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Abstract

An introductory review of the Monte Carlo method for the statistical mechanics of condensed
matter systems is given. Basic principles {random number generation, simple sampling versus
importance sampling, Markov chains and master equations, etc.) are explained and some
classical applications (self-avoiding walks, percolation, the Ising model) are sketched. The
finite size scaling analysis of both second and first order phase transitions is described in detail,
and also the study of surface and interfacial phenomena as well as the choice of appropriate
boundary conditions is discussed. Only brief comments are given on topics such as applications
to dynamic phenomena, quantum problems, and recent algorithmic developments (new
sampling schemes based on reweighting techniques, nonlocal updating, parallelization, etc.).

The techniques described are exemplified with many illustrative applications.



1. ntroduction

Monte Carlo methods and Molecular Dynamics methods are the two main approaches of
"computer simulation™ in statistical physics. Such techniques are now recognized as an
important tool in science, complementing both analytical theory and experiment. Since the
problem of statistical thermodynamics, namely explaining the macroscopic properties of matter
resulting from the interplay of a large number of atoms, is very complex, computer simulation
plays a particularly important réle there. Molecular dynamics amounts to numericaily solving
Newton's equations of the interacting many body system, and one can obtain static properties
by taking averages along the resulting deterministic trajectory in phase space. Moente Carlo
methods, on the other hand, aim at a probabilistic description from the outset, relying on the
use of random numbers, and that is responsible for the name of the method. In practice, of
course, these numbers are not truly random but rather are "pseudo-random numbers”, i.e. a
sequence of numbers produced on a computer with a suitable deterministic procedure from a
suitable "seed" (see Sec. 2). In this way one can generate a stochastic trajectory through the
phase space of the model considered and calculate thermal averages if one is interested in
equilibrium statistical mechanics (Sec. 3). But Monte Carlo methods aiso find widespread
applications to problems of statistical physics not related to thermodynamics but which are
defined in terms of other probabilistic concepts. Examples are the generation of random walks
to model diffusion processes, formation of random structures by various types of aggregation
processes, or geometrical "phase transitions” like the percolation problem (the bonds of a
lattice are randomly taken as conducting with probability p and as isolating with probability 1-p
and one asks at which concentration p. of conducting bonds the whole lattice may support an

electric current, Sec. 4.1).

Why does one want to carry out such simulations, what does one leam that one does not learn
otherwise? It turns out that most problems in statistical physics are too complicated to allow
exact solutions and due to the necessity of uncontrolled approximations the accuracy of the
resuits often is very uncertain. Therefore, in many cases also the comparison between theory
and experiment is inconclusive: if discrepancies occur, one does not know whether to attribute
them to inaccuracies of the mathematical treatment of a model, or to a choice of an inadequate
model, or to both sources of error. Conversely, due to the presence of adjustable parameters it
often happens that a wrong theory can be fitted to some (limited!) experimental data; of course

then the adjusted parameters are not very meaningful since they are systematically in error,

As one example out of many, consider interdiffusion in random metallic alloys (Fig. 1) or
polymer mixtures. The theoretical descriptions start from equations relating concentration
currents to chemical potential gradients. Various rather arbitrary assumptions are then made
about the phenomenological "Onsager coefficients” that enter (Brochard et al. 1983, Binder
1983, Kramer et al. 1984). Depending on the exact nature of the assumptions and
approximations, rather contradictory results are obtained: according to the "slow mode theory”
(Brochard et al. 1983) the slowly diffusing species controls interdiffusion, according to the
*fast mode theory" (Kramer et al. 1984) the faster diffusing species dominates this process.
Different researchers claimed evidence for either theory from some experiments (see e.g.
Binder and Sillescu 1989 for a review). However, in this case fits or misfits between theory and
experiment are not so meaningful - clearly the model of Fig. 1 is oversimplified in comparison
with the materials available for the experiments. In contrast, the simulation (Kehr et al. 1989)
can study precisely the same model (Fig. 1) on which the theories are based and can clearly
bring out their strengths and/or weaknesses. All parameters used by the theory (e.g. the
Onsager coefficients) can be independently estimated from the simulation, so there are no

adjustable parameters in this comparison between theory and simulation whatsoever.



Nevertheiess, the reader should be aware of the fact that simulations also have some problems,
one must be aware of both "statistical errors” and "controllable systematic errors™. In principle,
statistical errors can be made as small as desired by increasing the computing time sufficiently.
Tn practice, of course, this is not feasible for all probiems that one would like to study (e.g.
Quantum Monte Carlo methods, cf. See. 5.2, particularly thase models that suffer from the
“minus sign problem"). Another problem is that often it is difficult to estimate statistical errors
reliably, in particular since they are "dynamically correlated” (Sec. 3.4). Many publications
containing Monte Carlo results suffer either from the lack of error estimates or from severe

underestimation of these statistical errors.

By "controllable systematic errors”, we mean (apart from the Jack of perfect randomness of the
pseudo-random numbers, Sec. 2.1) limitations due to the finite size of the simulated system and
the finite "observation time" during which a simulated system can evolve and is analyzed. Often
one deals with a cubic box of size LxLxL containing typically between N = 10* and N = 10¢
degrees of freedom, depending on the complexity of the problem, and using periodic boundary
conditions. The resulting systematic effects due to finite size (instead of the thermodynamic
{imit L. — o and N — o which often is only of interest) need to be carefully considered (Sec.
4). This problem is obvious for critical points of second order phase transitions - a diverging
correlation length of order parameter fluctuations does not fit into a finite simulation box.
However, the *finite size scaling’-theory (Fisher 1971, Barber 1983, Privman 1990, Binder
19872, 1992) developed for this problem has in fact become a powerful tool for the analysis of
critical phenomena with simulations (Sec, 4). But there are many size effects unrelated to
critical phenomena: e.g., path integral Monte Carlo studies of Argon crystals at low

temperatures T do not yield the expected Debye law for the specific heat, C = T° but rather C

vanishes according ta an exponential law, C o exp(-A/T) (Mueser et al. 1995): of course, no

acoustic phonons with wavelengths A > L are present and thus a smail gap A in the phonon

energy spectrum arises.

The notion of "observation time" alluded to above adopts the dynamic interpretation (Muelter-
Krumbhaar and Binder 1973} of the Monte Carlo sampling as a numerical realization of the
assaciate (markovian) master equation (see Secs. 3.4,5). This is the basis both for applications
to study diffusion processes and relaxation phenomena (Sec. 5.1) and for understanding errors
resulting from the finite length of this stochastic Monte Carlo "trajectory” through phase space

along which averages are taken.

2. Random number generation and simple sampling of probability distributions

2.1 "Randomness” and "pseudo-random” number generator

The precise definition of "randomness” (see e.g. Compagner 1991} is outside of scope here.
Truly random numbers are unpredictable in advance and must be produced by an appropriate
physical process such as radicactive decay. Series of such numbers have been documented but

would be very cumbersome to use for Monte Carlo simulations.

Here we are only concerned with pseudo-random numbers which are produced in the
computer by one of several simple algorithms and thus are predictable as their sequence is
exactly reproducible. This reproducibility, of course, is desirable as it allows detailed checks of
the simulation programs. The pseudo-random numbers have statistical properties (nearly
uniform distribution, nearly vanishing correlation coefficients, etc.) that are very similar to the

statistical properties of truly random numbers, and thus a given sequence of pseudo-random



numbers appears "random" for many practical purposes. In the following, the prefix "pseudo”

will be omitted.

What one needs are random numbers that are uniformly disttibuted in the interval [0,1] and
that are uncorrclated. By "uncomrelated” we not only mean vanishing pair cocreiations for
arbitrary distances along the random number sequence but also vanishing triplet and higher-
order correlations. No algorithm exists that satisfies these needs fully, of course, and the extent
to which the remaining correlations lead to erroneous results of simulations has been a
longstanding concern (Knuth 1969, James 1990). Even random number generators that have
passed all standard tests and have been used successfully for years may fail for a new
application, in particular if it involves a new type of Monte Carlo algorithm (see eg.
Ferrenberg et al. 1992 for a recent example). The testing of such generators is a research

subject in itself (see e.g. Marsaglia 1985, Compagner and Hoogland 1987, Compagner 1995).

A limitation due to the finite word length of computers is the finite period: every generator
begins after a long but finite period to produce exactly the same sequence again. For example,
simple generators for 32-bit computers have a maximum period of 2*° (= 10°) numbers only.
This is not enough for recent high-quality applications! Of course, one can get around this
problem (Knuth 1969, James 1990) but at the same time one likes the code representing the
random number generator to be "portable” (i.e. in a high-level programming language like
FORTRAN or C™ be usable for computers from different manufacturers) and efficient (i.e.
extremely fast so it does not unduly slow down the simulation program zs a whole). Inventing
new generators that are a better compromise between these partially conflicting requirements is

still of interest (e.g. Marsaglia et al. 1990).

We now briefly describe a few frequently used generators. Best known is the linear
multiplicative or congruential algorithm (Lehmer 1951) which produces integers X; recursively

using the formula
X; = a¥;, + ¢ (modulo m) (1)

which means that m is added when the result otherwise were negative. For 32-bit computers,
m = 2.1 (the largest integer that can be used for that computer). The integer constants a,c
need to be appropriately chosen (e.g. a = 16807, ¢ = 0), and the starting value X, of the
recursion (the “seed") must be odd. Obviously, the apparent randomness of the X; resulis
because after a few multiplications with a the result would exceed m and hence is truncated,
and so the leading digits of X; are more or less random. Carrying out a floating-point division

with m numbers in the interval [0,1] are produced.

These generators are simple and popular but have significant triplet and higher order
correlations. Using d-tuples of such numbers to represent points on d-dimensional lattices one
finds that the points lie only on certain hyperplanes (Marsaglia 1968). Better random numbers

are obtained, if one uses two different generators simultaneously, where one generator creates

& table of random numbers from which the second one draws numbers at random.
Another popular algorithm is the shift register method (Tausworthe 1965, Kirkpatrick and

Stoll 1981). A table of random numbers is first produced and a new random number is

produced combining two different existing numbers according to

X=X, XOR Xy 2)



where XOR. is the bitwise "exclusive or" operation, and p and q have to be properly chosen.
E.g., the popular "R250" generator (Kirkpatrick and Stoll 1981) uses p = 250, q = 103, it
needs 250 initializing random numbers. "Good" generators based on Eq. (2) have ‘smaller

correlations between the random numbers than those for Eq. (1) and a much longer period.

A third type of generators, the lagged Fibonacci generators, are also recommended in the
literature (Knuth 1979, James 1990) but will not be further discussed here. But we add the
general recommendation that no user of random numbers should rely on their quality blindly

but rather perform his own tests in the context of his application.

2.2 Monte Carlo as a method of numerical integration

Many Monte Carlo computations may be viewed as attempls to estimate the value of a
(multiple) integral. This is particularly true for the applications in equilibrium statistical
thermodynamics, where one wishes to compute the thermal average (A) of an observable A

(X) {where X is a point in the phase space 2} as an integral over phase space,
1r o fo -
(Ahr=7 faxa(X) exp[-x(x)/ k,,'r] . )
a

where Z is the partition function, kg Boltzmann's constant, T temperature, and #X) the

Hamiltonian of the system. To give the flavor of the general idea, we first discuss the one-

dimensional integral

1= [ 'foodx 4

which we first rewrite as

I= III lg(:t:,y)dxdy (5)
g 0
with
0 iff{xky,
g(xy) = {1 i, : ®)

We suppose for simplicity that also 0 < f(x) < 1 for 0 £ x < 1. Then I is simply interpreted as
the fraction of the unit square 0 < x,y < 1 lying underneath the curve y = f{x). Now a straight-
forward (though often not very efficient) Monte Carlo estimation of Eq. (4) is the "hit or miss"
method. We take n points (£, , §,) uniformiy distributed in the unit square, 0 € ¢, < Lo<y <

1, Then I is estimated by

g—_-% g(;ﬁ_;ﬁ)ﬂ*/n . M

n* being the mumber of points for which f{% ) 2 # . Thus, we count the fraction of points that

lie underneath the curve y = f{x).

Of course, such Monte Carlo methods for numerical integration are inferior to many other
techniques of numerical integration, if the integration space is low-dimensional. But the

situation is opposite for high-dimensional integration spaces: e.g., for any method using a



regular grid of points for which the integrand needs to be evaluated, the number of points
sampled along each coordinate is M" in d dimensions which is small for any reasonable sample

size M if d is very large.

In Eqs. (4-7) it was assumed that the integration space is limited to a bounded interval in space
but this is not always true. E.g., the ¢* model of field theory considers a field variable $(X),

where X is drawn from a d-dimensional space and $( %) is a real variable with distribution
1,2 1,4
P(¢)ucexpt~a[—3¢ +;¢]1.a>o.-w<¢<+w. ®)

How can one then carry out muitiple integrals over the space of the ¢'s 7 This problem is

solved observing that for any distribution P(¢) the normalized integrated distribution P{(y)

varies in the unit interval,
Po)= ['P@)db/ [P@)de ©)

¢ < P'(y) < 1. Hence, defining Y = Y(P') as the inverse function of P'(y), we can choose a
random number § uniformly distributed between zero and one to obtain § = Y(7) distributed

according to the chosen distribution P($). Of course, this method works not only for the
example chosen in Eq. (8) but for any distribution of interest. This method applies for all cases

where sampling from a non-uniform distribution is required. Suppase we wish to sample ¢ with

P($) ¢ from the unit interval. Then Py) = [ ” ¢d¢ / jo‘ ¢dé = y¥2, Y(P') = 3P, and thus
Q

11

¢ = ﬁ will have the desired distribution if J is uniformly distributed. Often (e.g. for the

example of Eq. (8)) it will not be possible to obtain Y{P') analytically but then one can

compute numerically a table before the start of the sampling,

As a side remark that will be useful later, we spell out explicitly how a known probability

n
distribution p; that a (discrete) state i occurs with | < i < n, with Z pi = 1, is numerically
iml,

realized using random numbers uniformly distributed in the interval from zero to unity: defining
i
the analogue of an integrated probability P; =Z p;, we choose a state i if the random number
P

7 satisfies Py < § < P;, with Py = 0. In the limit of a large number (M) of trials, the generated

distribution approximates p;, with errors of order I/VM.

Monte Carlo methods in equilibrium statistical mechanics can be viewed as an extension of this

simple concept to the probability that a point X in phase space occurs,
Puq (X) = (VZ) exp[- W X YkaT] . (10)

Of course, the question arises: should one randomly select the points X from the phase space
uniformly ("simple sampling") or must one resort to a non-uniform sampling? In fact, as will be
discussed in Sec. 3, the distribution P., (X ) is extremely sharply peaked, and thus one needs

“importance sampling" methods which generate points X preferably from the “important”

region of space where this narrow peak occurs,



Before we treat this basic problem of statistical thermodynamics in more detail, we briefly
mention the more straight-forward applications of "simple sampling” techniques in statistical
physics. We simply list a few characteristic problems and indicate how random numbers enter
the treatment. A particularly simple application is to generate configurations of randomly
mixed crystals of a given lattice structure, ¢.g. a binary mixture of composition AB, for
which one assumes perfect random mixing. One just has to use random numbers § uniformly
distributed in [0,1] to choose the occupancy of lattice sites (j}: If #; <x, the site is taken by
an A atom, otherwise it is taken by a B atom. Such configurations can now be used as starting
point for a numerical study of the dynamical matrix, if one is interested in the phonon spectrum
of mixed crystals, for instance. Also these configurations can be used to study the site
percolation problem (Stauffer 1985). We shall come back to the statistical properties of
"percolation clusters” (defined in terms of groups of A-atoms such that each A-atom has at

least one nearest neighbor of type A in the cluster) in Sec. 4.1.

If one is interested in the simulation of transport processes such as diffusion, a basic approach
is the generation of simple random walks. Such random walks, resulting from addition of
vectors whose orientation is random, can be generated both on lattices and in the continuum,
and one can either choose a uniform step length of the walk, or choose the step length from a
suitable distribution. Such simulations are desirable if one wishes to consider complicated
geometries or boundary conditions of the medium where the diffusion takes place. Also, it is
straightforward to include competing processes: e.g., in a reactor, diffusion of neutrons in the
moderator competes with foss of neutrons due to nuclear reactions, radiation going to the
outside, etc., or gain of neutrons due .to fission events. Actually, this problem of reactor
criticality (and related problems for nuclear weapons!) was the starting point for the first large-

scale applications of Monte-Carlo methods by Fermi, von Neumann, Ulam and their coworkers

(see Hammersiey and Handscomb 1964 for a more detailed account on the history of Monte

Carlo methods).

2.3 An application examplg: self-avoiding walks

Self-avoiding walks (SAWs) on lattices are widely studied as a simple model for the
configurational statistics of polymer chains in good solvents (Kremer and Binder 1988, Sokal
1995). Suppose one considers a square or simple cubic lattice with coordination number z.
Then, for a random walk (RW) with N steps, we would have Zgw = 2 configurations but many
of these random walks intersect themselves and thus would not be self-avoiding. For SAWSs,

one only expects of the order of Zsaw configurations, where

Zsawxc Nzl , Now . an

Here ¥ > 1 is a characteristic exponent {which is believed to be ¥ = 43/32 in d = 2 dimensions
(Nienhuis 1984), while in d = 3 dimensions it is only known approximately, y = 1.16 {Sokal

1995)}, and z.g (s 2-1) is an "effective” coordination number (also not known exactly). But it
is already obvious that an exact enumeration of ail configurations would be possible for rather
small N only, while most questions of interest refer to the behavior for large N, and though
there do exist sophisticated techniques for the extrapolation of exact enumerations to large N
(e.g. Guttmann 1989 and references therein), the use of these methods is fairly limited, and is
not discussed here further. Here we are only concerned with Monte Carlo techniques to
estimate quantities such as y or z.r or other quantities of interest, such as the end-to-end

distance of the SAW,



(&) = TRE[ - (2)

Here the sum is extended over all configurations of SAWs which we denote formally as points

X in phase space. One expects that

(R gaw e N" N w, (13)

where v is another characteristic exponent {v = 3/4 in d = 2 (Nienhuis 1985), whileind =3 v

is only approximately known, v = 0.588 (Sokal 1995}}.

A Monte Carlo estimation of (R’}s A DOW is based on generating a sample of only M <<

Zsaw configurations X, , i.c.

- LSRR e 2

In the simple sampling generation of SAWs, the M configurations are statistically independent

and hence standard ecror analysis applies. Thus we expect that the relative error behaves as

&7 1 |

(15)
(K;)z M-1 (Rz):.\w

z
The law of large number then implies that R is gaussian distributed around (R’)s aw Witha

variance determined by Eq. (15). One should note, however, that this variance does not
decrease with increasing N. Statistical mechanics tells us that fluctuations decrease with

increasing number N of degrees of freedom; i.e., one equilibrium configuration differs in its
energy E(X) from the average (E) only by an amount of order 1/ VN . This property is called
"self-averaging”. Obviously, such a property is not true for (R, .. This "lack of self-

averaging” (Milchev et al, 1986) is easy to show already for ordinary random walks (Binder

and Heermann 1988).

The simple sampling technique can be generalized from these strictly athermal SAWSs
(alternatively we may think of the excluded velume interaction of an infinitely high repulsive
potential if two different monomers occupy the same site) to thermal problems. Suppose an

attractive energy -& (€ > 0) is won if two monomers occupy nearest neighbor sites on the

lattice. It is then of interest to study the internal energy ()t of the chain as well as the chain

average linear dimensions (such as <ﬁz) ) as a function of the reduced temperature kaT/c.
T

One expects that for N -+ o0 a special temperature T = 0 occurs, the Theta point where the

chain dimensicons scale like ordinary random walks, (Rz> « N (de Gennes 1979, Jannink and
6

des Cloizeaux 1990), while for T < € chains are collapsed ((R:) o N*¥),
T<0

Since a configuration with a nearest-neighbor contacts has a Boltzmann weight factor

proportional to exp(ne/ksT), one needs to keep track of the (unnormalized) distributions that

describe how often a quantity (such as R ) occurs together with having n nearest neighbor



- SAwW
contacts. Specifically, the Monte Carlo sampling attempts to sample py nR)=2Zy
ﬁ)lz:uw , where Zifw is the total number of SAW configurations of N steps with n nearest

- . NRRW
neighbor contacts and an end-to-end vector R. The normalizing factor Zy is the total

numbet of all simple random walks for which immediate reversals are forbidden ("non-reversal

random walk"}. Defining p(n) = {dR px(n, i), the averages of interest are then obtained as
(Rz) = ZRZ exp(ne / kB'I')pN(n,i)I > exp{ne /kgT)pn(n) , (16)

T ok "
(1), =—e> nexp(ne/ kg T)py(n)/ 3 exp(ne / kgT)pn(n} - an

Obviously, if py (n,R ) has been sampled with sufficient accuracy, one can obtain thermal
averages at any desired temperature T, one simulation yields the full range of temperatures.
Also thermal derivatives such as those required for the computation of the specific heat per

monomer

Chs = qua(x)T 1 8(ksT)= %((x’)T - (x);) /(kgT)? (18)

can be carried out analytically. Of course, Eq. (18) is not restricted to this SAW example but

holds generaliy.

