

m, all elements of which are eyual to 1. The mean of the elements aij of the

matriz 4% is O for ifj and & - 1 for iaj. The variance of the slements aij
is the same as that of the elaments bi‘_.'. 1 shull denote the eigenvulues of 4°

as A, A sreney A n' On the basis of Nclhurtrie's and our simulations we may

assume that the eigenvalues of A° li_e, for m»» 1, in a uniform-density disc
with the centre ol 1 and radius 6 Vm - a"mC(l - EGE/F).

In order to elucidaite tﬁa relationship between eigenvalue distributions
of A° and B° I shall introduce auxiliary matrices Dl’ DE’ D3 {see Tauble 1
for definitione). Evidently, the eigenvalues uf'I‘J1 atre A +1 ¢
Aé+l-(u 3 reey 7\;]1-1—(4 ’ Uandthaaeofﬂ3are :\1"'1-(“ s

12 + 1 - (.4. ) aeny )\m +1 - Il -(.zm. The characteristic matrix of Dl’

Iil - A Em, where j.-‘.n ig the unit matrix of rank m, is equivalent to the

characteristic mairix of D2, D2 - A Em, which may be ootained from Dl - X F.;lr

by the addition of (u.-rrrultiple of the last column to each of the remaining
columne and subseyuent subtraction of c\—multiple of all the rows except the
last one from the last row, It might be easily shown that the meun of each

of the random variucles

m
e, +1 - {6
& { E Y A )
i=1
in the last row of 32 - A En ig zerc and the variance of each of ihem is

2mC3s£‘(1 - 202/'17) . If Cmsa is pounded by o conatunt K, O € 0 ¢ 1, und

b

(6)

Ketrix Elements
1dij - b{j = aij -@ o for 1,3 = 1,25000,m, ig]
1943 = b{i-rl—(-l = ai'i-i-l-E‘u, for i = 1,2,c0e,m’
D
1 1dm+1,j =0, for j = 1,2,.ce,m+l
ldi,m-rl =1, for i = 1,2520eym
26.13. = a:{j’ for i,j = 1,2,..0e,m
2d’ii -a':l'..i # 1=y for i =1,2,...,n
D, ) 281, 5 = defined by {6}, for j = 1,2,e0a,m
L
261,m+1 =1, for i = 1,254es,m
Edm+1,m+1 =-un
36.13 = a.‘:;}' for i,j = 1,2,.0.,m
3dii -&ii +1-(-|, for i -1,2,---,!])
D3 3dm+1,j = 0, for j = 1,2,...,m
3di,m+1 =1, for i = 1,2,...,m )
%mel,mel = THT .

Table 1. Definitions of auxiliary matrices Dl' ]J2 and D3.

nl e
m-» o, this variance tends to zero. (The term 23(1 - 2¢ /n )/i‘ ie bounded
by a sonstant 2/W ,(Sm52)2 < KE). The matrices D2 and D3 difter only in the

elements _d for j = 1,24...4m. The mean of each of these elements

2 m+l, 3’ 3dm+1,j
is zero and the variance approsches zero if m+ee . It follows from the
continuous dependence of the eigenvalues of 'a matrix on its elements that,
for m?»» 1, the eigenvalues of 3‘2 difter only little from those of the matrix
DB' The eigenvalues ;\i + 1 ¢ of D:3 lie in a uniform-density dise with the

centre 0 and radius GVm; tue sigenvalue @ is real and lies outside the

dise for & > U.5(-m =+ sz + 27 ), i.e8. for nearly ill possitle connectances,
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which may pe derived from the expressions for (ﬂ and G“(-. The eigenvalues
of Dl differ only little from those of IJ3 for m»» 13 therefore we may assume
that the asymptutic eigenvslue distribution of i)l ia, for m>»» 1, the sawe
a8 that ui D_;' Finally, it follows from these consiceraticns that the
asymptotic eigenvalue distributien of B® is, for m>> 1, a uniform-density
dise in the complex plane with the centre - 1 and radius &Vm. For

C > 3(-p + Vil + 2% ) there appears one isolated sigenvalus outside this

disc of the magnitude about — um + M - 1.

] .
" ", ' a2t :-, Ll
9.0 i - T e i I Pyl - hd
. . Pt LA ]
ety el Ve
. 0 * *
-5 ) T
.3 i
L -
2.0 —— r Y T d
=5 T
-1.8
1 & b - 8 -
‘. + + 1 .
% L = -] (-] «

Fig. 4..Tha eigenvalue distribution of 20 competitive {upper grapa) and
20 competitive/amensalistic (lower graph) matrices. In both samples,
the rank, standard deviation and connectance were chosen m = 10,
8 = 0.4 and C = 0.7. The diagonal elements were egual to -1. The
circle indicates our estimate of the eigenvalue distributioni
} is our estimate of the position of the isclated eigenvalue, 4 are

the actual means of the isolated eigenvalus.

9

The estimate of the eigenvalue distrioution of the competitive/amensalistic
matrix B” was inm quite a good agresment with the results of our simulations
even for m being quite small (see Fig. 4)« The flattening of the gigenvalue
distribution of competitive matrices is not an artefact which has eccured
in Fig. 4, but a general phenomenon. It may be attributed to a certain
symmetry of competitive matrices - to the symmetrical distributien of their
zeroc elements = which "pushes" the eiqenvalues in the direction to the
real axis.