Techniques of this type have indeed occasionally been used to study non-trivial scientific

problems like the scaling properties near the Theta point {e.g. Kremer et al. 1982), or the

17

adsorption transition of chains at attractive walls (Eisenriegler et al. 1982). In the lauer

problem, one considers a SAW grafted with one end to an impenetrable planar wall. Whenever
a monomer of the walk falls in this surface plane at 2 = 0, an energy- is gained. If we redefine
n as the number of monomers in the plane z = 0, Eqs. (16)-(18) hold again. Now there occurs
at T = T, an adsorption transition where the shape of the chain changes from a "mushroom”

(for T > T,) to a "pancake" {for T < T.); i.e,, for T > T, the perpendicular component of the

mean square gyration radius (R;) obeys the standard scaling while for T< T, it is finite,

2 v 2 2 -
R ) «N . (R ) =£, <{1-TIT,)", 19
( st T>Ty s TeTy + ( ) (15

where the exponent y characterizing the divergence of the thickness £, of the "pancake” is one
quantity of interest. While such quantities are easily obtainable from various dynamic Monte

Carlo algorithms, simple sampling still is useful for obtaining the exponents characterizing the

number of configurations,
mushroom 1=l N mushroom “SB_I N
Zoaw =N 2,0, T>T, ;Zgaw <N Zg,T=T, . (20}

Fig. 2 shows estimates that have been obtained from corresponding work (Eisenriegler et al.
1982). One analyses there the quantity g(N} = £n [Z(T,NVZ(T,N+2)], since Eq. (20) implics
that for large N g(N) = 2¢n Z.g+ (1 - y1) (2/N) + ..., and hence a plot of g(N) vs. 2/N should
yield a straight line, the slope of which gives ¥,. Note that an increment of 2 from N to N + 2

helps here to avoid even-odd oscillations, that otherwise would oceur at the tetrahedral lattice

used here.



Apart from the problem of the lack of self-averaging mentioned above (the accuracy of the
estimation of R? does not increase with the number of steps of the walk) it is also not easy to
generate a large sample of configurations of SAWs for large N: whenever in the construction
process of a SAW we attempt to choose a lattice site that is already taken, the attempted walk
has to be terminated and the construction has to be started with the first step again. Now the
fraction of walks that will continue successfully for N steps will only be of the order of Zsaw /
(z-1)" o [zex / (z-1)]¥ N™! which decreases to zero exponentially proportional to exp(-Np)
with 1 = In[(z-1)/ z.g ] for large N. This failure of success in generating long SAWs is calied

the "attrition problem”,

The obvious recipe, to select at each step not blindly but only from among the lattice sites that
do not violate the SAW restriction, does not give equal statistical weight for each
configuration generated, of course, and so the average would not be the averaging that one
needs in Eq. (12). One finds that this method would create a "bias" toward more compact
configurations of the walk. But one can calculate the weights of configurations w(X) that
result in this so-called "inversely restricted sampling* (Rosenbluth and Rosenbluth 1955) and in

this way correct for the bias and estimate the SAW averages as

F={%[w(i,)]'l}-lé[w()‘c,)]'l[i(i,)]’ a

However, error analysis of this biased sampling is rather delicate because the reweighted

distribution is not symmetric around the most probable value and mean values may differ

appreciably from corresponding most probable values (Kremer and Binder 1988, Batoulis and

Kremer 1989).

A popular alternative to overcome the above attrition problem is the "enrichment technique”,
founded on the principle "Hold fast to that which is good". Namely, whenever a walk attains 2
length that is a multiple of s steps without intersecting itself, n independent aitempts to
continue it (rather than a single attempt) are made. The numbers n,s are fixed and if we choose
n = exp(us), the numbers of walks of various lengths generated will be approximately equal.
Enrichment has the advantage over inversely restricted sampling that all walks of a given
length have equal weights, while the weights in Eq. (21) vary over many orders of magnitude
for large N. But the disadvantage is, on the other hand, that the linear dimensions of the walks
are highly correlated, since some of them have many steps in commonl Nevertheless, these
techniques still have useful applications ; a variant of enrichment has been implemented to
simulate configurations of star polymers with f arms (each arm grows by one step, n = exp(u)
is chosen {Ohno and Binder 1991)); and the Rosenbluth-Rosenbluth method is the starting
point of the configurational bias Monte Carlo (CBMC) algorithm that is very successful in the

generation of configurations for dense polymer systems (Frenkel 15993).

Due to the problems mentioned above, simple sampling and its extensions are useful only for a
small fraction of problems in polymer science (Binder 1995) and now importance sampling
(Sec. 3) is much more used. But we emphasize that related problems are encountered for the
sampling of "random surfaces” (this problem arises in the field theory of quantum gravity), in

path-integral Monte Carlo treatments of quantum problems and in several other contexts.
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3. Importance sampling and the Metropolis method
3.1 Importance sampling in the canonical ensemble

In the canonical ensemble we wish to compute averages {A)r of observables A( X ) as defined
in Eq. (3), restricting attention to classical statistical mechanics for the moment. For this
problem, the simple sampling technique as described in the previous section typically does not
work: the probability distribution Eq. (10) has a very sharp peak in phase space in a region
where all extensive variables A(f() are close to their average values (A). E.g., we consider the
distribution of the energy E per particle, p(E} which is obtained by integrating out all other

variables in our system containing N particles

p(E) = %J’ axs[x(X) - NE] exp[-%(X)/ kB'I‘]' . (22)
Noting
(1), = NTEp(E)dE , (x’)T =N" [E'p(E)dE (23)

and invoking the general fluctuation relation for the specific heat C per particle, Eq. (18), we
conclude that p(E) must have a peak of height proportional to N and width proportional to
1/4/N near E = ()wN. In fact, away from phase transitions p(E) is actually Gaussian (Landau

and Lifshitz 1958)

P(E) o exp{-[E-(Xn/NJ* N/2CksT?)} (24)

Now it is clear that with a simple sampling procedure only very rarely can we expect to
generate a phase space point X with encrgy E in the region of this sharp peak. This problem is
very serious because it applies simultaneously to several variables, Consider for instance an

Ising model of a ferromagnet,

Yuimg=-T1Y.8;8,~HY S;, §; =%l , 25)
@ ;

where Ising spins sit on sites i of a regular lattice, <ij> is a summation over nearest neighbor
pairs, J the exchange constant, H the magnetic field, and the phase space for this problem X is
the set of all possible spin orientations {S, = %1, S; = +1, ..., Sy = £1}. A quantity of interest

A{X) then is the magnetization per spin,

m=(/N) ¥, (26)

Again we conclude that the distribution p(m) will be very sharply peaked around the average
value <m>y (for temperatures T less than the critical temperature T, there occur in fact two
peaks at +my, according to the two possible signs of the spontaneous magnetization m,). Fig.
3 illustrates that indeed very sharply peaked distributions are obtained for rather small systems.
Suppose now we would do simple sampling for the Ising model, i.e. we choose the spin
orientations completely at random: the resulting distribution of m is a gaussian centered at zero
of width I/¥N , P*(m) ec exp? (-m™N/2) {S3 stands for "simple sampling"}. Obviously, this
distribution would have hardly any overlap with the actual distribution P(m) at thermal

equilibrium, cf. Fig. 3. The same is true for P(E) {note that for Eq. (25) P* (B) also is a



gaussian centered at zero}. Thus, by simple sampling most of the computational effort would

be wasted for exploring a completely uninteresting part of the phase space.

Therefore, a method is needed that leads us automatically in the important region of phase
space, sampling points preferentially from the region which yields the peak of distributions
such as P(m), P(E), etc. Such a method actually exists, the importance sampling scheme of

Metropolis et al. [3] chooses the states X, with a probability P(X, ) that is proportional to
the Boltzmann factor, P..,()-{\. ), Eq. (10). Thus the average over the sample of M phase space

points { X, }

'ﬁt(i—) _ § exp[—x()-(t) / kBT]A()?,) / P()'.(,) -

i exp[—?t(i(,)l kBT]I P()-.(,)

=]

reduces to a simple arithmetic average,
! e (s
AX)==Ya(X) . (28)
M tml

Unlike simple sampling {P(X) = const in Eq. (27)} all members of the considered sample
contribute with equal weight to the average which clearly is desirable. The problem is, of
course, to find a procedure which practically realizes this so-called “importance sampling”
{where one chooses the phase space points not at all completely at random but samples them
preferentiafly from this region of phase space which is most important for the average, with the

given choice of external parameters that define the chosen statistical ensemble, suchas Tand H

for the canonical ensemble of an Ising magnet). This problem was solved by Metropolis et al.

(1953) who proposed to generate a sequence of states Xe 5 X > Xuz >
recursively one from the other, with a carefully designed transition probability w(X, >
X »1). From the theory of Markov processes, one can show that the Markov chain of states

X, for M o o generates a sample { X, } that is distributed according to the cancnical

distribution, Eq. (10).

The "move® X - X' may be chosen as is convenient for the considered model: for the Ising
magnet, this may be a single spin flip, an exchange of two neighboring spins, or the overturning
of a large cluster of spins (Swendsen et al, 1992); for a fluid, the move may be a random
displacement of a particle from its old position (T;} to a new position (%) in its environment
(Metropolis et al. 1953, Wood 1968, Allen and Tildesley 1987); for a self-avoiding walk, the
move may be a "kink-jump” or "crankshaft" rotation of a group of two or three neighboring
bonds (Verdier and Stockmayer 1962, Kremer and Binder 1988), a “slithering-snake"-
displacement of a bond from one chain end to the other in a randomly chosen direction {Wall
and Mandel 1975), or a "pivot move" where one rotates one part of the chain at a randomly
chosen bead against the rest of the chain in a randomly chosen direction (Madras and Sokal

1588, Sokal 1995). These moves are illustrated in Fig. 4.

It must be emphasized, however, that in some cases it is very difficult to find acceptable
moves. E.g., for polymers due to the connectivity of the chains many algorithms suffer from a
lack of ergodicity. E.g., for SAWSs there may occur certain configurations that may neither be
relaxed nor be reached by a particular algorithm (Sokal 1995). In fact, both algorithms of Fig.
4a,b suffer somewhat from this problem, although it is believed that this problem is not so

serious in practice (Kremer and Binder 1988). Ancther problem may be a very low acceptance



probabifity of a2 move. E.g., in a dense system containing many polymeric chains the “pivot
moves" (Fig. 4c) almost always will violate the exclude volume constraint that no lattice site
can be occupied by more than one bead, and hence the moves are disallowed. For off-lattice
problems, it often is a non-trivial matter to carry out moves such that in the absence of the
Boltzmann weight phase space is uniformly sampled {as it should be, cf Eq. (3)}. Thus,
designing more efficient "moves" still is an active area of research (Binder 1992b, 1995),

particularly for SAWSs (Sokal 1995).

Now convergence of this Markov process towards thermal equilibrium is ensured by imposing

the condition of detailed balance,
Po(X)W(X X' ) =P (X YW(X' » X). (29)

A convenient choice (Metropolis et al. 1953) that satisfies Eq. (29) is expressed in terms of the

energy change 8X = X ( X Y- %(X) caused by the move

-1
WX X)=1" Beo (30)
o exp(-8%/kpT) , 5¥>0.

Here arbitrarily a time constant 1, was introduced setting a time scale, so that W acquires the
meaning of a transition probability per upit time (which is useful in the context of the dynamic
interpretation of Monte Carlo averaging, to be discussed in Subsec. 3.4). One chooses one
Monte Carlo step (MCS) per particle as the unit of this Monte Carlo "time". Obviously, Eq.

(29) is satisfied by the choice Eq. (30) irrespective of 1,

25

Here we shall not give a general proof that Eq. (29} suffices that states X, are asymptotically
(i.e., for large M} chosen with the comect Boltzmann weight (see e.g. Wood 1968, Kalos and
Whitlock 1986) but we simply follow Metropolis et al. {(1953) in quoting a plausibility

argument to show this, Let us consider a large number of Markov chains in parallel. We

assume that at & given step of the process there are N, systems in state 7, N, systems in state s,

etc.; and that X(X,)<x (X.). Using random numbers, one may construct moves X, — X,,
as will be discussed below. Disregarding the energy change 3¥, the transition probability for
these moves should be symmetric, i.e. Wapo (X, = X,) = Wypmo (5'(.7 - X,). With these "a
prioni transition probabilities” (also called "proposition probabilities") Wy, it is easy to

construct transition probabilities which are in.accord with Egs. (29), (30), namely

WX, - X.) = Wapo (X, = X.) exp{-{ H(X.) - ¥(X )JkaT}, (31a)

W(X, > X)=Wepmo (X, > X )= Wi (Xr > X)) . (31b)
The total number N, of transitions from X to X « at this step of the Markov chains is

New = NW(X, > X.) = N W (X = X)) exp{-I0(X ) - (X )aT),  (32)
while the total number of inverse transitions is

N = NW(X, = X) =N, Wi (X, = X)) (33)

Now the net number of transitions AN,.,, becomes

26



exp —H()"(,)/kBT N,

ANr—Ol = Nr—u - N.—u = N.- w“-o (X, - X.) exp[—x()_(r)l kBT] — Fl,-

(G4

Eq. (34) is the key result of this argument which shows that the Markov process has the
desired property that states occur with probability proportional to the canonic probability Pe
(X) as given in Eq, (10). As long as N/N, is smaller than the ratio of the canonic probabilities
we have AN, > 0, i.e. the ratio N/N, increases towards the ratio of canonic probabilities;
conversely, if NJ/N, is larger than the “canonic ratio”, AN,,, < 0 and hence again N/N;
decreases towards the correct canonic ratio. Thus asymptotically for { — « a steady-state
distribution is reached, where N,/N, has precisely the value required by the canonic distribution,
Instead of considering many Markov chains in parallel, we may equivalently cut one very long
Markov chain into equally long pieces and apply the same argument to the subsequent pieces

of the chain.

3.2 Some comments on models and algorithmg

We return to the question what is meant in practice by the transition from X to X'. It has
already been emphasized above that there is a considerable freedom in the choice of this move

but one has to be careful to ensure large enough acceptance rates. Since Eq. (29) implies that
WX = XWW(X' = X) = exp(- 5¥/ksT), 5% being the energy ;::hange caused by the move
from X — X', typically it is necessary to consider small changes of the X only. Qtherwise
the absolute value of the energy change |5X] would be rather large, and then either WX -

X ) or W()‘(' — X)) would be very small. Then it would be aimost always forbidden to carry

T

out that move and the procedure would be poorly convergent. Of course, there are exceptions
to this rule, like the cluster algorithms for Ising models and other spin medels at the critical
point (Swendsen et al. 1992), or the semi-grand canonical algorithm for binary (AB)
symmetrical polymer mixtures (Sariban and Binder 1987) where one takes out a whole
polymer chain containing N monomers of one type, and replaces it by a polymer chain in the
same configuration but of different type. Ali such exceptions are rather special and require
special reasons to work: e.g., in this polymer example the temperatures of interest are very

large, of order ksT o< €N, where € is the interaction energy between a pair of monomers, and

although [5X| is of order N [8%/kpT] is still of order unity!

We now consider a few examples of models that can be studied easily with Monte Carlo

methods, and of the corresponding moves that are used, so the reader can get a flavor of how

one proceeds in practice. In the lattice gas model at constant particle number, a transition X

- X may consist of moving one particle to 4 randomly chosen neighboring site. In the lattice
gas at constant chemical potential, one removes (or adds) just one particle at a time which is
isomorphic to single flips in the Ising model of anisotropic magnets. Fig. 5 now illustrates some
of the moves commonly used for a variety of models under study in statistical mechanics. For
the Ising model the most commonly used algorithms are the single spin-flip algorithm and the
spin-exchange algorithm (Fig. 5a,b). The single spin-flip algorithm obviously does not leave the
total magnetization of the system invarant, while the spin-exchange algorithm does. Thus,
these algorithms correspond to realizations of different thermo-dynamic ensembles: () realizes
a "grand-canonical" ensemble, temperature T and field H being the independently given
thermodynamic variables, conjugate thermodynamic quantities (the magnetization <m>; is

conjugate to H) need to be calculated. Fig. 5b realizes a "canonical" ensemble, T and m being

R



the independently given variables, now the field <H>r is the conjugate variable we may wish to

calculate from the simuiation,

In calling the (T,H) ensemble “grand-canonical” and the (T,m) ensemble “canonical”, we apply
a language appropriate to the lattice gas interpretation of the Ising model where the spin §; is
reinterpreted as a local density p; = (1-8/2 (= (0,1)). Then <m>r is related to the average
density <pi>r as <m>1 = | - 2 <p;>y, and H is related to the chemical potential of the particles

which may occupy the lattice sites.

In the thermodynamic limit N — o, different ensembles in statistical mechanics vield equivalent
results. Thus, the choice of the ensemble and hence the associate algorithm may seem a matter
of convenience. However, finite-size effects are quite different in the various ensembles, and
also "rates" at which equilibrium is approached in a simulation will differ. Thus, the choice of
the appropriate ensemble is a delicate n_mtte;. Using the word “rate”, we have in mind the
dynamic interpretation (Miiller-Krumbhaar and Binder 1973) of the Monte Carlo process: then
case a) realizes the Glauber (1963) kinetic Ising model which is a purely relaxational model
without any conservation laws, while Fig. 5b realizes the Kawasaki (1972) kinetic Ising model

which conserves magnetization.

For madels with continuous degrees of freedom, such as XY or Heisenberg magnets

xm=-:z(si"sj*+si¥sj1')-ﬂxzsi", (si")z+(si3')2=1 , (35)
(.3) i

Mo =-13(5:-§))-H, 35, §i-§i=(si")’+(si*)’+(s,.')’=1 . (36)
i i

but also for models of fluids (Fig. 5 ¢,d), it often is advisable to choose the new degree(s) of
freedom of a particle not completely at random but rather in an interval around their previous
values. This interval can then be adjusted such that the average acceptance rate for the trial

moves considered in Fig. 5 does not get too small.

It may also be inconvenient (or even impossible) to sample the full phase space for a single
degree of freedom unifermly. For example, we cannot sample ¢; in Fig. 5(e) uniformly from the

interval [- co, + oa]. Such a problem arises for the so-called &* model,

! 1 1 1
xu";('z‘é\‘i’;z +;B¢i‘)+(i‘zj)3(:(¢ii-—-¢j) ,—o<h, <40, (7

A.B,C being constants (for A < 0,B > 0 the single site potential V($;) = -;—Ad:i’ +ZIB¢,-' has

the double-minimum shape of Fig. 5(e)). There it is advisable to choose the $i's already from an
importance sampling scheme, ie. one constructs an algorithm which generates the ¢;

proportional to the distribution p(:) = exp[-V($:;ksT], as discussed in Eqgs. (8),(9).

Another arbitrariness concerns the crc_ier- in which the particles are selected for considering a
move. ORten one chooses to select them in the order of their labels (in the simulation of a fluid
or lattice gas at constant particle number) or go through the lattice in a regular typewriter-type
fashion {in the case of spin models, for instance). For lattice systems, it may be convenient to
use sublattices, E.g. in the "checkerboard algorithm" the white and black sublattices are
updated alternatively, for the sake of an efficient "vectorization" of the program (see e.g.
Landau 1992). An alternative is to choose the lattice sites (or particle numbers) randomly; this

is more time-consuming but is preferable if one is interested in dynamical properties (we again



anticipate here that the Monte Carlo process can be interpreted as a dynamical evolution of a

model described by a master equation, see Sec. 3.4).

It is also helpful to realize that often the transition probability W{X —X") can be written as a
product of an “attempt frequency” times an "acceptance frequency”. By clever choice of the
attempt frequency, it is sometimes possible to attempt large moves and still have a high

acceptance and thus make the computations more efficient.

We also emphasize that the detailed balance principle (Eq. (29)} does not fix the choice of the
transition probability W(i(—>5‘(‘) uniquely. An alternative to Eq. (30) is the "heat bath
method”. There one assigns the new value a: of the i'th local degree of freedom in the move

from X to X' irrespective of what the old value o; was. One therefore considers the local
! . -
energy X (ot;) and chooses the state cr.: with  probability exp[-x,{u:)/kgT]/

> exp[—Jt i(a?) / kBT] . We now outline the realization of the sequence of states X with
i
]

chosen transition probability W. At each step of the procedure, one performs a trial move o —

cr.:, computes W(X —» X") for this trial move, and compares it with a random number 7,
uniformly distributed in the interval 0 < < 1. If W <, the trial move is rejected, and the old
state (with ¢;) is counted once more in the average, Eq. (28). Then another trial is made. If W
> 1, on the other hand, the trial move is accepted, and the new configuration thus generated is

taken into account in the average. This new state then also serves as a starting point for the

next step.

Since subsequent states ¥ . in this Markov chain differ by the coordinate a; of one panticle
only (if they differ at all), they are highly correlated. Therefore, it is not straightforward to
estimate the error of the average, Eq. (28). Let us assume for the moment that, after n steps,

these correlations have died out. Then we may estimate the statistical error 8A of the estimate

A from the standard formula,

(5A)* = -—'-uhﬁ_l[A()'c )- Kr k>> 1 (38)
k-1 S 1V ’

where the integers L, 1, k are defined by k = (M-Ma)/n, p1o labels the state v = M+ 1,

1 = o + 1 the state v = Mg+ n + 1, etc. Then for consistency A should be calculated as
A== 3 AR) . (39)

In Eqs. (38),(39) we have anticipated that one has to omit the first Mo states that are not yet

characteristic for thermal equilibrium, from the average. If the computational effort of carrying

out the "measurement” of A(XF

) in the simulation is rather small, it is advantageous to keep
taking measurements every Monte Carlo step per degree of freedom but to construct block
averages over 1 succesive measurements, varying n until uncorrelated block averages are

obtained.



3.3 An application example: The Ising model

Suppose we wish to simulate the nearest neighbor Ising ferromagnet on a LxLxL simple cubic
lattice measuring lengths in units of the lattice spacing so N = L*, and using periodic boundary
conditions and the single spin flip algorithm. We first specify an initial spin configuration, e.g.
all spins are initially pointing up. Now one repeats again and again the following steps:
1. Select one iattice site i at which the S; is considered for flipping (S; — - S).
2. Compute the energy change 8% associated with that flip.
3. Calculate the transition probability ToW for that flip.
4. Draw a random number 1 uniformly distributed between zero and unity.
5. If i < oW flip the spin, otherwise do not flip it. In any case, the configuration of the
spins obtained in this way at the end of step (5) is counted as a "new configuration”,
6. Analyze the resulting configuration as desired, store its properties to calculate the
necessary averages. For example, if we arc just interested in the (unnormalized)
magnetization My, and its distribution P(M, ), we may update M, by replacing Mia,
by My + 25;, and then replacing P(Mu } by P(Miy ) +1 (appropriate initial values
before the process starts are set to My, = L?, P(M') = 0, P(M’) being an array where

M’ can take integer values from - L? to + L?).

It should be clear from the above list that it is fairly straightforward to generalize this kind of
algorithm {see e.g. Binder and Heermann (1988} for an explicit listing of a corresponding
FORTRAN program} to systems other than Ising models, such as considered in Fig. 5. The
words "spin” and "flip (ping)" simply have to be replaced by the appropriate words for that
system. We also note that one can save computer time by storing at the beginning of the

calculation the small number of different values {W,} that the transition probability W for spin

k]

flips may have, rather than evaluating the exponential function again and again. This "table

method" works for all problems with discrete degrees of freedom, not only for the Ising model.

At very low temperatures in the Ising model, nearly every attempt to flip a spin is bound to fail.
One can construct a more complicated but quicker algorithm by keeping track of the number
of spins with a given transition probability Wy at each instant of the simulation. Choosing now
a spin from the k'th class with a probability proportional to Wy, one can make every attempted
spin flip successful (Bortz et al. 1575). An extension of this algorithm to the spin-exchange
model has also been given (Sadiq 1984). A systematic generalization of such techniques due to
Novotny (1995) yields huge speed-ups in the study of metastable states and their decay at low

temperatures.

When we now use a simulation program for the Ising model that records the distribution
function of the total magnetization P(M. ) or the related distribution P¢(s) of a normalized
quantity 8 = My /L* (d being the dimensionality of the system) we will find that it is a non-
trivial matter to judge where (in the absence of symmetry-breaking magnetic fields) the
expected transition from a paramagnetic state (with (s} = 0) to a ferromagnetic state takes
place (where a spontaneous magnetization £ My exists). In fact, one finds that P'L(s) changes
very gradually from a symmetric single peak distribution above T. to a symmetric double peak
distribution below T,, and the symmetry Pi(s) = P(-s) implies that {s) = O at all temperatures
(Fig. 6). For T > T, and linear dimensions L exceeding the correlation length § of order

parameter fluctuations (£ o |T-T, [ ), this distribution resembles a gaussian,

Pi(s) =LY (2nkeT x™H"7? exp[-s’LY(2keT ), T> T, H=0. (40)

34



The “susceptibility” ™ defined in Eq. (40) from the half-width of the distribution should

smoothly tend towards the susceptibility x of the infinite system as L — = (remember y o [T-

L
TJ"). For T < T, but again L >> §, the distribution is peaked at values is&,m), near = m,,; near

those peaks again a description in terms of Gaussians applies approximately,

1 1
ha 1 (s—s&i) L’ 1 (s+ s(,::x) L _
Pu) = T i e A ool @)
(annTx( )) 2k, Tx 2k, T

forT<T.,H=0.

We thus can obtain an estimate for the order parameter when we restrict attention to only the

positive part of the distribution,

(= } sP,(s)ds/ }Ph(s)ds ={d), - (32)

But from Eqs. (40),(42) it is clear that for finite L (s])y is non-zero also in the disordered
phase and thus the smooth non-singular temperature variation of {Js|. results that is shown

quaitatively in Fig. 6. Other estimates for Mypou can be extracted from the position of the
. {L) - 1y 12 .
maximum s, or the root mean square magnetization (s ) , but Fig. 7 clearly shows that
L

all these estimates do depend on the length scale L, and thus an extrapolation to the

thermodynamic limit, L — o, clearly is required:

L2
Mapont = i!'_‘:‘l S(r:a)x = l’_."l(ld)L. = ll.i—l;r:n(sz)l, ' @)

All these extrapolations are more convenient to use than the double limiting procedure that is
often used in analytical work where a symmetry-breaking field is taken to zero after the

thermodynamic limit has been taken,

Mipon = fim (s} 11, (44)

Fig. 7 illustrates the fact that one can avoid the cumbersome study of many different sizes of
(small) systems by rather analyzing subsystems of one large system. As we will see below,
doing this with the single-spin-flip-algorithm described above is not really convenient because
of "critical slowing down" but this problem can be eased by using cluster algorithms instead
(Sec. 7). In any case, near T, the size effects are clearly very pronounced and thus the naive
extrapolation as shown in Fig. 7 is not very accurate. This problem is even more severe for the
susceptibility , which could be extracted from the following extrapolations {As is the half-

width of a gaussian peak)
ke Ty = lim[(s’> Ld) = im P{O)L /(2m) = lim(A)’L' 7{802) , T>T.  (45)
Lo L L= L Le=ya ! ¢

or

= (), - (DL = (s )L 60 = (a9 (02) T < T 00

A more efficient way of carrying out this extrapolation to the thermodynamic limit will be

provided by the finite size scaling theory (Sec. 4).



5.4 The dynamic interpretation of Monte Carlo sampling. statistical errors; time-displaced

correlation functions

Configurations generated sequentially one from the other in the Markov chain are highly
correlated with each other. Clearly, these correlations strongly affect the accuracy that can be
obtained with a given number of total steps by the Monte Carlo program. These correlations
can be understood by a dynamic interpretation of the Monte Carlo process in terms of a master
equation describing a well defined dynamic model with stochastic kinetics (Miiller-Krumbhaar
and Binder 1973). At the same lime, this forms the basis for the application of Monte Carlo
methods to the simulation of dynamic processes (Binder and Kalos 1979, Kehr and Binder
1984, Binder and Young 1986, Herrmann 1986, Baumgértner 1985, Binder 1995). These
dynamic applications include such diverse fields as the Brownian motion of macromolecules
(Baumgiirtner 1985, Binder 1995), relaxation phenomena in spin glasses (Binder and Young
1986), nucleation and spinodal decomposition (Binder and Kalos 1979, Gunton et al. 1983),
diffusion-limited aggregation (DLA) and related growth phenomena (Herrmann 1986),
diffusion in alloys (Kehr and Binder 1984) and at surfaces (Sadiq and Binder 1983), etc. Note

that the references just quoted actually constitute only a small sample of all existing work!

In this dynamic interpretation, we just associate a "time" t with the scale v of the subsequent

. -, . -
configurations, normalizing the time scale such that Nt, single-particle transitions are
attempted in unit time. This "time" unit is calted 1 MCS (Monte Carlo step per particle). We
consider the probability P(X t) = P(X.) that at time t a configuration X occurs in the Monte

Carlo process. This probability satisfies a Markovian master equation

dp(X.1)
dt

= -; W(X - Xp(X.1)+ %‘w()'c-) X)p(X:,1) @7

Eq. (47} describes the balance that was considered already above {Egs. (31)-(34)} by a rate
equation, the first sum on the right-hand side representing all processes where one moves away
from the considered state X (and hence its probability decreases) while the second sum
contains all reverse processes (which hence lead to an increase of the probability of finding
X). In thermal equilibrium the detailed balance principle {Eq. (29)} ensures that these two
surns always cancel and hence for P(i A= P,q()-{) we have dP(X ,t)/df =0, as is required. In

fact, P, ( X) is the steady-state solution of the above master equation.

If the potential energy X(X) is finite for all configurations { X } of the system, it follows from
the finiteness of the system that it is ergodic. However, as soon as infinite potentials occur
(such as the excluded-volume interaction for self-avoiding walks), this is no longer true. Even
in finite systems certain configurations X may be in disjunct “pockets” of phase space that are
mutually inaccessible. There is no general rule under which conditions this happens, it depends
on the detailed rules for the considered moves. E.g. for the algorithms of Fig. 4a,b one may
construct configurations of SAWs that can neither be reached nor left (Sokal 1995), and so the
algorithms of Figs. 4a,b are manifestly non-ergod'ic - although this does not seem to affect the

accuracy in practice much (Sariban and Binder 1988).

A practically more important apparent "breaking of ergodicity" occurs for systems which are
ergodic if the "time" over which one averages is not long enough, i.e. less than the so-called
*ergodic time" T, (Palmer 1982, Binder and Young 1986). This ergodicity-breaking is

intimately related to spontaneous symmetry-breaking associated with phase transitions in the



system. In a strict sense, these phase transitions can occur only in the thermodynamic limit N
— o, and also 1, diverges only for N — o but can nevertheless be very large already for finite
N. E.g. for the Ising ferromagnet studied in Sec. 3.3 we have for T < Te Ts &« Pr{Smu)/Prls =
0) o« exp[2fx L*Y/kgT), where fiu is the interfacial tension between coexisting phases of

opposite magnetization, as shall be discussed below. Thus In T, o« N" i.e. 1, increases rapidly

with N for T < T.. Nevertheless, we assume in the following that .Iim P(f(,t) = Pq(i ), i.e. the
—>ag

ergodicity property can be realized in practice.

In Eq. (47) we have written dp(X ,1)/dt rather than AP( X ,t)/At, although there is a discrete
time increment At = to/N. This step is justified since one can consider At as a continuous
variable stochastically fluctuating with distribution (N/to) exp[-AtN/To] which has a mean value
At = ty/N. Since the time scale on which dynamic correlations decay is at least of the order of
15, these fluctuations of the “time” variable proceeding in regular steps At = /N are not
important for the calculation of time-displaced correlation functions. The inhomogeneous
updating of "time", however, is crucial when one uses the “n-fold way" (Bortz et al. 1975) or
related algorithms, where particles are chosen for a move proportional to their transition

probability Wy.

Thus we reinterpret Eq. (39) s a time average along the stochastic trajectory in phase space,

controlied by the master equation for the system, Eq. (47):

A=(tw — g ) TA(t)dt (48)
Mg

where tu (tMo) is the time elapsed after M(Mo) configurations have been generated (tu =
Mty/N, ty, =M w/N. The time t is related to the label v of the configurations as t = vT/N,

Comparing the time average, Eq. (48), with the ensemble average, Eq. (3) which was the
starting point of our considerations, it is obvious that ergodicity may be a problem for

importance sampling Monte Carlo, as anticipated above.

Time-displaced correlations (A()B(0)}r or A{t)B{0) are then defined as

AMBO) =t —t=tuy) [ MAGHIBIOY L -ty (50)

tMu

Of course, one wants that ty can be chosen large encugh so the system has already relaxed
towards equilibrium during the time ty,, and then the states X (t) included in the sampling
from t),, to ty are already distributed according to the equilibrium distribution, P(X )=

P,.,()-(), independent of time. But it is also interesting to study the initial non-equilibrium

relaxation process by which equilibrium is approached. Then A(t) -A depends systematically

on the observation time t, and an ensemble average (A(t)}r - (A(=))r is non-zero {remember

that .‘l.".: A = (A = (Aoo))r if the system is ergodic}. We have defined (A{t))r as

(AQ), = % (X, t)A(X)= § PZ0A(X() - (s1)

Here we have reinterpreted the ensemble average involved as an average weighted with

P(X,0) over an ensemble of initial states X (= 0) which then evolves as described by the

an



master equation, Eq. (47). In practice, Eq. (51} is realized by averaging over fns >> 1

statistically independent runs,

(AL = noe DALY (52)

=l

A(t,h) being the observable A recorded at time t in the I-th run of this non-equilibrium Monte
Carlo averaging. E.g., these runs may differ in their random number sequence and/or their

initial condition X (t =0), etc.

A discussion of the question to which type of problems such master equation descriptions
{Eq.s (47)-(52)} are applicable will be deferred to Sec. 5. Here we are rather interested in
applying this formalism to a discussion of statistical errors. Suppose n successive observations
A, 1= 1,..,n, of a quantity A have been recorded (n>> 1). We consider the expectation value

of the square of the statistical error

(BAY) = [{;Z(A,. - (A))} =

=l n p=l

((an - ta)’)

+2 Z Z ((AnAn)-(a)) 63

now=l py=p el

Changing the summation index iz to yz + p yields

p=l

(BAY) = %|:(A2)— (A)? +22“:(1-%)[(A°AH)_(A)’):| , (54)
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Now we transform to the time variable t = &tp, 8t being the time interval between two

successive observations A,, A,« {often it is more efficient to take 8t = 19 or even 10 o rather
than 5t = At = 14/N, so one need not take observations at every microstep of the procedure}.

Transforming the sum to an integral yields (t, = n &t)

5 1 2 2, t
((6AY) = ;{(A )- (A += { [1 -:J[(A(O)A(o)) -{Ay]a=
1 F] 2 2 a t
= .;(<A )-(A) ){l+aj;[l—-t—n-)¢A(t)dt} . (55)
In the last step we have introduced the normalizéd relaxation function

a (1) = [(A(DIAD) - (AYVKAY - (A, (56)

with ${0) = 1 and Halt — ) = 0. We define a relaxation time from the integral
W= foa (d 57
a

For t, >> 14 Eq. (55) reduces to

(BAY) = §[<A=> - (AY] (1 + 2eB0) (58)
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If 3t >> 1,, then the second parenthesis in Eq. (58) is unity to a very good approximation, the
statistical error then is the same as for simple sampling of uncorrelated data. In the inverse case

where 5t << 1, we have

2t,

t,

{(BAY) =~ %%‘:—[(A’) -{Ay]= Kan -, (59)

which shows that the statistical error then is independent of the choice of the time interval 5t:
although for a given averaging time t, 2 smaller 5t increases the number of observations, it

does not decrease the statistical error: only the ratio between the relaxation time ta and the

observation time t, matters.

Since 7. becomes very large near second order phase transitions ("critical slowing down",
Hohenberg and Halperin 1977), choice of algorithms that reduce T, becomes very important,
see Sec. 5.3. On the other hand, careful "measurements” of bath {(BAY) and {A3) - (A)* allow

via Eq. (58) a straightforward estimation of ta (Kikuchi and Ito 1993),

We conclude this subsection by defining a non-linear relaxation function

¢ (1) = KA - (ADTILA©))r - (Ao} (60)

and the corresponding non-linear relaxation time
() _ e (n)
1 =["0x (e (61)
o
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The condition that the system is well equilibrated then simply becomes

(=)

tag >>Ta . (62)

Eq. (62) must hold for all quantitics A, and hence one must focus on the slowest relaxing

quantity (for which t&u) is largest) to estimate ty, reliably. Near second-order phase

transitions, the slowest relaxing quantity usually is the order parameter of the transition and ot
the internal energy. Hence the "rule" published in some Monte Carlo work that the
equilibration of the system is established by monitoring the time evolution of the internal

energy is a procedure that is clearly not valid in general.

3.5 Other ensembles of statistical physics

So far the discussion has been mostly restricted to the canonical ensemble: i.e., for an Ising
magnet, the number of lattice sites (spins) N, the temperature T and the external magnetic field
H are the given (independent } thermodynamic variables. Of course, it is possible to also carry
out simulations in other ensembles, e.g. one may choose an ensemble where the variable
thermodynamically conjugate to H, namely the magnetization m, is given (and fixed). In fact,

the spin-exchange algorithm of Fig. 5b realizes that ensemble.
In such a simulation using the (NmT) ensemble the magnetic field H then is a nontrivial

quantity which one may wish to calculate. This is not so straightforward as the caleylation of m

in the (NHT) ensemble {Eq. (26)), because unlike the latter variable H (or other intensive
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thermodynamic variables, for other ensembles) cannot be directly expressed as function of the

microscopic degrees of freedom.

For systems with discrete degrees of freedom, such as the Ising mode}, this problem can be
handled by the concept of “local states” (Alexandrowicz 1975, 1976, Meirovitch and
Alexandrowicz 1977). We use here the "lattice gas model” language of the Ising problem, ie.
lattice sites i are occupied {local density pi={1-8)/2=1,i.e Si=-1} orempty {p;i =0, S =
+ 1}; constant magnetization corresponds then to constant density {or particle number 7 ,
respectively) in the lattice gas, and H translates into the chemical potential p of the particles
(note that the NmT ensemble of the Ising magnet corresponds to the canonical 1 VT ensemble
of the lattice gas, while the NHT ensemble of the magnet corresponds to the grand-canonical u
VT ensemble). Assuming a nearest neighbor energy -¢ is won if two neighboring sites of a
square lattice are occupied, the interaction energy of an atom can take the five values Eq = 0,
-¢, -2¢, -3¢ and -4¢, respectively. We define a set of five conjugate states o' by removing the

central atom of each state a, with E_. = 0. If the frequencies of occurrence of the local states

o and o' are denoted as v, and v,., the condition of detailed balance {Eq. (29)} requires that

va/ Vg = expl(- Ea+ 1)/kaT], ﬁ= £n (Va/ Ve ) + Ea/kaT . (63)
B

To smooth out fluctuations it is advisable to average p over all (five) focal states. This

technique has been used to study problems such as the excess chemical potential in a system

whete a droplet coexists with surrounding vapor (Furukawa and Binder 1982), for instance.
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For off-lattice systems the standard method to sample the chemical potential is the “test
particle insertion method" (Widom 1963): one tries to insert a particie at a randomly chosen

position, calculates the change in energy AE, due to this test particle, and estimates y from

(1 - poVksT = - ¢n (exp(-AE, )/ kpT), (64)

Here |, is the chemical potential of an ideal gas of %t particles at temperature T in the same
volume V. Applications of Eq. (64) are ubiquitous (Allen and Tildesley 1987, 1993, Allen
1996}, Particular problems arise, of course, when either the system is very dense or the particle
to be inserted is a complex object (e.g. a macromolecule}: then AE, is very large and the
sampling of exp(- AE, /kaT) will not work out in practice. E.g., for the bond fluctuation model
(Carmesin and Kremer 1988) of flexible polymers a chain is represented by effective monomers
connected by effective bonds on a lattice, assuming that each "monomer” blocks all 8 sites of
an elementary cube for further occupation, For this excluded volume interaction, AE, = o as
soon as a monomer of the test chain overlaps with just one occupied site only. Therefore, the
probability that one can insert a long chain into a dense system without overlap is extremely
small - e.g., Miiller and Paul (1994) estimate that for chain length N = 80 and volume fraction
& = 0.5 of occupied sites this insertion probability is as small as 10™! Various specialized
techniques have been devised to overcome this problem: stepwise growth of macromolecules
(Kumar 1994), configurational bias Monte Carlo (Frenkel 1993), thermodynamic integration
(Miiller and Paul 1994), "multicanonical” sampling (Wilding and Miller 1994), and sampling in

an ensernble with fluctuating chain lengths (Escobedo and de Pablo 1995).
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For simulations of fluids in the IVT ensemble there is another intensive variable of interest,
namely the pressure p. In systems with additive pairwise potentials (7 ) it is usually calculated

from the Virial theorem (Hill 1956, Wood 1968)
pV/MkaT = 1 - 14(6keT) [ (1) [do(r)/dr) dnridr (65)
[1]

where g(r) is the radial density pair distribution function,

Eqgs. (64),(65) are very useful since combining them with thermodynamic relations for the

entropy S such as
TS=pV+E-Nlu (66)

one can obtain all thermodynamic potentials of interest. Alternative methods for obtaining free
energy F = E - TS or entropy S rely on "umbrella sampling” (Valleau and Torrie 1977) or

thermodynamic integration methods, e.g. the relation for the specific heat Cy

(8S8/0Twq =CWT (67)

is integrated as

T
F=E-T [[Cy(T)/ ThT . (68)
1]

We emphasize that this thermodynamic integration technique is very general, it applies to both

lattice and continuum models, and is particularly convenient in conjunction with histogram

reweighting techniques (Swendsen et al. 1992). Of course, any other derivatives of
thermodynamical potentials can also be exploited: e.g. for Ising magnets the relation for the

magnetization m {Eq. (26)}

m=-@FoH)y , F(LH)=FTH)- [ mdH (69)

Hy

is particularly convenient (Binder 1981b). The key point of ail these techniques {Eqs.
(68),(69}} is that thermodynamic potentials such as F are completely specified by the
independent thermodynamic variables describing the considered state, but do not depend on
the particular path on which one may think the system was brought from a "reference state"
(for which F and § are known) to the desired state. Consequently, one can choose the most

convenient path for the problem under consideration.