8y using the expression for @ owe obtain an expression for lm in the

original terms <, m, 23

Rm;-c-lmd-(L-l-(i-m)VE?'n' 80 - 1. {1

Further, all the complex numbers lying inside the disc with the centre

& - 1 and radius GVYm, ag well as the number —pmm, have their real parts

less than M- 1 +G Vm, Therefore, we may write an inequality for the greatest
real part of the eigenvalues of the competitiva/amansaliatic matrix B,

for R(A)ms
<
BOA) . “ -1 +G¥m {8)
By uming the expressions for s and @ we obiuin that

RA) < sl ¢ VZTT + Yom(2 - 20%/F) ) -1 (9)

For a given m, the actual expectation of Rh)mx is somewhat lees than the
just mentioned upper bound for R{?\)m, due to the tinite number — m - of the
eigenvalues. By using the uniformity of the eigenvalues digtribution im the

above-mentioned dieo a rather formidable relation for the expectation of

Ao

Y s
R{ )mx may be derived



R % m-1
E( KR (B°) ) = S 2 [—2— S Ve? - 2 dyJ -1, (10)
R i

where R = s VaC(1 - 202/7 ).

1.0
.8

00 1 2 3 4 5 6 .7 -8 .970

C°“'""'ec:tr.i.'nce‘_J c

Fig. 5. Maximum real part of eigenvalues, H{X)max, against connectance, G,
for competitive/amensaliatic matrices; 8 = C.4, m = 11 and m = 30.
Expectation of R(a)max (eq. (10)) is represented by aclid curves,
upper bound for R(R)max {eq. (9)) by broken curves, peints indicate
mean values and vertical bars standard deviations of R(A)max

obtained by simulations. Bach point corresponds to 200 randomly

filled matrices.

In Pig. 5 it is shown the comparison of the expectation of R\A)max and of the
upper bound for R(l)max with the result of cur numerical simulations. The

decrease of H()\)max for higher values of connectance is obvicus. The same

phenomenon as in May's and Melurtrie's figures of the dependence of R(x)ma
X

Al

on § ogcurs in this figure: the eigenvalues cotained by the simulations are
alightly leas than thope predicted by the expression for R(a)max. It ia
a conseyuence of the fact that the expectation of H(l)max is only an
asymptotical estimate valid for m »» 1.

Another interesting fact follows from this analysis: the existence of
a real negative iso¢lated eigenvalue with a great magnitude of about
{1 - m)Y§7?F'sC - 1. The existence of a real negative eigenvalue with its
absolute value equal tc the spectiral radius of a matrix with negative
off-diagonal elements and zeros on its diagonal iz predicied also by the
Perron-Frobenius theorem. Cur findings are in accordance with this theorem,
but in our case the abasclute value of this eigenvalue is much greater than
the abeolute values of the remaining m -1 eigenvalues in mest cases. Thie
phenomenon demonstratea that between discrete competitive or competitiva/
amensaliatic a}atams and their contipuous counterparts thers is a much
greater difference in stability than between discrets and continuous systems
generated entirely randomly (as by Mckurtrie and May). In such competitive
or competitive/amensalistic discrete systems an incfease of stability
within the interval of higher values of connectance does not oocur because
of the existance of the above mentioned eigenvalue {see Figs. & and 7).
For example, the shape of the curve for discrete model and m = 15 in Fig. 6
is nearly the same as the shape of the curve for discrete model and mw = 10
in Fig. 7, i.8. for smzller number of speciaa, though the walue of & is
smaller, toc. On the countrary, the shapes of the corresponding curves for
continuous models are quite different, easpecially for higher values of
connéctance.

The equilibria of our systems were not checked for positivity. But
following the way of Goh and Jennings (1977} step by step, it may be easily
shown that also the subset of competitive er competitiva/amensalistic

Lotka-Volterra systems, each of which has & feasible eyuilibrium, has the

£
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{80lid curves) and dimcrate {broken curves) general systems (mee (#0114 curves) and disorete (broken curves) general systems (see

T tructi + Eagh i to U and
(1) for construc on) ¢h point corresponds to 0 randomly (5} for construction). Bach point correaponda to 200 randomly

filled matrices. The 1 f hose = 0.5,
* riees value of & was chosen s > filled matrices. The value of s was chosen a = 0.4.

same stabilit ropertiy as a4 set of linear competitive or competitive
¥ property F Lo / competitive connectance can manifest itself.

amensalinstic systems which is asesembled randomly in the game manner.

Moreover, these findings provide a new insight into the results of
: gs p g COFPARISUN Uy THu KNUWN UPABILITY UniToals

stapility unalysie. of 40 real food webs presented recently by Yodzis (1%81).

He concluded that mimulative incresse of the pro ortion of interspecific )
proE ] For randomly generated systems, the following stability eriteria are

competitive interactions "usually exerta a destabilizing influence". Five
kaown:
excertions from this trend (webe nos. 2, 12, 21 14 ang 15 ir hia taolse .
F { v i 1 > 3) l. For general continuous systems there holds the well known May's criterion

‘may result fron the gtabllizing influence of increasing competitive : .
Y ¢ N e Cm52 € 1. ¥ay's simulations indicate that it is a rather conservative eatimate.

sonnectance. Unly the species richness and structure of these five webs . 3 . . -
2. For general discrete syatems, May's oriteriom is ratner optimimtico.

lie within the intervul in which the stabilizing influence of increassing

43 ' JLP




Kindlmann and Rejmdnek (1¢062) have developred another, very conservative
eriterion for discrete general systems: Cm(n - 1)352 < 1.

3. In this paper there were derived rather conservative stapility criteris
for discrete and continuous cozpetitive/umensalistic ayatams (aee also
Rejmdnek, Kindlmann and Lep®, 1%83). Our simulations have exhibited that
the competitive systems are Jess stable than the competitive/umensalistic
ones, but the difference petwesen them is very small, Therefore, the

criteria for competitive,/umensalistic systems may approaimatively be

applied to the competitive systems, too,
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