For off-lattice fluids, of course, it is very natural to consider simulations not only in the
canonical ensemble ('VT) considered above, or in the grand-canonical ensemble (1VT), where
moves need to be considered where particles are added or removed from the system, {see e.g.
Levesque et al. 1984 for a discussion} but also in the constant pressure ensemble (IpT) where
the volume V is a dynamical variable to be included in the state variable X in the average, Eq.

(28). This is recognized from noting that (Wood 1968)

TdVexp[—pV/ keT]Z,(V, T)A fdvj daX exp{—{pV +Hy ()‘()]/ k BT}A

B = f“’ AV expl-pV /o TIZA(V.T) [~ av] Xexp|{pV+14(¥) kT

(70)



where ):( is the state vector in the phase space of the canonic ensemble. Since Eq. (70) is

formally analogous to the canonical average, Eq. (3), it is clear that one can straightforwardly
generalize the Monte Carlo sampling, taking >'{=(v,}'<) and modifying Eqs. (29),(30) as

follows

W( X :’)

—————= =exp{ - [pbV + 5¥]/ksT} (71}
WX > X) P
One must take into account, of course, that the different ensembles of statistical mechanics

yield equivalent results in the thermodynamic limit only, while finite size effects are different
(L5l 1956).

For simulations of solids, the anisotropy of the crystal structure may require to consider boxes
with different linear dimensions Ly, Ly, L, in different coordinate axis directions. Then it is also
natural not to consider only uniform volume changes 8V, but rather separate changes 8L, 8Ly
and 5L, , and remember that p as used above really is nothing but the trace of the pressure

tensor I, In this context, we note that the virial relation, Eq. (65) generalizes as follows

Tlup V/MksT = 8ep = GRI:BT (). T , a2)
inj 8

where q:(?ij) is the total potential acting between particles at points T;,T;. Following

corresponding molecular dynamics methods (Parrinello and Rahman 1980} where both size and

shape of the box are dynamical variables also analogous Monte Carlo methods have been

developed (Najafabadi and Yip 1983, Ray 1993). For more details on Monte Cario methods

for off-lattice systems in various ensembles see also Frenkel and Smit (1996).

While for fluids the microcanonical (NVE) ensemble is realized, of course, if one applies
standard Molecular Dynamics techniques (Ciccotti and Hoover 1986, Sprik 1996), the
realization and application of the microcanonical ensemble for lattice systems such as Ising or
Potts models (Potts 1952, Wu 1982) has given rise to a longstanding discussion (Creutz 1983,
Bharnot et al, 1984, Harris 1985, Desai et al. 1988, Litz et al. 1991, Hiiller 1992, 1994, Gerling
and Hiller 1993, Ray 199}, Hammrich 1993, Promberger and Hiiller 1995, Lee 1995, Gross et
al. 1996). Some researchers maintain that this ensemble has practical advantages particularly
for the study of first order phase transitions (Huller 1992, 1994, Gross et al. 1996), even in
comparison with the popular *multicanonical” method (Berg and Neuhaus 1992, Berg 1992),

see Sec, 5.3.

At this point we mention that it is sometimes convenient to define artificial "ensembles" that
are not found in the standard text books of statistical mechanics, but can also be translated into
an importance sampling Monte Carlo method: the *gaussian ensemble of Challa and
Hetherington (1988) in a sense “interpolates” between the canonical and microcanonical
ensemble; and particularly important is the “Gibbs ensemble® (Panagiotopoulos 1987, 1992,
1994, Smit 1993, Allen 1996) for the study of gas-liquid coexistence. There one considers two
systems at the same temperature with particle numbers T, , %z, and volumes Vi, Vi such that
V), + Vi = Viu = const, ) + Y = const, but allows exchange of both particles and volume
between the two boxes. E.g. by a choice of initial condition, one can ensure (at temperatures
sufficiently below the critical point) that one system equilibrates at the density of the gas and

the other at the liquid density. The chemical potential adjusts itself to its value at the
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COEXiSIENCE CUMVe [coe, automatically (in the limit Vix — ). This method outside of the critical
region works rather well already for rather small sizes of the total volume V., , and hence has
found widespread practical application (Allen 1996, Frenkel and Smit 1996). However, once
more we add the warning that finite size effects differ in different ensembles and need careful

consideration, see €.g. Mon and Binder (1992), Recht and Panagiotopoulos (1993), and Bruce

(1996).
4. Finite size effects

Simulations deal with a much smalier number of degrees of freedom (typically the particle
number 1 is in the range 10? < 7t < 10%) than typical experiments (1 = 10%). Finite size effects
thus can be a serious limitation, particularly near phase transitions where such effects are large.
On the other hand, unlike experiment one can easily vary the system linear dimension over a
wide range as a control parameter (avoiding unwanted surface effects by periodic boundary
conditions), and apply the corresponding finite size scaling theory (Fisher 1971, Barber 1983,
Binder 1987z, 1952a, Privman 1990, Dinweg 1996) as a powerful tool of analysis for the

simulation data. In this spirit, this section will provide a brief introduction to the main ideas of

the subject.

4.1 The percolation transition and the geometrical interpretation of finite size scaling

Consider an infinite lattice (d-dimensional cubic lattice of volume L' | lattice spacing being
unity, for L — ) where each site is randomly occupied (with probability p) or empty
(probability I - p), and define "clusters" of neighboring occupied sites (Stauffer and Aharony

1992). There exists a critical value p, such that for p < p. there exist only clusters of finite

"size" £ (= pumber of sites belonging to the cluster, £ = 1,2,3,...) on the lattice, while forp 2 pe

an infinite cluster has formed that spans from one boundary of the lattice to the opposite one.
The probability that an occupied site is part of the percolating cluster is called the percolation

probability Pao(p), while a percolation susceptibility x(p) is defined in terms of the

concentrations n,{p) of clusters containing ¢ occupied sites,

W)=Y eadolp (73)

=]

Here the prime means that the largest cluster (for p > p. this is the percolating infinite cluster)

is omitted from the summation. Both y(p) and the percolation order parameter Po(p) exhibit

. A at
critical singularities as [p - pJ = 0, with critical exponents §,, v, and amplitudes B, [,

Pup)= B,(p/p. =) .p>pe . (74)
while per definition Po{p) =0 for p < p., and

Er(1-p/pc )™ L pep,s

x(p)={f',’(m.-l)"' . PP >

In a finite lattice, %(p) cannot diverge but reaches a maximum of finite height only: Eq. (73}
then is a finite sum over clusters of finite "mass" £, infinitely large clusters would not fit on a

finite lattice. Similarly, the percolation probability P.(p) does not vanish at any p > 0, but must

attain small non-zero values as soon as p > 0: percolation only requires a string of L occupied

sites running through the system, which occurs with probability p-=exp(Linp) » Oasp - 0.



Thus in a finite lattice the singularities described by Eqgs. (74),(75) are smoothed out: this

rounding of the transition is qualitatively obvious geometrically.

For a quantitative description of this finite size rounding, we need the detailed properties of the

percolation clusters near p. (Stauffer 1979). Calling £ the "mass" of a cluster, the mass

distribution n,{p) satisfies a scaling property for L —» 0 ,

1{p) =& R {& (1-plps)} ,p—=pe, £ >0 (76)

T () being a scaling function, and the exponents 7,0 are related to B, , ¥, ,

=2+ +Bp) , o=, t+B) . n

The large clusters near p, actually are "fractals” (Mandelbrot 1982, Feder 1988), i.e. their mass
£ and radius r, are not related via space dimensionality d but via a smaller "fractal

dimensionality" dy,

E=f ', {o® , p=p.. (78)

Noting that in a finite subsystem of linear dimension L, a percolating cluster has r, = L,, we find

{

L)
. (ps) that such a cluster occurs that spans

a relation between dr and T, since the probability P,

the subsystem is of order unity,
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P‘(L')(pc)zL‘: In,(pc)d!zL‘:'ﬁ(O) [ ¢t dt e (79)
re=ly {Lyr?)ir

In a finite subsystem, percolation can occur via any cluster of linear dimension r, =L, or larger,
but these possibilities are mutually exclusive in this subsystem, and thus their probabilities

simply add up. For large ¢, Z can be replaced by Jd¢, and using Eq. (76) we arrive at Eq.
¢

(79), which yields further

Lt demdiia- 1y =d- By, (80)

Since the first equation of Eq. (80) must hold for any L,, the second equation follows, using

also Eq. (77) and the "hyperscaling relation” (Fisher 1974)
dvp =y, +2f, . (&1

In Egs. {80),(81), v, is the critical exponent of the correlation length £, which describes the

decay of the pair connectedness function,
£, xlp-p|7F . (82)
The number of sites £ in a cluster that spans the distance L, is simply {Eqgs. (78),(30)}

. d-B,iv,
e =L /8)" L, " (83)
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Since the subsystem contains L, sites, the fraction of its sites belonging to such a spanning

cluster are of the order of
- ~Pp/v
P(p) =Lt <" 9
In Eq. (84), we have omitted the index s (for "subsystem") from L,, since the result applies to a

finite system with periodic boundary conditions as well. Relations such as Eq. {78) hold in

finite systems essentially also, as long as r, < L: the finite size yields a cutoff to the distribution

n/p) at the value £, o L corresponding to r, = L.

This argument also yields the rounding of the divergence of the percolation susceptibility, Eq.

{75) since the sum in Eq. (73) must be cut off at £,, see Binder (1972),

() & 2
% @)=/ ) (85)
L=l
and using Eq. (76) for p = p, yields, with the help of Eqs. (83),(77)

A L A LT AR S (6)
9

Note that the selfconsistency of this scaling description of percolation critical phenomena and
the scaling of the mass distribution czn also be checked defining &, from the average cluster

radius,

g 52 r,e n,(p)/}: s n,(p) - 87}

=l

Using Eqgs. (76).(78) and transforming sums to integrals one readily finds Eq. (82), if Eq. (81)

holds.

To obtain the finite size behavior of x™(p) for p # p. but near p,, we use again Eqs. (76),(85)

o (Up I [!c(lwp/pc)}dl
1]
(88)
[(ui)(l-pfp,= X ]df
w(l-p/p.)™" I xzqﬁ(xu)dx,
°

where integration variables where transformed from £ to x = #(1-p/p)"®

. From Eq. {88) we see
that x™)(p) depends on L only in the scaled combination L{1-p/p,)" oL/, this is the

principle of finite size scaling that one must compare lengths, "L scales with £,". Thus Eq. (88)

can be rewritten as
xME)= (1-p/p.) P FL-p/p) " =L T R(LIE,) (89)

Tp/¥ . . .
? e % (; const), the constant being a (nonuniversal) metric

where the scaling function ?(,):
factor. The scaling functions F,% obviously describe a smooth interpolation between the

power laws Egs. (75),(86). Of course, the explicit expression resulting from Eq. (88} for f(;,)



is approximate only, since the sharp cutoff of the integrat at r, = L is an approximation. Thus

the treatment given here is only a justification for the general structure of Eq. (89). A similar

result holds for the percolation probability and for the spanning probability

PLL)(P)_—‘L-DPNPF(LI&P) y Lowp—p, (50)
P (p)=Bi(L/2,) . Lowpop. | o1

By writing the appropriate limits we have emphasized here that finite size scaling holds only
asymptotically for p close to p. and large L, while for p not so close to p. (and L not so large)
corrections to scaling come into play (their origin is best understood in terms of
renormalizaticn group arguments, see e.g. Domb and Green (1976)). In the finite size scaling
(L
s

limit, we see that P ) (p = p.) should take a L-independent universal value, Fg(0). This

~(L
property is useful for locating p. from simulation data - a plot of Pi )(p) vs. p for different L
should yield a family of curves that intersect in a unique point, the abscissa of this point is p. .

This intersection method indeed works well in practice (Kirkpatrick 1979), and also the finite

size scaling relations Egs. (89)-(91) have readily been verified for the percolation problem

(Heermann and Stauffer 1980},

4.2 Broken symmetry and finite size effects at critical points

We now discuss thermally driven phase transitions where the state of the system changes from
the disordered phase at high temperatures to a spontaneously ordered state at a temperature T

below the ¢ntical temperature T, of a second-order transition, using the Ising ferromagnet as a

<7

prototype example. The low temperature phase is a state with nonzero spontaneous

magnetization £ My for zero applied field H = 0 (cf. Figs. 6,7).

As described already in Sec. 3.2, there is always a nonzero probability in 2 finite system to

“move" from the state near +Mgoy to the state with -Myge. Or vice versa, and thus <m> = 0 for

H = 0. The standard recipe {also useful for vector order parameters, as they occur for XY or
Heisenberg models, Eqs. (35),(36)} is to record the root mean square order parameter (Binder
1972}

u2

mm,(T)=\/Zm’_)T= {isim}z =—$[}E(sisj)1_}m (92)

T il
Now the correlation function (T =T, — T is the distance between sites ij)
G(r,1) = <857 (93)
satisfies a power law decay for T = T, (Fisher 1974)
GrT)=Gr** row (94)
with n the corresponding exponent and G the critical amplitude, We can approximately

evaluate Eq. (92) for T = T., using Eqgs. (93),(94) and replacing the sum ¥, by an integral over

distances from 0 to L/2 (N = L%, to obtain
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(88}, [ e aro(e 1) LT (95)

jul I

and hence (Miiller-Krumbhaar and Binder 1972)
VRN Y.
mf,',',)’ (Tc)oc(Lz ¢ “] «LM (96)

using scaling relations (Fisher 1974) 2 - n = y/v, d = (28 + y)v. Also the fluctuation refation

for the susceptibility {cf. Eq. (45)} yields (remember H = 0}

l - v
keT2(T) = - 2(8:8;); R S °7)
ij ¢

using again Eq. (95). Egs. (96),(97) are exactly analogous to the results Eqs. (84),(86) for the

percolation problem.

Of course, the analogy between the finite size results for the Ising model and for random
percolation is no surprise at all; the mapping proved by Fortuin and Kasteleyn (1972) between
bond percolation and the limit ¢ — 1 of the g-state Potts model (Potts 1953, Wu 1982)
provides a description of the thermal order-disorder transition of the Ising model {and related
spin models) as a percolation of “"physical clusters” (Coniglio and Klein 1980, Hu 1984,
Swendsen and Wang 1987). Any state of the Ising lattice can be described in terms of
"geometrical clusters” of, say, "down spins" in a surrounding background of "up spins” (Fisher
1967, Binder 1976). However, throughout the paramagnetic phase we encounter a percolation

transition of these "geometrical clusters" when we vary the magnetic field H from strongly

n

positive to negative values. Rather one has to distinguish between "active” and “inactive”

bonds in a geometrical cluster. The probability p for a bond to be active is
p=1-exp(-2JkaT) , ' (98)

and only spins connected by "active bonds™ form a "physical cluster” (Coniglic and Klein
1980}. This rule can be proven (Fortuin and Kasteleyn 1972) by deriving a percolation
representation of the Potts mode] partition function Zpau, J, being the interaction constant of

the Potts Hamiltonian (note that ¥p.a, reduces to Xuing for g = 2, choosing J, = 21}

Yewu= =1, D 8oy »  Gi=12,.4, (99)
)

Zrou= T exp(~Xpua 1 kaT) = Tp (1= p) g™ | (100)

where N, is the number of bonds, N,, is the number of missing bonds, and N, is the number of

clusters in a given bond configuration. The sum in Eq. (100) is over all bond configurations.

For expressing the variables of interest, we now need two "cluster coordinates” (Binder 1976),
the cluster magnetization my = & £ (the sign gives the orientation of the spins inside the cluster,

which we label as cl), and the number of active bonds in the cluster, which we denote as ug p.
Denoting the number of clusters per lattice sites with these properties as p(ma, ua),

magnetization and energy per spin at H = 0 are written, for a lattice of coordination number z,

m= Z mclp(mcl) » P(md) = Zp(mclﬁucl) (101)

mel Vel
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E = {Wping J/N = —%J{Z S ugp(mg.ug)- 1} =_§J(p(N.,)/N- 1) , {102)

fg)  Mct

remembering that N, is the total number of (active) bonds in a configuration. Also the thermal

averages of fluctuations can be expressed in terms of suitable properties of the clusters; e.g,,

the specific heat per lattice site becomes

C = gE/8T = []/(NkBT’)]((xlznins) - (x“iﬂ‘)z) -

o | e

2Nk T?pY) {(N:) (N -(1- p)(N,,)} (103)

Splitting off from P(ma) the contribution of the largest cluster in the system, which we denote

w
as my,

P(my) = p'(my) + -15-5 - s (104)

Me|.me]

the absolute value of the magnetization is (D'Onoric De Meo et al. 1990)

el

('ITI[) = n;E; +Zmelp'(mcl)‘ (105)

While the susceptibility for T > T, is just the analog of the percolation susceptibility, Eq. (73),

KeTy = kaT (G<m>/dt)rso = T myP(my) =300, (106)
2

me|

Fd]

since P(me) + P(-ma) = n,, for T < T, one must single out the contribution from the largest

cluster (that becomes the percolating cluster for N — ) to obtain (D'Onorio De Meo et al.

1990)

kpTy' = N(<m? > - <|m|>7) = ; ‘*n, +N(<P_’,)-(1mt)’) -

~ zt: t'n, +N((P:)-(P.)’) (107)

The simple physical interpretation of Eq. (107) is, of course, that below T. the response

. , Lo . "
function picks up contributions both from all finite clusters (the term 3 ¢'n, , only
£

considered in the percolation problem) and from the fluctuations in size of the largest
(percolating) cluster. It turns out that estimating 3, %' from these relations in terms of clusters
is advantageous in comparison with the fluctuaton relations expressing them by magnetization
fluctuations, since Eqs. (106),{107) exploit the fact that there are no correlations between
different clusters: thus the statistical noise is less, the right hand side of Eqs. (106),(107) are
"improved estimators”. Similar "improved estimators" can be introduced for other quantities as
well, e.g. the pair correlation function (Wolff 1989a, Janke 1994), wavevector-dependent
susceptibility, and fourth-order cumulant (Baker and Kawashima 1995, 1996}, Since Monte
Carlo "cluster algorithms" (Swendsen and Wang '1987, Swendsen et al. 1992, Wolff 1988a,b,
1989a-c, 1992, Edwards and Sokal 1989, Hu and Mak 1989, Wang et al. 1989, Kandel et al.
1990, Hasenbusch and Meyer 1991) are attractive because they reduce “critical slowing down"
(Li and Sokal 1989, 1991, Wang 1991, Heermann and Burkitt 1990, Tamayo et al. 1990,
Wolff 1992), one can apply Eqs. (101)-(107) at no extra computational cost. Fig. 8 shows an

example for the d = 2 Ising square lattice. It is clearly seen that for finite systems the
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percolation probability P, =< >IN is always smaller than {|m), as expected from Eq.

(105), although in the limit N — o both quantities converge to the spontaneous magnetization.

Note that even for N ~» oo the term N((P:)—-(P,,)z) must not be neglected in kgTy' in

comparison to z 'lzn, for T < T., although it is negligible for T > T. {one can show that
4

N'((P:) - (P_,)z) L™ log?L for L —» oo and T > T, see Margolina and Heermann 1984},

While in the percolation probiem one hence can use the same expression, Eq. (73), to obtain
the percolation susceptibility for p < p. and for p > p., this is not true for the phase transition

of the Ising model, Eqs. (106} and (107) differ from each other significantly.

This difference, of course, is intimately linked to the occurrence of spontaneous symmetry
breaking in the Ising model, already alluded to in Fig. 6 and Eqs. (45), (46). As iliustrated in
Fig. 9, the fluctuation relation for the susceptibility kaTy = L (¢m?) - {m)?) = L?! {m?) (for zero
field H = 0) smoothly converges to the correct answer for T > T, but for T < T, it converges
to keTy = L¢ {m|}* as L — oo, measuring the fluctuations between the two phases with
opposite magnetization, rather than the fluctuations in & pure phase. On the other hand, kaTY'
as defined by Eq. (107) for T > T. does not converge to the right answer either: as one can
easily work out from a gaussian distribution (Binder and Heermann 1988), y' = x(l - 2/x) for L
—» o, Thus ' diverges with the same critical exponent as %, does, but the prefactor (the critical

amplitude) is reduced by a factor 1 - 2/x.

The fact that the spontaneous symmetry breaking in phase transitions requires the use of
different fluctuation formulas on both sides of the transition is sometimes ignored in the
literature, which hence leads to confusion: for a finite system in zero field, {m)* and hence
L({m?) - {m)?) is not a useful quantity, if a single spin flip algorithm is used. For T << T,, the
cbservation time t., of the simulation will be much smaller than the "ergodic time” t. needed
to move from one peak of PL(m) in the lower part of Fig. 6 to the other one, and hence {m)* =~
{Jm|)?, and then LY{m®» - (m)?) will coincide with keTx! For T 2 Te, tew will exceed T, by
orders of magnitude, and then (m)* = 0, i.e. one obtains ka Ty, (Fig. 9). However, in the region
where o, and T, are of the same order of magnitude, the magnetization .will jump between the
two peaks of Pr(m) only very few times, and then one obtains rather erratic results of L'({m?) -

{m)?), since {m) is not well-defined here.

From the percolation interpretation of the transition, it is clear that finite size scaling
expressions analogous 1o Eqs. (89)-(91) hold for {|m|),x, %' and a further useful quantity, the
normalized fourth-order cumulant Uy (Binder 198 1a) of the distribution Pr(m),

UL =1-{m*(3m»?) . (108)

In terms of e = T/T.-1 we have, with ﬁ.ﬁ.i’.ii".i’.ﬂ.ﬁ being suitable scaling functions

(Imy = L™ §1 (L) = L™ M (eL™) (109)
kT =L™ § (L&) =L™ ¥ (L") . (110)
keTy' = L™ &' (L&) = L™ ' L), ‘ (i

U= O@e)=T L™ . (112)
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Fig. 10 shows an example where the scaling of kgTy' {Eq. (111)} is tested. It must be

emphasized that all these scaling relations are only supposed to hold in the limits L — o, £ —
0 (keeping €L or L/E fixed). While it is gratifying to note that in the example shown in Fig,
10 rather small L (such as L = 20 in d = 2) already satisfy this finite size scaling hypothesis, one
cannot imply that this "data collapsing" on the scaling function will work for rather small L in
general {in fact, when one has crossover from one universality class to another; e.g. from the
Ising class to mean field behavior (Mon and Binder 1993, Deutsch and Binder 1993a, Binder et
al. 1996, Luijten et al. 1996) finite size scaling only works for L >> £, with Eqpu 2 length
characterizing this crossover (Binder and Deutsch 1992)}. For small L one thus rmust expect
corrections to finite size scaling. Thus methods where one ignores such carrections and tries 1o
estimate both T, and the exponents 1/v, y/v (and/or p/v) from a simultaneous fit to a scaling
function {"data collapsing", see e.g. Binder (1974), Landau (1976 a,b) and Binder and Landau
(1980) for some well-known examples}, may suffer from systematic errors. This criticism also
applies to recent claims (Kim 1993, Brown and Cittan 1996} that high precision can be gained
by extrapolation from small lattices, as pointed out by Patrasciou and Seiler (1994} and Holm

and Janke (1996).

In an attempt to estimate T. unbiased from estimates of critical exponents, Binder (1981a)
suggested to plot Uy vs. T for various choices of L, since in the limit where finite size scaling
holds these curves should intersect in a common intersection point {J(0) at T., and moreover
0(0) is universal (though dependent on the type of boundary conditions). In fact, other
dimensionless moments of the order parameter distribution may be used in the same way, e.g.
{m? / (Jmf)* (Deutsch and Binder 1992). Fig. 11 presents a typical example of the accuracy
that is reached by such techniques, namely about 0.3% even for rather complicated models

such as polymer mixtures. Of course, a close inspection of Fig. 11 shows that the three curves
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do not intersect precisely in a point, buth there rather is a small temperature interval over

which these intersections are spread out. To some extent this spread is due to statistical errors,

to some extent to corrections to scaling.

If T, is known the exponent B/v can be estimated from a log-log plot of {{m|) vs. L at T,, using

Eq. (109). The exponent y/v can be estimated both from log-log plots of ks Ty or kT’ vs. L

at T,, or alternatively from a log-log plot of the maximum value kng;m vs. L (this has the
advantage that a possible inaccuracy of T. does not matter). From Eq. (111) we realize that the
location of this maximum can be used to estimate the exponent 1/v, since the maximum occurs
at some fixed value x,, = e, L of the scaling function {&n & Tw/T. - 1, Tu(L) being the

temperature of the maximum}

TaLY Te-1=x, LY L e, (113)

Alternatively, one can use the slope of U - 6(0) o gL for small eL'"™ {Eq. (112)}. In
addition, one can use the position of the maximum of the slope of UL vs. T, the specific heat
maximum, the maximum of the temperature derivative of {|m]} or {m? etc. (Ferrenberg and
Landau 1991). One can also use such quantities to try to obtain both 1/v and T, from a

simultaneous fit.

In principle, for obtaining very precise estimates the effect of correction terms must be

considered. E.g., at T, we expect instead of Eq. (97)
keTox(Te) =L™ X (0) (1 + ™ L™+ ..))

. (114)
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%" being another amplitude factor and Xeer the leading correction exponent. Such a correction
shows up as a mild curvature on the log-log plot, and is hence easily missed. In order to take
this correction into account, it is advisable to consider pairs of sizes (L,bL) for scale factors b

> 1, and study the ratio (Binder 1981a)

LTV L]y T )
tnb v b

(115)
Thus the recipe is to plot the left hand side of Eq, (115} vs. (£nb)™: for each choice of L one
should obtain a curve which all extrapolate linearly to the same value (y/v) as {£nb)* — 0. This
method was tried with some success also for non-trivial cases such as two-dimensional lsing
antiferromagnets with competing next nearest neighbor interactions {Landau and Binder 1983),
which belong to the universality class of the XY-model with cubic anisotropy and have non-

universal exponents (Krinsky and Mukamel 1977).

Comparing Egs. {109),(110) and using the fact that <mz) <L we immediately see that
Te

the fluctuation relation kaTy, = L* (m?) yields the hyperscaling relation (Fisher 1974), y/v =d -
2f/v: finite size scaling as written in Egs. (109)-(112) implies hyperscaling (Binder 1981a,
Brézin 1982). However, there occur indeed situations where hyperscaling does not hold, and
then a generalization of finite size scaling is necessary. A well-known example are systems at
dimensionalities d above the marginal dimension d* above which mean field theory of critical
behavior starts to become valid (Fisher 1974). For Ising systems (as well as for the n-vector
model) d* = 4, and clearly the meanfield exponents (aF = 1, vir = 12, Pur = 1/2) do not

satisfy hyperscaling for d > 4. In the general case {including anisotropic system shapes (Binder

and Wang 1989), free surfaces, etc.} several characteristic lengths come into play, and the
behavior can be very complicated (Brézin and Zinn-Justin 1985). However, for systems with a
L? geometry and fully periodic boundary conditions a simple modified form of finite size
scaling holds (Binder et al. 1985), the correlation length & being replaced by a "thermodynamic

length" &7 (Binder 1985) defined by

£ = keTy' m e (1 - /T = (1 - TIT)? (116)

where in the last step mean field exponents were used. Eq. (116} can be motivated by noting
that for T < T, and large L the order parameter distribution pi{m) can be approximated as a

sum of two gaussians centered at the spontaneous magnetization (cf. Fig. 6), for H=0,

2.4 1.4
-lm-m L -{m+m L
(m~ Mapen) {m+ M)
m)ecex +ex 117
po(m) o exp 2, Tx P kg Ty (1172)
and the arguments of the exponentials can be scaled as follows
1.4 2 4 2
(m:l:m,m,) L =(mfm,w,,:tl) L =(m/m,|m11) [_L_)d )
' Fl :
2kgTy 2 Ko TX' My 2 i

While some consequences of this mean field finite size scaling initially seemed to be in
disagreement with simulations on five-dimensional Ising madels (Binder 1985, Rickwardt et al.
1994), recently the source of the difficulty has been traced down as corrections to scaling

(Mon 1996, Luijten 1996, Parisi and Ruiz-Lorenzo 1996).
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Another violation of hyperscaling is believed to occur in random field [sing models {RFIM}
(for reviews, see e.g. Imry 1984, Nattermann and Villain 1988, Rieger 1995) and random field
Potts models {RFPM} (Eichhorn and Binder 1995, 1996). If these systems have a second
order transition from the ferromagnetic to the paramagnetic state at all, the exponents are

believed to satisfy a modified hyperscaling law {e.g. Schwartz 1991)
y+2B=(d-8)v, B=2-q (118)

In spite of Eq. (118) the standard finite size scaling relations Eqs. (109)-(111) still hold,

notwithstanding the fact that then Ld(mz) e
Tc

: in this case {m)? is non-zero, due to

the excess of random field of one panticular sign in any finite sample, and one must distinguish

between the "conmnected" susceptibility {kgTy = LY([{m® - (m}=]).,Tc§ L™} and the
]

"disconnected susceptibility” 34, & L* [(m)?Ly , [..]ov meaning a "quenched average” (Binder

and Young ]9é6) over the random field configurations, While )-cdi. (T=T.) acLi“and ¥
satisfies hyperscaling (¥ + 2B = dv}, in the connected susceptibility a smaller exponent (y =
¥ /2) results, because the two leading terms cancel each other, and only a subleading correction
remains. This is only possible because in the scaling limit of the distribution PL(m) the position
of the peaks scale with a less negative exponent (- 3/v) than the width ((y/v -d)/2). Since for L
-» oo at T; PL(m) becomes a sum of delta functions, the cumulant intersection method is less
useful: U {Eq. (108)} tends to 2/3 at T, as in the low temperature phase, and there is no well
defined intersection point (Eichhorn and Binder 1996). In contrast, for other random systems
such as spin glasses (Binder and Young 1986) or Potts glasses (Binder and Reger 1992) the
cumulant intersection method has been the most useful method to check for the existence of

static phase transitions in thermal equilibium (Young 1996), since the lack of cumulant

intersections can be taken as evidence that the system is at or below its lower critical dimension

for a spin glass transition.

Non-trivial extensions of finite size scaling are necessary to deal with tricritical phenomena

(Wilding and Nielaba 1996) and anisotropic critical phenomena, where the correlation length

diverges with a (larger) exponent vy in a distinct direction {il «|l-T/T,|™ } than in the

perpendicular direction (s) {5 L& =TIT|™ v, < J } The latter case occurs at uni-axial

Lifshitz points as they occur for the anisotropic next nearest neighbor Ising (ANNNI) model
(Selke 1988), for critical wetting transitions (Dietrich 1988), and - last but not least - for
driven systems far from equilibrium, such as the charged lattice gas under the action of an

electrical field (Schmittmann and Zia 1995).

Denoting the linear dimensions of the system in the parallel and perpendicular directions as L,

or L. , respectively, an extension of finite size scaling to this case (Binder and Wang 1989)

1|
showed that in addition to the variable eLi ! {cf. Eqs. (109)-(112)}} one needs a second

vy f
variable, a generalized aspect ratio LI 1 fL, {this factor reduces to the standard aspect

ratio Ly / L, for isotropic critical phenomena, of course, needed to describe shape effects near
criticality, see Binder and Wang (1989) and Albano et al. (1989a)}. After a long controversy
about the critical behavior of the two-dimensional driven lattice gas a finite size scaling study
along these lines (Wang 1996} finally obtained consistency with the field-theoretic predictions.

We return now to "simple” critical phenomena such as the liquid-gas transition but consider
systems that lack the particular particle-hole symmetry of the Ising lattice gas model, e.g. off-

lattice fluids. Not only has then the critical point to be searched for in a two-dimensional



parameter space (temperature T and the chemical potential p, for instance), but also there are
rather strong corrections to scaling induced by a coupling between order parameter density and
energy density fluctuations (Wilding and Bruce 1992, Wilding 1993, 1995, Wilding and Miilier
1995). The critical part of the energy density scales with L as L™ where a is the specific
heat exponent (e.g. Milchev et al. 1986), and this needs to be disentangled from the order
parameter that scales as L™, Wilding and Bruce (1992) and Wilding (1993, 1995) solved this
problem by a linear transformation from the density p and energy density u to the appropriate
“scaling fields”. Using this technique in the context of grand-canonical simulations of simple
fluids, a satisfactory analysis of their critical region became feasible (Wilding 1995, 1996). Also
a successful extension of this concept to asymmetrical polymer mixtures (Miiller and Wilding
1995) was given. For critical properties, these techniques are superior to both the "Gibbs
ensemble” method (Panagiotopoulos 1987, 1992, 1994, Smit 1993, Allen 1996) and standard

finite size scaling applied to subboxes (Rovere et al. 1990, 1993).

Thus, finite size scaling techniques have become a very powerful tool for analyzing critical
phenomena by computer simulations. Nevertheless, there are still problems applying this
approach, in particular when one considers crossover from one universality class to another
(Binder and Deutsch 1992, Deutsch and Binder 1993a, Mon and Binder 1993, Luijten et al.
1996, Binder et al. 1996). Then the scaling functions M,%.%' and U in Eqs. (109)-{112) not
only depend on the variable L/E (which vanishes at T.) but on a second variable L/, Geron
being the correlation length in the center of the crossover region. Asymptotic criticality is
reached only for L >> £, and the cumulant intersection for locating T, works only in this
limit, since at T. T is not a constant but still a function of L/f..cu , see Fig. 12 for an example.
Another particularly intriguing problem is the crossover between d - dimensional critical

behavior and {d - 1) dimensional critical behavior in thin films (Binder 1974, Freirie et al. 1994,

Rouault et al. 1995), where it is unclear to what extent such systems can be characterized by
an effective dimensionality d.r in between these dimensions. Particular difficulties occur also
for the crossover from "pure” to "impure” behavior in systems with random impurities (Wang
et al. 1990, D'Onorio de Meo et al. 1995) or random fietds (Rieger 1995, Pereyra et al. 1993,
1995, Eichhorn and Binder 1996). For such problems, finite size techniques are successful only
if a huge computational effort is invested in the quenched average [...J.. over the random

samples (Rieger 1995), and often the lack of very efficient algorithms is a severe limitation.

4.3 First order versus second order transitions: phase coexistence and phase diagram

In an infinite system, a first order transition is characterized (Binder 1987) by a jump in first
derivatives of the thermodynamical potential and by delta-function singularitites in second
derivatives (Fig. 13). In finite systems, these singularities again are rounded and shifted (Imry
1980, Fisher and Berker 1982, Blite and Nightingale 1982, Cardy and Nightingale 1983,
Privman and Fisher 1983, Binder and Landau 1984, Fisher and Privman 1985, Challa et al.
1986, Privman and Rudnick 1990, Borgs and Kotecky 1990, Borgs et al. 1991, Lee and

Kosterlitz 1991, Herrmann et al. 1992, Vollmayr et al. 1993, Tsypin 1994).

Let us first consider the simplest case, the field-driven transition in the Ising system for T < T,
where the symmetry of the problem implies that the transition is only rounded by finite size but
not shifted. The behavior is understood most simply be generalizing Eq. (117a), including the
dependence on magnetic field (Binder and Landau 1984). The weights of the two peaks are no

longer equal, but rather given by Boltzmann factors involving the Zeeman energy,

d
+Hm,, I . This yields, for L — o and m near one of the two branches of Fig. 13,



PL(m)} ¢ exp(HMyou LYksT) exp { - (M - Mupon - %' H)? LYkaT} +

exp( - HMypon LYkaT) exp { - (m + Mupon - %' H)* LYkp T} (i19)

Here we have taken into account that for H # 0 the gaussian peaks occur no longer form = x

Mygon but rather for m = + myew + %'H. This approach yields for the magnetization
{m} = %' H + Mypom tanh {(Hmypon LYkpT) (120)

and thus the rounding of the singularity of the susceptibility is described by

AELTL) = '+ Mpeny (LYkaT)c0sh? (Hitgon LYksT) (121

Thus the delta function is smeared out into a peak of height proportional to L? and of width
AH proportional te L. Fig. 14 shows that in the d = 2 Ising ferromagnet this simplified

description {Eq. (119) ignores contributions with inhomogeneous order parameter
distributions containing interfaces in the finite system, see Sec. 4.4} works rather well even for

very small systems.

The symmetry ¥(H,T,L) = x( - H,T,L.} of the Ising model can be broken, for example, by
multispin interactions (Binder and Landau 1989, Borgs and Kappler 1992), by boundary fields
{in systems with free surfaces, see e.g. Fisher and Nakanishi 1981, Albano et al. 19896, Binder
and Landau 1992}, etc. In this case the “transition” (monitored by the peak position of x) in the

finite system no longer occurs at H = @ but rather at a shifted field Hp, Hy o« L™
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The first case (asymmetric bulk transition) leads to a shift exponent & = d (Binder and Landau
1984), ie. the shift is of the same order as the rounding. In the second case, symmetry
breaking boundary fields (note that for the gas-liquid transition of fluids this case is called

“capillary condensation"), the shift is much larger than the rounding, A = 1, because it is

controlled by a competition of surface and bulk terms.

While the symmetry of the ordinary Ising model (without multispin interactions, boundary
fields, etc.) implies that at the transition (for H = 0) the two peaks of P (m) {Fig. 6, Eqs.
(1172) and (119)} have both equal height and equal weight, some confusion has arosen (Challa
et al. 1986) which of these two properties carries over to the transition at H, = 0 in the
asymmetric ¢ase. It now has been rigorously proven (Borgs and Kotecky 1990, Borgs et al.
1991} and nicely confirmed by simulations (Borgs and Kappler 1992) that the “equal weight
rule” (Binder and Landau 1984) is correct, and one has now a better understanding (Tsypin

1994) why the "equal height rule” (Challa et al. 1986) is incorrect.

This "equal weight rule” has become a convenient tool for establishing phase boundaries of off-
lattice fluids (Wilding 1995, 1996) and asymmetric mixtures (Deutsch and Binder 1993b,
Deutsch 1993, Miller and Binder 1995, Miiller and Wilding 1995). While in the Ising magnet
(or the isomorphic lattice gas model) phase coexistence occurs at H = 0 and hence only
temperature needs to be varied to locate T., no simple symmetry relates the two coexisting
phases in the general case. Then it is non-trivial to locate the chemical potential p(T) {or
chemical potential difference Apc(T), in the case of the mixture} where phase coexistence
occurs, Near the critical point it is convenient to use histogram reweighting (Ferrenberg and
Swendsen 1988} to sample Pi(m) over a sufficient range of values in the (T.W) {or (T,Ap)}

plane. Defining m* in the region where Py(m) has a double-peak structure as the value where

kL)



{m3) - {m}?® is maximal, the weights of the two peaks are equal. For the case of an asymmetric
(polymer) AB-mixture with pairwise interactions €aa = A €pp With A = 1 the order parameter
for chain lengths N, = Np =N can still be chosen as m = {na - ng)/(na + ns), where n,ny are
the numbers of A,B-chains in the system, as in Fig. 11. However, while in the fully symmetric
case m* = 0, m* is different from zero in the general case. The weights of the A-rich and A-

poor phases then are defined as (Deutsch and Binder 1993b)

m‘ ]
Prw= [PL(m)dm, Py = [P (m)dm (122)
-1 m‘

For implementing the equal-area rule it is convenient to use the ratio R of these weights

defined as

R 2 mit{PpocrPrich , Prich /Proar } —a:—»{:,r";f moa() (123)

or the connected part of the cumulant Uf_‘m Mm=1- (M"Y cam/3¢{mM??). Both R and U‘:"" have

very sharp peaks at Ap = Au(T) (Deutsch 1993, Deutsch and Binder 1993b). Varying T along

the line Ap = Ap(T) in the (T,Ap) plane one now can study U:_m or ratios such as {m?)/{|m|)*,
cf. Fig. 11, and obtain both T, and the coexistence curve from a finite size scaling analysis with

high precision,

We now turn to thermally driven first-order transitions, using the Potts model, Eq. (99), as an

explicit example, At the transition point T = T, the energy jumps from E. to E. (Fig. 13), i.e.

-

the free energy branches F. (T) and F. (T) intersect at a finite angle, F, =E, - T S. , with F.
(To) = F.(T.). Thus AF = F. - F. vanishes at T, and near T, we can expand linearly in AT =T -

T, , to express weight factors a.,a. of these phases as

2, = exp{ ¥ AFLY(2ksT)} ~ exp{ % (E. - E) ATL¥(2ka T. )} (124)

Of course, we must take into account that in the g-state Potts model there is a single
disordered state but q distinct ordered phases.

The order parameter i of the Potts model involves a n = q - l-dimensional space, and the
distribution P (M} is anisotropic in this space {e.g., for q = 3 sharp peaks occur near (m, my)
= (1,0}, (- 172, ﬁ/.'l) and ( - 172, --./5!2), respectively, see Vollmayr et al. {1993) and
Stephanow and Tsypin (1991)}. It is then convenient to study either the distribution of the
energy Pi(E} (Challa et al. 1986) or the distribution of the absolute value of the order

parameter Pr(m} (Vollmayr et al. 1993), Approximating each peak by a (multivariate) Gaussian

for PL(m ), one finds

ndi2 -t 2.4 41 2.4
L a,m L a. L m-my.,) L
P (m)« —_ exp[- T J+ 4 T EXp —( ? ') (125)
K+ 3, +qa. 2kgTy, a, +qa_ x- 2kgTyx.

where . , % characterize the order parameter fluctuations in the disordered and ordered

phases, respectively, and Mgm is the order parameter as T — '[’: . Similarly, the energy

distribution becomes (Chaila et al. 1986, Borgs and Kotecky 1990, Borgs et al. 1991)

TR



PUE) & —= exp{(E - E. - C. ATY L(2kgT*C.)) +

-

vz

+ 2= ep((E - E. - C. AT LY(2Ke T°C)} (126)
C

C., C. being the specific heats of the coexisting disordered and ordered phases, respectively.

Eqs. (125),(126) form the basis of the phenomenological theory of finite size effects at first

order transitions. Again it is convenient to introduce suitable fourth-order cumulants,

gu(T) = {[{(m* (M2 1w e - (Y m? e, )
HKm* Y (MmO m Lo = [ WM 1) (127)
and

Vis1-(EYEED) . (128)

One then can show (Vollmayr et al. 1993) that g (T) develops a minimum at T, that tends
to - w as LY and an (approximate) crossing point at g{Tcea) = 1 - /(2q). The positions T,

Teu scale as
Tein = Te ¢ L | Togus - Tox L (129)
This behavior is illustrated in Fig, 15,

In addition, the energy cumulant develops a minimum that carries information on the latent

heat,
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2
mn 2 1 (E+ -E_ )(E+ + E_) -d -
VL —-3-—;{ 2E.E_ +((L ] N (1:0)
the position of this minimum being at
TWLYT. - | = {kaTALYE.-E)) tn (QE- /E>), (131)

and also the position of the specific heat maximum contains a similar shift proportional to the

inverse volume,

T{LYTe - 1 = (ke T/L'E-E)} tng | (132
The height being again linked to the latent heat,

Cp o =(CoHACY2 + EEY L (akyT,) (133)

Since the temperature region 8T over which the rounding of the delta function peak occurs is

just given by taking the argument of the exponential functions in Eq. (124) of order unity,

8T =2kyT. /[(E~E)LY | (134)
we conciude that rounding and shifting of the specific heat peak are of the same order of
magnitude, and the shift in the position of the minima of g.(T) and Vy is of the same order of

magnitude (o= L) as well. However, on this scale the shift of the crossing points of g (T) is
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negligibly smali (Fig. 15), namely proportional to L™, Therefore, the cumulant intersection
method is useful to locate any phase transition, irrespective of its order. For first order
transitions, in principle the best method (Borgs et al. 1991} for locating T. is to look for

intersection temperatures T; of energies E(T,L) =(E} and E(T, 2L),

E(T.L)=E(T:.2L) , (135)

since T; should differ from T, only by exponentially smal corrections,

However, it must be stressed that the description presented in Eqs. {124)-(134) is greatly
simplified and phenomenological, it holds only for L >> £., £, the correlation lengths in the
two coexisting phases at T, . High precision studies of the Potts model in d = 2 with q = 8,10
and 20 {note that E., E,, T. are known exactly for all q, see Wu (1982)) have shown that one
easily makes systematic errors in the estimation of E. and E. if the limit L >> £., & is not
reached (Billoire et al. 1992, 1993). In contrast, Gross et al. (1996) suggest that a much faster
convergence occurs in the microcanonical ensemble. At this point, we note also that the
computationally most efficient way to locate a first order transition often is not the finite size
scaling method (both the multicanonical sampling (Berg and Neuhaus 1992) and the
microcanonical one (Gross et al. 1996) involve then a study of states with energies E in the
interval E< E < E,, which are controlled by configurations with slowly relaxing interfaces},
but the simple thermodynamic integration method, where one studies pure phases throughout.
An example for this statement is provided by the Ising model on the face-centered cubic (fcc)
lattice with nearest neighbor antiferromagnetic interactions in 4 magnetic field H: there occurs
for small enough fields an ordered phase with two sublattices with positive magnetization and

two sublattices with negative magnetization (TT44), while for larger fields another ordered

phase with three sublattices with positive magnetization (TTT{) is stable. This problem is
isomerphic to the problem of order-disorder phenomena for binary (AB) alloys on the fcc
lattice (example: CuAu-alloys, see Binder 1986 for a review), and although the phase diagram
of this model is studied since nearly 60 years (Shockley 1938), it is still incompletely
understood (Kdmmerer et al. 1996} The problem is the location of the triple point T, between
the disordered phase, the "AB phase” (TT3) in spin representation} and the "A;B phase”
(T11L). While in the molecular field approximation (Shockley 1938) such a triple point does
not even occur (the A;B phase and AB; phase enclose the AB phase, and a direct transition
from the AB to the disordered phase occurs only in ane point in the phase diagram, in which
the A3B and AB; phase boundaries meet), more sophisticated treatments yield triple points, but
the precise location has been rather controversial {estimates for T, range from T, =0 to T, =
1.5 J/kg, see Binder 1986). Studies of this problem with finite size scaling are very difficult,
due to the high ground state degenerancy of the model and the fact that one deals with more-
component order parameters (Kimmerer et al. 1996). However, using large lattices (L = 64,
i.e. N = 4,64° = 1 048576 lattice sites) one can obtain the phase diagram rather precisely (Fig.
16). However, even a million of lattice sites is not enough to resolve the widt.h of the two-
phase coexistence regions near the triple point - which could also be a new type of multicritical

point. Substantiaily larger lattices would be needed to clarify this problem!

Unfortunately, this example is not atypical, but distinction of weak first order transitions from
second-order ones often is not unambigously possible, or at least very difficult! A longstanding
and experimentaily relevant problem is the transition of N; adsorbed as a two-dimensional
monolayer on graphite from the "herringbone structure® at low temperature to the
orientationally disordered plastic crystal phase at high temperatures (Marx et al. 1994). Since

thermodynamic integration is less convenient for continuous degrees of freedom, in this case



the (weakly) first order character was established from a study of orientational correlations at
both sides of the transition. And a particularly hard problem is the melting of hard disks
(Weber et al. 1995): aithough the Monte Carlo method in statistical physics started with the
consideration of the equation of state of this system (Metropolis et al. 1953), it turns out that
still the width of the two-phase coexistence region is unknown {early estimates, e.g. Alder and

Wainwright (1962), overestimated the density jump substantially}.

4.4 Different boundary conditions; surface and interface properties

Choosing periodic boundary conditions (or screw periodic boundary conditions, which are
used for lattice models storing lattice sites in a one-dimensionai array going through the lattice
in a typewriter fashion) are useful to focus on bulk properties of the model, undisturbed by
surface effects. However, sometimes one is interested in surface or interface properties, and
then a different choice of boundary conditions may be useful. E.g., for studying the properties
of small magnetic particles one may simply simulate an Ising or Heisenberg model on a lattice
with linear dimensions L,, L,, L, in the three lattice directions and use "free surface” boundary
conditions (i.e, neighbors adjacent to the surface are just missing). Of course, one can
generalize this boundary condition to small particles of arbitrary shape, e.g. approximately
spherical particles (Binder et al. 1970, Wildpaner 1974), and it may be of physical interest to
consider surface effects more complicated than simply "missing neighbors”, such as exchange
interactions that differ in the surface from their value in the bulk (Binder and Hohenberg 1974),
surface anisotropies or surface fields, etc. The same choices also apply to the simulation of thin
films, where one usually chooses a LxLxD geometry with two free LxL surfaces but periodic
boundary conditions in the x,y-directions parallel to these surfaces (Binder 1974). We shall not

give any details here but rather refer to recent reviews (Binder et al. 1995, Landau 1996).

Somewhat more involved is the study of surface properties of "semi-infinite” solids. If the
disturbance created by the surface in the interior of the solid decays sufficiently fast with the
distance from the surface, the straightforward sclution is to usc again the above LxLxD
geometry but make D so large that in the middle of the system bulk behavior is indeed
recovered. This simple recipe works well for the study of surface critical phenomena in Ising
magnets (Landau and Binder 1990), wetting phenomena (Binder et al. 1989), surface-induced
ordering and disordering in lattice models for metallic alloys (Schweika et al. 1996), etc.
However, this approach does become cumbersome when large characteristic lengths appear in
the system, e.g. at a temperature distance a few percent below the critical temperature of an
Ising mode! a thickness D = 160 lattice spacings may be barely sufficient (Binder et al 1989).
The situation becomes particularly cumbersome when the perturbation due to the surface
decays with a power law of the distance z from the free surface. This happens, e.g., for
Heisenberg ferromagnets (Binder and Hohenberg 1974) where m(z — o) - m(z) « 2" In this
case it was tried to work with one free surface only and use the "self-consistent effective field"
boundary condition (SCFBC) at the opposite wall to simulate "bulk” behavior there (Binder
and Hohenberg 1974). SCFBC were proposed (Miiller-Krumbhaar and Binder 1972) as an
alternative to the periodic boundary condition for studying phase transitions in the buik, the
advantage being that the effective field provides a symmetry breaking and when L =~ £ one does
not have a rounding off of the transition but a crossover to a mean-field type transition. A
popular variation of this technique, where one analyses the change of these mean-field
singularities when the linear dimension L is varied, is called the "Monte Carlo coherent

anomaly method (MCCAM)" (Katori and Suzuki 1987, Ito and Suzuki 1991).

The study of free surfaces is by no means restricted to the case of lattice models, of course.

Simulations of off-lattice models of solids with free surfaces can address problems such as



surface melting or faceting transitions (DiTolla et al. 1996), surface reconstruction, etc. We
shall not discuss these issues here, since actually often Molecular Dynamics methods are
applied to these problems and anyway most of these studies are still in rather early stages. In
contrast, a problem that has been studied for a long time are the physical properties of fluid
droplets, where the surface area and shape of the droplet may fluctuate (e.g. Lee et al. 1973).
This problem is of fundamental interest for a better understanding of nucleation theory
(Zettlemoyer 1969, 1977, Abraham 1974, Binder and Stauffer 1976). Of course, in this case
one usually confines the droplet in a box with repulsive walls, in order to prevent that atoms
evaporate from the droplet and escape far away from the cluster. While such techniques seem
to work well at low temperatures close to the triple point, where the vapor pressure of the
fluid is rather small, the technique becomes problematic at higher temperatures, in particular
near the critical point (Binder and Kalos 1980, Furukawa and Binder 1982). One then can
analyze this situation in terms of the equilibrium between the fluid droplet and the surrounding
gas that is also confined in the box, and analyze the properties of the two subsystems (droplet,
gas) separately {see also Binder and Stauffer (1972) for an early study of lattice gas droplets}.
These concepts exemplify once more that one can study arbitrarily defined subsystems in
simulations which then exhibit in a sense "fluctuating boundary conditions"; e.g., using a
division of a fluid in the NVT ensemble into n subsystems of volumes v = Vin, particles can be
exchanged freely through the virtual “walls” of the subsystem, and so density fluctuations are
easily sampled while in the total system the density p = N/V is held fixed. Such techniques are
useful for both the study of liquid-gas transitions (Rovere et al. 1983, 1990, 1993) and fluid-
solid transitions (Weber et al. 1995). While these subsystems are defined such that their
particle number fluctuates but their volume and shape is fixed, in the study of fluid droplets one
does not fix size and shape of their volume but rather their number or their chemical potential,

respectively.

Often one is also interested in studying the properties of flat interfaces between coexisting
phases. Typically one is interested in the “intrinsic” profile pi(x) of the order parameter
distinguishing the phases, and the interfacial free energy fin. We now discuss the boundary
conditions that one is using in this context, using again the Ising ferromagnet as an example.
The boundary condition used in first principle work is a "fixed-spin" boundary condition, half
of the boundary of a system of size L** M having-spins fixed at +1 as neighbors, the other half
has spins fixed at -1, as indicated in Fig. 17 (a). With this boundary condition, the average

position of the interface is precisely fixed, and so the profile p(x) and the mean-square width

21 12
1 41 -
wy(L) = <[Fj'd yx-m(y)] > are well-defined. However, in this way one does not always

obtain the "intrinsic” profile (which in fact is difficult to define in an unambigous way), because
{above the interfacial roughening transition temperature Ta (Abraham 1986, van Beijeren and
Nolden 1987)} the interfacial profile is unstable against long wavelength capillary wave

excitations. Over a length scale L these capillary waves give rise to an interfacial width of the

order
2 1 ?
wd_,(L)uc-Eln(LlE,) or wyo(L)=Lix (136)

where x is the “interfacial stiffness”. For d = 2, Tg = 0 while in the three-dimensional nearest
neighbor Ising model T = 2.4535 J/kp (Hasenbusch and Pinn 1996). Nete that for the liquid-
gas interface or interfaces between different fluid phases we always have Tr = G alsoind =3
dimensions and for such isotropic systems x = fiwkeT, while k exceeds fu/keT in lattice
systems where the interfacial tension in general depends on the orientation of the interface

(Van Beijeren and Nolden 1987, Mon et al. 1989, Hasenbusch and Pinn 1993).



The boundary condition of Fig. 17 (a) is inconvenient for simulations and thus one rather uses
“fixed spins” only in the boundaries parallel to the interface and periodic boundary conditions
in the other direction(s), Fig. 17 b (Mon and Jasnow 1984). One sometimes obtains the
interfacial free energy by carrying out a simulation also with boundary conditions (++) on both
surfaces (Fig. 17 {(c)), to sample the energy difference AE = E.. - E.., which then is aitributed
to the interface contribution. The interfacial free energy can then be obtained from AE(T) via
thermodynamic integration. By related methods the interface free energy of the Ising model has
been found rather accurately (Mon 1988). One must not forget, however, that interfacial
profiles obtained from a geometry as in Fig. 17b (see e.g. Leamy et al. 1973) are not
meaningful without a detailed discussion of how properties do depend on the linear dimensions
LM of the system. Even in the limit where L gets very large one finds a strong dependence of
the interfacial profile on the other linear dimension in the direction perpendicular to the
interface, see Fig. 18 (Kerle et al. 1996). Similar size effects on interfacial profiles are also
expected for off-lattice models, of course. Often there one chooses a geometry LxLxD with D
>> L and periodic boundary conditions (pbc) throughout, starting from an initial configuration
where a “slab” of phase with order parameter <p,> coexists with phases with order parameter
<p_> both to the right and to the left of the slab, so one records two interfacial profiles {e.g.
Alejandre 1995 a,b). In view of these size effects, methods are somewhat problematic where
one computes £, from the profile p(x) using suitable generalizations of van der Waals theory
(Abraham 1974,.Rao and Levesque 1976). An alternative method uses the profile of the
pressure tensor, Eq. (72), IMy(x) = Ty, [Tx(x) = (TIx + II,}2, to compute the interfacial

tension from the formula {¢.g. Rao and Bemne 1978, Smit 1988)

fin = Jdx{TTn(x) - TIr(x)} , (137
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the integration again being extended over the region of the interfacial profile (in the
homogeneous phases the pressure is isotropic, of course, and hence Iu(x) = TIr{x)). Related
formulas can also be used to obtain the surface free energy associated with walls (e.g. Pandey

et al. 1996). We are not aware of any systematic investigation that size effects have on Eq.

(137), however.

For lattice systems such as Ising ferromagnets or antiferromagnets (Schmid and Binder 1992
a,b) it often is convenient to use instead of the boundary condition of Fig, 17 (b) an
antiperiodic boundary condition (apbe). E.g., for an Ising ferromagnet in DxLxL geometry this
means 3(xtD,y,z) = - S(x,y,z), with {x.y,z) being the coordinate of the lattice site i. Then any
perturbation by walls or boundary fieids is strictly avoided, but 2 disadvantage is that this
situation still has full translational invariance: the interface can be anywhere in the system, and
actually in the course of a Monte Carlo run will undergo a diffissive motion. If one wants to
estimate the interfacial energy only, this delocalization of the interface does not matter, one
simply has to obtain the free energy difference between this system and a corresponding
simulation with pbe, fi. = D[F.ee « Fye] {recalling that F denotes a free energy per spin}. Fora
study of interfacial profiles, one has to create a second coordinate system, whose origin is fixed
to the center of the diffusing interface, and record profiles in this frame (Schmid and Binder

1992 a,b).

If one is interested in the interfacial free energy £, only, a convenient method consists in the
sampling of how the minimum of the order parameter distribution P.(p) in between <p.>, <p.>
decreases with increasing linear dimension {Fig. 17(d)}. This technique (Binder 1982) is
particularly convenient, since it yields fix as a byproduct of a simulation of bulk properties of

the model system in a L! geometry, This method relies on the fact that for L >> £ the state of

LT



the system near the minimum is dominated by a configuration with two (on the average flat)
domain walls running parallel to each other and to a lattice plane through the system:

Therefore, one expects
PLP = Puin} = exp( - 2LY! £./keT) , (138)

because the excess free energy cost of the configuration sketched in Fig. 17 (d) is given by two
interfaces of area L*! each, The validity of Eq. (138} is checked by recording Py(p) for a wide
range of L, noting that the probability should for L >> £ be nearly constant for a whole range
of p around pmia , since changing p changes then only the volume fraction of the two coexisting
phases, but not their interfacial contributions. However, since PL(p) from <p.>,<p.> 10 P
varies over many orders of magnitude, one needs to apply "multicanonical" sampling in order
to reach sufficient accuracy (Berg and Neuhaus 1992, Berg et al, 1993); after proper
reweighting, an order parameter distribution which in between <p.> and <p.> is nearly flat is
simulated. For the Ising magnet this so-called "multimagnetic" (Hansmann et al. 1992)
sampling has yielded very precise interfacial free energies (Berg et al. 1993) and the critical
vanishing of fiy near T, could be investigated. Even rather complex systems such as models for

polymer mixtures have been successfully studied with this technique (Mueller et al. 1995).

5. Miscellanepus Topics
5.1 Applications to dynamic phenomena

In Sec. 3.4 we have already seen that Monte Carla (MC) sampling can be interpreted as a

"time averaging” along a stochastic trajectory through phasespace, and this notion can be made

precise in terms of a markovian master equation for the probability P( Xt ) that the system is
in state X at time t {Eq. (47)). OF course, the dynamical properties of a system described by
such a stochastic trajectory differs in general from dynamic properties derived from a
deterministic trajectory: remember that the Molecular Dynamics [MD] method amounts to
solve Newton's equation of motion numerically (Ciccotti and Hoover 1986, Sprik 1996). In
fact, for obtaining the dynamical properties of systems such as simple Lennard-Jones fluids MD
is the only reasonable approach, and while MC is a perfectly valid approach for obtaining static
properties of simple fluids in thermal equilibrium, the relaxation of density fluctuations seen in
a Monte Carlo run has nothing to do with the actual way that density fluctuations in fluids

decay.

But MC js a reasonable and useful method for describing dynamic properties of systems where
the considered degrees of freedom are a slow subset of all degrees of freedom. This slowness
results from a weak coupling of these degrees of freedom to the fast ones, which then act like a
heat bath. A good example is the diffusion process in solid alloys (Fig. 1), where the phonons
of the crystal act like a heat bath. Suppose we would simulate such a mixed crystal at low
temperatures by MD - most of the computer effort would be spent for simulating the lattice
vibrations (which typicaily have a time constant of 10" sec), while the time constant on which
jumps of A-atoms or B-atoms to vacant sites occur is orders of magnitude larger. It is easily
possible then that in a MD run none (or only a few) such random jump events induced by the
phonons are observed. While special MD techniques exist to simulate the detailed properties of
such rare events (Ciccotti and Ferrarip 1996), and such techniques are clearly useful for
estimating the jump rates ', T'p for specific materials, MD clearly is impractical to study the
collective dynamic properties on time scales large in comparison with the time scale of an

isolated jump. If T's, I's can be assumed as given parameters, MC can straightforwardly



simulate directly the random hopping processes (Kehr et al. 1989, Kehr and Binder 1984). The
MC technique is unique also for simulating slow non-equilibrium processes, which happen on
macroscopic time scales, such as growth of ordered domains in adsorbed monolayers at
surfaces (e.g. Sadiq and Binder 1984, Mouritsen 1950, Bray 1994), diffuston-limited growth of
aggregates (Herrmann 1986, Meakin 1988), simulations of the growth of thin solid films via
molecular beam expitaxy and related techniques (e.g. Family and Vicsek 1991, Landau and Pal
1996) etc. While these examples all refer to cases where one wishes to understand real systems
in terms of crudely simplified coarse-grained models, there exist also models such as the
Glauber Kinetic Ising model (Glauber 1963, Kawasaki 1972) where a master equation
description is postulated not with the primary intention to describe any experimentaily
accessible systems but rather to elucidate general questions of statistical mechanics. In this
context we recall that Ising magnets do not have any dynamics of their own - spin flips are
thought to result as a consequence of a weak spin lattice coupling. These kinetic Ising models
are of great interest to understand critical dynamics (Hohenberg and Halperin 1977) and MC
methods have been used extensively for their study (e.g. Stoll et al. 1973, Landau et al. 1989).
Of course, one can also identify problems where both MC and MD can be applied, e.g. the
slow Brownian motion of polymer chains in dense polymer melts (Binder 1995, Kremer and
Grest 1990, 1995, Paul et al. 1991). MC has then the advantage that unphysical "moves"
(crossing of chains, "“slithering snake"-motion, semigrand-canonical AB interchanges in
mixtures, etc.) are permissible to equilibrate the system: one may then set a clock to zero, at
which point these unphysical moves are turned off, in order to study the further time evolution
of the system applying an algorithm that is physically reasonable (e.g. the random hopping
algorithm of the bond fluctuation model, see Binder and Paul (1997} for a review). Of course,
the MC dynamics does lack any hydrodynamic mechanisms which in principle are present in
MD work. In addition, MC can model only diffusive motions and relaxation, but does not

account for oscillatory motions that are present in shorter time scale. Such limitations must be

kept in mind in the applications of MC methods to study the dynamics of polymers (Binder
1995) or other slow processes: relaxation of the magnetization in spin glasses (Binder and
Young [986), relaxation of molecular arientation in quadrupolar glasses (Miser and Nieiaba

1995), etc.

After this general averview we briefly treat one examgple in more detail, to illustrate the great
potential of the approach, and the type of questions that one can address: interdiffusion in
binary solid mixtures (Fig. 1). The considered degrees of freedom are occupation variables
c;‘,c? of lattice sites i which are unity if the site i is taken by an A-atom or a B-atom,
respectively, and zero else. The phonons of the crystal induce then random hops with jump

rates I, I'p to vacant lattice sites.

We now recall the description of this problem in the framework of phenomenological non-
equilibrium thermodynamics: one postulates "constitutive equations” for the current densities
T,.J5 of AB atoms, namely linear relations between them and the driving forces, the

gradients of chemical potential differences between A(B) atoms and vacancies V (pis - pv , lg -

Hv),

Ta =~ (Aa/kaT) V (a - v} - (AunkaT) ¥ (ta - ) (139)

Tg = - (AaakaT) V (ua - v} - (AoarksT) ¥ (up - 1y ) . (140)

Here Aaa, A = Apa , Aps are the "Onsager coefficients”. Eqgs. (139),(140) are at best

approximately valid, of course: non-linearities and fluctuations are neglected. Taken together



with the continuity equations that express the conservation laws for the local concentrations

ealT,1), ca(T .t}
T+ V.T, =0 , Bea(TVa+V.Jg=0 (141

it is a matter of simple algebra (Kehr et al. 1989) to obtain a complete description of the
interdiffusion process for a random alloy. E.g., the interdiffusion constant Dy, which describes
how a weak deviation of the concentration difference between A and B from its average value

spreads out, is given by

2
AMABB_AAB

1 i
D= —+—, -0 . 142
' AM+2AAB+ABB[CA Ca] & (142)

However, there are many questions about such a treatment: how are the Onsager coefficients
related to the atomistic rates I, I'n (Fig. 1)? Is the "mean field" character of Eqgs. {139),(140)
an accurate description? Etc. In particular, it is common to neglect the off-diagonal coefficient
Aas (Brochard et al. 1983, Kramer et al. 1984), since nothing is known about it - but it is

questionable whether Aag is really small in comparison with A and Apa .

All these questions can be answered by "taylored" computer experiments: by imposing
chemical potential gradients either on the A-atoms or on the B-atoms one can create steady-
state currents in the system (particles leaving the box at one boundary reenter at the opposite
one, because of the periodic boundary conditons!). Thus the Onsager coefficients can simply

be measured from their definitions, Eqs. (139), (140). Fig. 19 shows that for [/Ta << 1 it is
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wrong to neglect Aas in comparison with Axs. However, using the so determined Onsager

coefficients in Eq. (142) provides an accurate description of interdiffusion, as Fig. 20 shows.

Fig. 20 also illustrates again that basic concepts of statistical physics can be implemented very
directly in simulations, such as linear response: one applies a wavevector-dependent chemical
potential difference Ap(k) {k = 2r/A} 1o the system, to prepare an initial state of the model
where a concentration wave with wavelength A is present. In the example shown, the

amplitude is chosen such that 5ca (t = 0) = &cg (t = 0} = 0.02. At time t =0, this perturbation

Ap(k) is suddenly switched off, and then one simply watches the decay of the concentration
wave with time. Different wavelengths are used (Fig. 20) to check that one is actually in the
long wavelength limit. And while the full mean field treatment {Eq. (142)} based on the actual
Onsager coefficients works well, approximations (Brochard et al. 1983, Kramer et al. 1984)
where the Onsager coefficients are somehow related to self-diffusion coefficients are not
accurate in this case. Note that self-diffusion coefficients are straightforwardly obtained from

meansquare displacements of tagged particles.

This is just one example out of many to show that MC simulations do have their place to study
dynamic phenomena. For more details, as weil as a discussion of alternative approaches such as
MD and Brownian Dynamics (Ermak and McCammon 1578, van Gunsteren et al. 1981, Doll
and Dion 1976, Ciccotti and Ryckaert 1980, Giré et al. 1985, Lemak and Balabaev 1995)
where one numerically solves Langevin equations, we have to refer to the literature (Binder

1992b, Binder and Ciccotti 1995).
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5.2 A brief introduction to path integral Monte Carlo (PIMC) methods

So far the discussions of this article have been confined to the framework of classical statistical
mechanics throughout. However, this is an approximation - the basic laws of nature are
quantum-mechanical, and thus it is very important to be able to take quantum effects into
account in simulation techniques as well. Thus the development of MC techniques to study
ground state as well as ﬁnite-tlcmperature properties of interacting quantum many-body
systems is an active area of research (for reviews see Ceperley and Kalos, 1979, Schmidt and
Kalos 1984, Kalos 1984, De Raedt and Lagendijk 1985, Berne and Thirumalai 1986, Suzuki
1986, 1992, Schmidt and Ceperley 1992, De Raedt and von der Linden 1992, Hammond et al.
1994, De Raedt 1996, Ceperley 1996, Kreer and Nielaba 1996, Kawashima and Gubernatis
1996). These methods are of interest for a widespread variety of problems, including
elementary particles (e.g. De Grand 1992), the structure of atomic nuclei (e.g. Carlsson 1988),
superfluidity of Helium (e.g. Schmidt and Ceperley 1992), high T. superconductors (e.g. Frick
et al. 1990), hydrogen in metals (Gillan and Christodolous 1993), magnetism (e.g. Reger and
Young 1988), surface physics (e.g. Marx et al. 1993, Kreer and Nielaba 1996) isotope effects
in lattice dynamies (Miser et al. 1995, etc.). Here we cannot attempt to review all these
applications, nor can we describe all the different techniques: variational Monte Carla (VMC),
Green's function Monte Carlo (GFMC), projector Monte Carlo (PMC), path-integral Monte
Carlo {PIMC), grand-canonical quantum Monte Carlo (GCMC), world-line quantum Monte
Carlo (WLQMC), etc. We note that some of these techniques are still under development, and
there are sometimes serigus problems hampering large-scale applications (such as the famous
"minus sign problem” hampering the applications to multi-fermion systems, see e.g. De Raedt
and von der Linden 1992). Here we shall not address any methods for ground-state properties
(like VMC, GFMC), but are concerned with the PIMC method only that addresses properties

at non-zero temperatures.

(k]

Unlike Eq. (3) we now consider an average (A ) where the Hamiltonian ¥ is treated as a

quantum-mechanical operator, and we do not assume that the eigenvalues and eigenstates of #

are known explicitly,
(AY=(UZ)Trexp(-RksTHA, Z=Tr exp(- #/kgT) . (143)

Here A is the operator associated with the classical observable A(X) in Eq. (3). For
simplicity, we consider first a single particle in one dimension exposed to a potential V(x), for
which # = - (M/2m)d*/dx* + V(x). In position representation (Jx> is an eigenvector of the

position operator) the partition function becomes
Z = Jdx<xexp(- T /kaT)x> . (144)

Eq. (144) is not straightforward to evaluate since the operators of kinetic energy
{-(h*2m}d¥dx?} and potential energy {V(x)} do not commute. Writing exp(- ¥/ksT) formally

P . as - .
as [exp(-X/AkaTP)]" , where P is a positive integer, we can insert a complete set of states

between the factors;

Z=Jdxy .... [ax, <xifexp(- #AaTPYxz>!....{x> <x,lexp(- # ke TP)x,> (145)

For large P, it is a good approximation to ignore the fact that kinetic and potential energy do

not commute. Hence one gets



(xlexp(—??/kBTP)|x')z{k;:::P}“ ex { i;T’"P(x ) } { [V(x) + V{x )]}

) 2k, TP
(146)
and thus
Z-[k;::;P] Idx, Idx,:xp{ [ ZK(XS xsﬂ) +P” ZV(xs)j” (147)

where x = kaTmP/fi2. In the limit P — o, Eq. (147) becomes exact. Apart from the prefactor,
Eq. (147) is precisely the configurational partition function of a classical system, namely a ring
polymer consisting of P beads coupled by harmonic springs with spring constant «, each bead

being under the action of a potential V(x)/P.

This approach is straightforwardly generalized to a system of N interacting quantum particles -
one ends up with a system of N classical cyclic "polymer chains”. However, an important
distinction to physical melts of ring polymers is that in the present case beads of different
chains interact with each other only if they are in the same "time slice” (i.e., have the same

"Trotter index" s).

As a result of this isomorphism, classical MC methods can be readily applied to sample such
quantum-mechanical problems. At high temperatures, x gets very large, and then the system
always bchav';:s classically, since then the cyclic chains contract essentially to point particles
again. At low temperatures, however, they are spread out over distances comparable to the
thermal de Broglie wavelength, and in this way also zero-point motions are accounted for,
However, PIMC becomes increasingly difficult at low temperatures, since P has to be the

larger the lower T: If @ is a characteristic distance over which the potential V{x) changes, one

ne

must have A¥mg? << kpTP in order that two neighbors along the "polymer chain® are at a
distance much smaller than o. The appropriate value of this "Trotter dimension” P is

determined empirically in most cases (typically one carries out runs for several choices of P and

checks where thermal properties no longer change).

The step leading to Eq. (146) can be viewed as a special case of the Suzuki-Trotter-formula

(e.g. Suzuki 1986)

exp(A+B)= ng {exp({ A /P) exp(BP)" . (148)

Eq. (148) is used for mapping d-dimensional quantum problems on lattices to equivalent
classical problems in (d+1) dimensions: e.g., the Ising chain in a transverse magnetic field gets
mapped onto a special two-dimensional Ising lattice, with a linear dimension P in the additional

"Trotter direction” {which corresponds to the imaginary time direction of the path integral).

For rigid molecules the operator of angular momentum appears in # in Eq. (144) and this
requires another extension of the formalism. The fact that a rotation with an angle of 2n leaves
the physical situation invariant creates subtle problems. For two-dimensional rotators {confined
to rotate in a plane) the rotation angle ¢ plays a similar role as the coordinate x in Eq. {147),
but in addition one has a summation over "winding numbers” expressing the fact how many

multiples of 27 the angle passes along the ring polymer (Marx and Nielaba 1992, Marx et al.

1993b). Then in addition to "local" Monte Carlo moves ¢, = (p: , which conserve the winding

number, “"global” moves are also needed to change the winding number, And for rotators with



two angular degrees of freedom one runs again into “minus sigh” problems (Marx 1994, Muser

1996)!

As an example for the type of questions that one can address, Fig. 21 shows the order
parameter and energy of Ny adsorbed on graphite (Marx et al. 1993a). It is seen that quantum
fluctuations depress the temperature of the order-disorder transition (which is rounded due to
finite size effects, of course) by about 10%, and the order parameter saturates at 90% of its
classical value due to zero-point vibrations. While the latter behavior is accounted for by quasi-
harmonic theory, and the former effect could be accounted for by the Feynman-Hibbs
approximation, there is in fact no approximate treatment accurate at temperatures in the
ordered phase just below the transition. Note that such simulations are still rather difficult,

since Trotter dimensions up to P = 500 needed to be used.

5.3 Some Recent Algorithmic Developments

The availability of vector processors and of massively parallel supercomputers has made
necessary to develop Monte Carlo codes that take advantage of this specialized hardware and
are optimized in order to perform on such machines as fast as possible {Landau 1992,
Heermann and Burkitt 1992, Heermann 1996). On these problems, we shall not give any
details here. We only mention that one always heavily exploits the freedom that one has in MC
calculations (of static averages) in defining the precise order in which one carries out updating
operations in the configurations of the system. E.g., for simulating Ising-type lattice models on
vector processors it is preferable not to go through the lattice sites in the standard typewriter
type fashion, but rather to decompose the lattice in sublattices such that the degrees of freedom

on one sublattice do not interact with each other {for a nearest neighbor lsing square lattice,

a1

this is already achieved by the well-known “checkerboard decomposition” into a "white" and a
"black” sublattice, introduced by Oed (1982) for the Floating Point System AP-190L and used
for a study of the Ising model interfacial tension (Binder 1982)}. In combination with multispin
coding {multiple spins of one system are packed in a single word, as first suggested by Zom et
al. (1981)} or multilattice simulations {spins from 64 different lattices are packed into 64 bit
words, see Bhanot et al. (1986)} very efficient algarithms result, as described in detail by
Landau (1992). The principle of this checkerboard algorithm, that degrees of freedom which
lack a direct interaction can be updated independently, is the basis of many related applications
{e.g. spin-exchange kinetic Ising models (Zhang 1989, Amar et al. 1588), random Ising models
(Heuer 1990) or Potts models (Eichhorn and Binder 1995, 1996), lattice models for alloys

{Diinweg and Binder 1987) and polymer meits (Wittrann and Kremer 1990, 1992) etc.}.

At the time of writing vector processors are losing ground in comparison to parailel
supercomputers. The concepts for efficient use of parallel processors are rather similar to those
used in "vectorization" of programs - one has to identify tasks that can be carried out
independently and concurrently. A straightforward idea is "domain decomposition®, i.e. the
system is geometrically decomposed into subsystems. For systems with short range
interactions, interactions between degrees of freedom belonging to different subsystems occurs
only in a rather narrow boundary region of each subsystem. If these subsystems are thernselves
sufficiently large, the overhead for communication between processors can be made sufficiently
small in practice (Heermann and Burkitt 1992, Heermann 1996). Useful applications result
when the physics of the problem requires large total system sizes, e.g. interfaces in polymer
mixtures were simulated on lattices confaining about 16 million sites (Miller et al. 1995), and
simple Ising square lattices up to size of 10° x 10° could be studied (Linke et al. 1995, 1996,
Of course, other strategies of parallelization may be preferable for different applications: doing

MC with longrange interactions, one may simply split the ensemble of N particles into p



portions of N/p particles, each processor then calculates the energy change of one of these
portions in a MC update. And even simpler is a method that is sometimes called "poor man's
parallelization” (Heermann 1996): the system is simply replicated p times, each processor
carries out the same program but with different random numbers (and perhaps also with a
different starting configuration), and so the only communication among processors that is
needed is the averaging of the results form individual processors in order to obtain the final
results. This approach is very natural for systems containing randomly quenched disorder
(Eichhom and Binder 1995); one has to carry out anyway the average {...J., over the quenched
disorder by averaging over a large number of equivalent replicas of the system, each containing
a different realisation of the variables characterizing the quenched disorder (random bonds,
random fields, randomly diluted sites, etc.): thus this disorder average is done in parallel, each

processor is working on its own replica of the system.

Another very important line of research on Monte Carlo algorithms considers the construction
of clever moves for the MC updates in order to sample the phase space most efficiently, i.e. to
decorrelate successive configurations as fast as possible. E.g., for the Ising model at the critical
temperature T. the standard single spin flip algorithm suffers from the problem of “critical
slowing down" (Hohenberg and Halperin 1977), which means in a finite size scaling context
that the relaxation time < scales with the linear dimension like T « L®, z being the "dynamic
exponent” of the made! (z = 2). Many ideas have been followed to ease this problem: Fourier
acceleration (e.g. Batrouni et al. 1985, Dagotto and Kogut 1987), multigrid MC (Goodman
and Sokal 1986, 1989, Kandel et al. 1989, Hasenbusch et al. 1991, Janke and Sauer 1994,
1995), over-relaxation (Creutz 1987) etc. The most successful approach seems to be the
cluster algorithms (Swendsen and Wang 1987, Wolff 1988a,b, Wolff 198%a,b.c, Edwards and

Sokai 1988, 1989, Ben-Av et al. 1990, Wang et al. 1990, Kandel and Domany 1991,

Swendsen et al. 1992, Machta et al. 1995, Liverpool and Glotzer 1996) based on the mapping
(Fortuin and Kasteleyn 1972) between Potts models and percolation (see Sec. 4.2). For
ferromagnetic [sing, Potts, and vectorspin models these algorithms reduce the dynamic
exponent z to a very small value (in favorable cases z = 0, e.g. for the single cluster algorithm
(Wolff 1989a) in d = 4 dimensions, see Tamayo et al. 1990). While extensions exists to
antiferromagnetic Potts models (Wang et al. 1990), interfaces in solid-on-solid models and
Ising models (Hasenbusch and Meyer 1991, Hasenbusch and Pinn 1996), and quantum MC
problems (Gubernatis and Kawashima 1996), so far this approach could not be generalized to
off-lattice problems, and also many lattice problems involving frustration (spinglasses, lattice

gauge problems, etc.) still await the formulation of a useful cluster algorithm.

A very promising approach also is the combination of cluster algorithms with other advanced
methods, €.g. with multigrid MC (Kandel et al. 1988) or with multicanonical sampling (the so-

called "multibondic algorithm" (Janke and Kappler 1995)).

A recently developed method that works both for lattice and off-lattice problems and has
interesting parallels to cluster algorithms (Frenkel 1993) is the so-called "Configurational Bias
Monte Carlo* (CBMC) method (Siepmann 1990, Siepmann and Frenkel 1992, de Pablo et al.
1992). This method was originally invented for macromolecules but is presumably useful for

many other problems {see Frenkel (1993) and Frenkel and Smit (1996} for more details}.

While in the techniques mentioned above the dynamics of the Monte Carlo "cluster moves”
clearly is unphysical, and there is no connection in an Ising simulation using a cluster algorithm
with the dynamics of a single spin-flip algorithm, techniques have also been developed (e.g. use
of absorbing Markov chains (Novotny 1995) or rescaling techniques inspired by the

renormalization group ideas, see Barkema and Marko 1993). For studying nucleation kinetics



in Ising models at low temperatures or the dynamics of coarsening in the simulation of
quenching experiments one can observe dynamic processes over 25 decades in time - a task

that would be impossible for straightforward dynamic MC.

Finally we mention the reweighting techniques {see Dinweg (1996) and Frenkel and Smit
(1996) for recent reviews}. The "single histogram method" starts from the observation that the
energy distribution at temperature T can be obtained from the distribution P(E,T;) at a

neighboring temperature Ty by

P(E,T) = P(E,To) exp[-(/T-1/To)E/ka} 3" P (E, To } exp[~(1/T-1/To)E/kg]} (149)
£

This idea is not at all new (Salsburg et al. 1959) but only recently it is very widely used - first
of all one now can generate “histo'grams" P(E,To) with the necessary statistical accuracy, which
was not possible in the early days of Monte Carlo, and secondly it was recognized by
Ferrenberg and Swendsen (1988) that at a critical point the width of the distribution due to
critical fluctuations is sufficiently broadened to allow a reweighting over the temperature
interval | T - T.] of order L™, i.e. the region of interest for a finite size scaling analysis,
irrespective of the linear dimension L. In particular the combined use of several histograms at
suitably chosen neighboring temperatures (or other control parameters), the so-called *multipie
histogram extrapolation” (Ferrenberg and Swendsen 1989, Swendsen et al. 1992) has become
a standard tool in the study of critical phenomena. We emphasize that one can do a
reweighting in several parameters simultaneously (e.g. temperature and chemical potential, in a
study of criticality in fluids, see Wilding (1996)). Reweighting densities also is possible and is

called "density scaling” (Valleau 1993).

Particularly useful are also reweighting schemes built into the simulation procedure {"umbrella
sampling” (Valleau and Torrie 1977), "multicanonical MC" (Berg and Neuhaus 1992),

"entropic sampling" (Lee 1993), "broad histogram method" (de Oliveira et al. 1996) etc.}.
Basically, one is sampling the states not with the Boltzmann probability {= exp(- ¥ksT)} but

with 2 modified probability, oc exp(- X.e'keT). This will produce an encrgy distribution

P(E) = exp[S(E) - Xw'ka TV Z exp [S(E) - ¥r'kaT]. (150)
E

The optimal choice would be if P(E} were flat, i.e. if Xw/'ksT is just the entropy (apart from an

2 0 b . - 0 U
additive constant). Thus one could proceed in an iterative way, choosing first ?ffﬂ-) = E/kpTo

for some reasonable Ty, estimate P(E) via a histogram, and then use ng = ?ff:;) + ¢n (P(E)R),

R being the total number of energy entries, ete. OF course, one must be very careful that the
runs are long enough so that P(E) is reliably estimated. In the end, thermal averages of

observables A are then obtained as
(A)r = (A exp[(Yer - NkaT1) / (exp[(Herr - ¥k TD) . (151)

Such techniques are particularly useful to study first order transitions, and to obtain interfacial

tensions between coexisting phases, as discussed in Sec, 4.4.

A related approach {"simulated tempering” (Marinari and Parisi 1992), “expanded ensemble”
(Lyubartsev et al. 1992)} considers the temperature just as an additional degree of freedom,

specifying properly transition rules for jumping from one temperature to another one.



Clearly, all we could give here was a sketchy guide to the original literature in a rapidly

developing and very promising field! But it is clear that algorithmic developments are as
important as improvements in the computer performance for the growing impact of Monte

Carlo simulation in statistical physics.

6. A few concluding remarks

In this article, we have attempted to provide an introductory and tutorial overview of Monte
Carlo simulation, primarily addressed to the non-specialist. Thus we have given the basic
aspects of the technique in some detail, and we have also described in some depth the finite
size effects, which on the one hand seriously hamper all simulation work, but on the other hand
also can be used as a tool for extracting quantitatively reliable predictions on bulk and

interfacial properties, via the appropriate finite size scaling considerations.

In presenting these points, we have chosen to illustrate them with material exclusively taken
from the research group of the author, It must be stressed that this choice of examples was
purely a matter of convenience only, and it should be clear from the extensive list of references
that many groups have contributed very significantly to the development of techniques that
were described here. Thus the bias in the choice of examples should not at all be mistaken as a

statement on the validity and/or importance of other results.

In this article, we have also chosen to emphasize classical MC work on equilibrium properties
of lattice models, and have dealt only very briefly with topics such as the statistical mechanics
of off-lattice models, non-equilibrium phenomena such as simulations of irreversible growth,

and quantum problems in statistical thermodynamics. Thus we have only tried to give the

reader a flavor of what can be done and what new problems arise when one applies MC
methods in these fields. The same disclaimer holds with respect to the many clever algorithms
that have been devised to carry out simulations in a more efficient way - we only intended 10
"wet the readers appetite" to the rich literare on all these interesting problems and

approaches.

Nevertheless, we hope that this article can give a clear hint to the usefulness of these computer
simulation methods, and the challenge they pose in applying them properly and using them as a
powerful tool of research. Also with respect to the technical aspects of this "tool”, it is clear
that this article could only describe *wark in progress®, there is still much room for good ideas
for the further refinement of the technique and for developing applications to new problems,
and thus one can understand the fascination that the computer simulation approach has, leading

to a truly explosive growth of the literature in this area.
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Eigure Captions

Fig. 1:

Fig. 2:

Fig. 3:

Schematic description of interdiffusion in the ABV model of a random binary ailoy

(AB) with a small volume fraction ¢, of vacant lattice sites, and interdiffusion proceeds
via the varancy mechanism; A-atoms may jump to vacant sites with a jump rate ['5, and
B-atoms with a jump rate T's. (For simplicity, it is assumed that all pairwise interaction
energies are zero, and hence these jump rates do not depend on the occupation of

neighboring lattice sites).

Plot of g(N) = £n [(Zsaw(N)/(z - 1)™(Zsaw(N+2)/(z - 1)**?] versus 2/N (upper part)
and corresponding plot for the non-reversal random walk (NRRW) (lower part), Cases
(i), (i), (iv),(v} correspond to infinite temperature, while cases (iii} and (vi} correspond
to T =T,, the temperature of the adsorption transition. Cases (i} and (iv) refer to chains
with both ends anchored at the wall, while all other cases refer to *mushrooms” (chains
with one end anchored at the wall). Straight lines show the exponents quoted in the

figure. From Eisenriegler et al. (1982).

Probability distribution Py (s) of the magnetization s per spin of LxLxL subsystems of a
simple cubic Ising ferromagnet with N = 24° spins and periodic boundary conditions,
for zero magnetic field and temperature kgT/J = 4.0 (note that the critical temperature
occurs at about kaT. /J = 4.5114 (Ferrenberg and Landau 1991). Actually the
distribution is symmetric around s = 0 and thus another peak occurs around s = My,
that is not shown here. Note that the linear dimension L here and in the following
discussion of lattice models always is measured in units of the lattice spacing. From

Binder (1981a).

Fig. 4: Various examples for "dynamic Monte Carlo" algorithms for self-avoiding walks

Fig. 5

Fig. 6:

(SAWSs): sites taken by beads are shown by dots, and bonds connecting the bead are

shown by lines. Bonds that are moved are shown as wavy line (before the move) or
broken line {after the move), while bonds that are not moved are shown as full lines.
a) Generalized Verdier-Stockmayer (1962) algorithm on the simple cubic lattice
showing three types of motions: end-bond motion, kink-jump motion, 90° crankshaft
rotation; b) "slithering snake” algorithm; c) "pivot” algorithm. From Kremer and Binder

(1988).

= ! . . .
Examples of moves X, = X, commonly used in Monte Carlo simulations for some

standard models of statistical mechanics. {(a) Single spin-flip Ising model (interpreted
dynamically, this is the Glauber kinetic Ising model). (b) Nearest-neighbor exchange

Ising model (interpreted dynamically, this is the Kawasaki kinetic Ising model).

(c) Two variants of algorithms for the XY model, using a random number n equally
/ e . .
distributed between zero and one: left, the angle ¢, characterizing the new direction of

the spin is chosen completely at random; right, q:: is drawn from the interval [; - Ag,

@; + Ap] around the previous direction ¢;. (d) Moves of the coordinates of an atom in a
two-dimensional fluid from its old position(x;, y;) to a new position equally distributed

in the square of size (2Ax)(2Ay) surrounding the old position. (&) Moves of a particle in

. i
a given single-site potential V{$) from an old positicn ¢: to a new position §; . From

Binder and Heermann {1988).

Schematic evolution of the order parameter distribution P(s) fromT> T to T < T,

(from above to below, left part) for an Ising ferromagnet, where s is the magnetization



Fig. 7

Fig. 8:

per site, in a box of volume V = L* (= L* in d = 3 dimensions). The right part shows the
corresponding temperature dependence of the mean order parameter {Js]), the
susceptibility kaTx' = L? ({s?) - {s]?), and the reduced fourth-order cumulant U = -
{s*¥[3(s%)?). Dash-dotted curves indicate the singular variation that results in the

thermodynamic limit, L — 0.

Estimates of the spontaneous magnetization of the three-dimensional Ising model with
nearest-neighbor interaction J on the simple cubic lattice at a temperature kgT/] =
4.425 below criticality (kaTo/J = 4.5114, see Ferrenberg and Landau (1991)). These
estimates are obtained from extrapolating the size dependence of the position {Smax) of
the maximum of the probability distribution Py(s) of LxLxL subsystems of a total
system of size 24% and of moments (|s[), and {s®'2. The direct estimate for the

magnetization of the total system (My) is also included. From Kaski et al. {1984).

a) Magnetization (full curves) and percolation probability (broken curves) for thed = 2
nearest neighbor Ising ferromagnet plotted vs. reduced temperature for three system
sizes as indicated. Periodic boundary conditions were used throughout, and all data
were generated with the algorithm of Swendsen and Wang (1987). From D'Onorio de

Meo et al. {1990).

b) Normalized fluctuation of the largest cluster, N ((P:) - (P.,)z) , full curves, and

e 12
second moment of the cluster size distribution, Z £ n,, broken curves, plotted vs.

T/T., for the same model as in a). From D'Onorio De Meo et al. (1990).

Fig. 9:

Fig.10;

Fig.1l:

Schematic temperature variation of the normalized susceptibilities kg Ty (L,T) = L
{{m®) - (m)H) = LY {m? and kg Ty’ (LT) == L* (¢m?) - {|m|}2). The dash-dotted curve
iilustrates the observed behavior for LY ((m?) - (m)?) in simulations with the single spin
flip algorithm: for observation times tes of the order of the equilibration time 7, {note
ént, o L* £, (T), where £, (T) is the interfacial tension} one finds an interpolation
between kg Ty, (at high temperatures where tu. >> 7, ) and kaTy' (at low temperatures
where to, << 1. ). For small L and large t.. this "transition” may be rather far below T,
and should not be confused with the phase transition. For L — o, of course, this
temperature region between the temperature where to, =%, and T = T, shrinks and
ultimately vanishes: symmetry breaking at T, simply appears via "ergodicity breaking”.

From Binder and Heermann (1988},

Finite size scaling plot of keTy' L™ versus [g[L"” , where & = T/T. - L, for the two-
dimensional Ising model with nearest neighbor ferromagnetic interaction at the square
lattice. The exactly known value of T. (Onsager 1944) and of the critical exponents
{v=1, y=7/4, see e.g. Fisher (1974)} are used. Three different lattice sizes are
included, as indicated in the figure. Upper branch of the scaling function refersto T <

T, lower branch to T > T.. From D'Onorio De Meo et al. (1990).

Plot of {m?)/(jm|)? versus reduced temperature, for a lattice model of a symmetrical
polymer mixture {using the bond fluctuation model with chain lengths No=Ng =N =
128 at volume fraction ¢ = 0.5 of occupied sites, and a square well interaction &(= 4
=-ganf2 =-€ga/2) of range«/g }. Three lattice sizes are shown as indicated, and a

semi-grand canonical ensemble is used {(allowing attempted moves while chains change



Fig.12:

Fig.13:

their identity, A <> B, at fixed configuration, in addition to local hopping moves that

relax the chain configurations). Smooth curves are based on multihistogram

extrapolations (Ferrenberg and Swendsen 1989). From Deutsch and Binder (1992).

Plot of the cumulant U,(T.) for the two-dimensional Ising transition in thin films of

thickness D with competing surface fields H, = - Hp = 0.55] versus the crossover
scaling variable E;p/L. Here £ = exp(x.D/2) where K;l =& {1 + @/2), &, being the

true correlation length in the bulk, and w (= 0.86) is the universal amplitude associated
with interfacial stiffness. Arrow on the ordinate shows the universal value of the d = 2

Ising universality class, U* = 0.615. From Binder et al. (1996).

Schematic variation of the specific heat and internal energy with temperature near a

temperature-driven first order transition at T, {left part). The energy jumps from E. {for

T T,)t0E.(for T > T: }, E. - E. being the latent heat (this jump gives the delta
function in the specific heat), Full curve in the lower part shows the equilibrium
behavior in a finite system (observed for to, >> 1, ), while broken curves indicates the
hysteresis (metastable states) that one may observe for ta, << 1. . In the right part, the
variation of the susceptibility and magnetization at the field-driven transition of the
Ising model at H = 0 is shown schematically. Now the delta fitnction singuiarity of
represents the magnetization jump from -my, to +m,,. Again for M(H) the full curve
shows the equilibrium behavior (tw. >> 1. ), while broken curves indicate metastable

states (for tu << 1, ). From Binder and Heermann (1988),

Fig.14 a) Susceptibility 3 (H,T,L) of nearest neighbor Ising square lattices at keT/T = 2.1

plotted versus magnetic field for various L's. Curves are guides to the eye only.

b) Same data replotted in scaled form, x(H,T,L)/L? plotted versus scaled field HL#J.

1 .
Arrow indicates the asymptotic value m,,,, J/ ksT calculated from the exact solution

(Yang 1952). Note that keT./J = 2.269 for the Ising model (Onsager 1944). Broken
curve is the scaling function cosh? (...) from Eq. (121), omitting the additive constant

x'. From Binder and Landau (1984),

Fig.15: a) Plot of g.(T) (Eq. (127)} vs. the normalized temperature distance -A(T - T.), where

A is the scaled latent heat, A = (E_- E, ) 1./ m:wm Te), for a susceptibility ratio x* =
%+ /1. = 4. Parameter of the curves {calculated from Eq. (125)} is the rescaled linear
dimension £ =L (mfml 12 %Te )™

b) Plot of g (T} as obtained from Monte Carlo simulations for the 3-state Potts model

ind =3. From Vollmayr et al. (1993).

Fig.16:a) The phase diagram of the nearest neighbor Ising antiferromagnet on the fcc lattice in

the field-temperature plane near the AB(TTLL) - A;B(T111) transition line. The
transition points were obtained by thermodynamic integration (full symbols) or by
direct inspection of the order parameter hysteresis loops (open symbols). All transition
lines are of first order (note that the lines connecting the points are guides to the eye
only). Errors are not shown, since error bars are always smaller than the symbol size.
b) Same as a) but in the magnetization-temperature plane. The first order lines of part
a) correspond te two-phase regions, which become extremely narrow 2s the

temperature approaches the triple {or multicritical) point. From Kimmerer et al, (1996)



Fig.17: Boundary conditions for a two-dimensional Ising system which lead to the formation of

an interface below the critical point, (&) Spins are fixed at = | at the boundaries, as
indicated. Thick solid line denotes the position x;(y) of the (coarse-grained} interface
between the phases with negative and positive spontaneous magnetization. The limit L
-» @, M — o is considered. (b) Standard boundary conditions for the computer
simulation of a system containing an interface. Instead of fixed spins at the two free
surfaces one may apply boundary fields of opposite sign that stabilize the two phases.
Note that the linear dimension M must satisfy M >> 2E, where  is the bulk correlation
length of order parameter fluctuations. (¢) Boundary conditions of a reference system
without an interface. (d) Finite system with periodic boundary conditions in all
directions and its order parameter distribution Po(p) (schematic). Then near an order
parameter p = paia @ minimum of Pr(p) develops, which corresponds to a situation with
two interfaces running parallel to a lattice direction through the system (left part).
These interfaces separate the pure phases with order parameters <p.> and <p>

corresponding to the maxima of the distribution. From Binder (1982).

Fig.18: Order parameter profile of the layer magnetization m, vs. layer number n of a nearest

neighbor Ising ferromagnet on the simple cubic lattice at T/Ty = 0.9554, using a
LxLxD geometry with boundary fields H/J = -0.55 at the LxL plane situated at o =0,
HyI=+055atn=D+ 1, and L = 128. Arrows show the values of the positive and
negative spontaneous magnetization, & my. The table shows the values estimated for the
width w of the interface for the various thin film thicknesses D (all lengths being

measured in units of the lattice spacing). From Kerle et al. (1996).

Fig.19:

Fig.20:

Fig.21:

Onsager coeflicients Aag {upper part) and Axa (lower part} for a two-dimensional non-
interacting random allay model (ABV model, cf. Fig 1) plotted vs. [a/Ta (left part) or
concentration ca (right part), with c, as parameter (a) or Tw/Ts as parameter (b). Al

data were obtained from LxL square lattices with L = 80 and cv = 0.004. Curves are

guides to the eye only. From Kehr et al. (1989).

Amplitudes of concentration waves with wavelengths A as a function of time t (in units
of Monte Carlo steps (MCS) per particle), after a chemical potential variation with the
same wavelength has been shut off at t = 0. Open circles represent A-atoms, full dots
B-atoms, for a lattice of L? sites, with L = 80, cx = ca = 0.48, cv = 0.04, TaTs =0.1.
Three different wavelengths A are shown (the arrow indicates the initial concentration
amplitude for A = 40). Note that one must choose Av = L with v integer, to comply
with the periodic boundary conditions. The curves represent theoretical predictions,
based on the use of actual Onsager coefficients (cf. Fig. 19) in a mean field theory
based on Eqs. (139)-(141) {for cv — 0 this theory predicts a single exponential decay
proportional to exp[-Di(2r/A)*] with D; given by Eq. (142), while for nonzero cv ca(t),

ca(t) decay with superpositions of two exponentials). From Kehr et al. (1989).

Herringbone structure order parameter for Na adsorbed on graphite plotted vs.
temperature. Center of gravity of the 900 Nz molecules are fixed in the plane where the
graphite potential {as parametrized by Steele (1978)} has its minimum on the regular
sites of a triangular lattice, allowing only for one rotational degree of freedom () per
molecule. Apart from the corrugation potential nitrogen atoms interact with Lennard-
Jones forces and quadrupole-quadrupole interactions. Full line: quantum simulation;

dotted line: classical simulation; dashed line: quasiharmonic theory; triangles: Feynman-



Hibbs expansion around classical path, Insert shows corresponding data for the energy.

From Marx et al. {1993a).

Abraham DB 1986 MMQ_C@;;,I_PMQQ_OL_]Q ed. Domb C and
Lebowitz JL (London: Academic)

Abraham FF 1974 Homogeneous Nucleation Theary (New York: Academic)

Abraham FF, Schreiber DE and Barker J 1974 J. Chem. Phys. 60 1976

Albano EV, Binder X, Heermann DW and Paul W 198%a Z. Physik B77 445

Albano EV, Binder K, Heermann DW and Paul W 1985b J. Chem. Phys. 91 3700

Alder BJ and Wainwright TE 1962 Phys. Rev. 127 359

Alejandre J, Tildesley DF and Chapela GA 19952 Mol. Phys. 85 651

Alejandre J, Tildesley DF and Chapela GA 1995b J. Chem. Phys. 102 4574

Alexandrowicz Z 1975 J. Stat. Phys. 13 231

Alexandrowicz Z 1976 J. Stat. Phys. 14 1

Allen MP 1995 Monte Carlo and Molecular Dynamics of Condensed Matter Systems eds
Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 255

Allen MP and Tildesley DJ 1987 Computer Simulation of Liquids (Oxford: Clarendon)

Allen MP and Tildesley DJ 1993 eds Computer Simulation in Chemical Physics (Dordrecht:
Kluwer)}

Amar JG, Sullivan FE and Mountain RD 1988 Phys. Rev. B37 196

Baker GA Jr and Kawashima N 1995 Phys. Rev. Lett, 75 994

Baker GA Ir and Kawashima N 1996 J. Phys. A: Math. Gen.

Barber MN 1983 Phase Transitions and Critical Phenomena, Vol 8 eds. C Domb and JL
Lebowitz (New York: Academic) p. 145

Barkema GT and Marko JF 1993 Phys. Rev, Lett. 71 2030

Batoulis I and Kremer K 1988 J. Phys. A21 127

Batrouni GG, Katz GR, Kronfeld AS, Lepage GP, Svetitsky B and Wilson KG 1985 Phys.
Rev. D32 2376

Baumgirtner A 1985 J. Polym. Sei. C Symp. 73 181

10



Ben-Av R, Kande! D, Katznelson E, Lauwers PG and Solomon 5 1990 J. Stat. Phys. 38 125

Berg BA 1992 Dynamics of First Order Phase Transilions eds. Herrmann HJ, Janke W and
Karsch F (Singapore: World Scientific)

Berg BA and Neuhaus T 1992 Phys. Rev. Lett. 68 9

Berg BA, Hansmann U and Neuhaus T 1993 Z. Physik B0 229

Berne BJ and Thirumalai D 1986 Annu. Rev. Phys. Chem. 37 401

Bhanot G, Creutz M and Neuberger H 1984 Nucl. Phys. B235 417

Bhanot G, Duke D and Salvador R 1986 J. Stat. Phys. 44 985

Billoire A, Lacaze R and Morel A 1992 Nucl. Phys. B370 773

Bilioire A, Neuhaus T and Berg BA 1993 Nucl. Phys. B396 779

Binder K 1972 Physica 62 508

Binder K 1974 Thin Solid Films 20 367

Binder K 1976 Ann. Phys. 98 350

Binder K 1981a Z. Phys. B43 119

Binder K 1981b Z. Phys. B45 61

Binder X 1982 Phys. Rev. A25 1699

Binder K 1983 J. Chem. Phys. 79 6387

Binder K 1985 Z, Phys. B61 13

Binder K 1986 Advances in Solid State Physics, Vol, 26 ed. Grosse P (Braunschweig: Vieweg)
p. 133

Binder K 1987a Ferroelectrics 73 43

Binder K 1987b Rep. Progr. Phys. 50 783

Binder K 1992a Computational Methods in Field Theory eds Gausterer H and Lang CB
(Berlin: Springer) p. 59

Binder K (ed) 1992b The Monte Carlo Method in_Condensed Matter Physics (Berlin:

Springer)

Binder K {ed) 1995 Monte Carlo and Molecular Dynamics Simulations in Polymer Science
(New York: Oxford University Press)

Binder K and Deutsch HP 1992 Europhys. Lett. 18 667

Binder ¥ and Heermann DW 1988 Monte Carlo Simulation in Statistical Physics. An
Introduction (Berlin: Springer)

Binder K and Hohenberg PC 1974 Phys. Rev. B2 2194

Binder K and Kalos MH 1979 Monte Carlo Methods in Statistical Physics ed Binder K
(Berlin: Springer) Chapter 6

Binder K and Kalos MH 1980 J. Stat. Phys. 22 363

Binder K and Landau DP 1980 Phys. Rev, B21 1941

Binder K and Landau DP 1984 Phys, Rev. B30 1477

Binder K and Landau DP 1989 Molecule-Surface Interaction ed Lawley KP (New York:
Wiley) p. 91

Binder K and Landau DP 1992 J. Chem. Phys. 96 1444

Binder K and Paul W 1997 J. Polym. Sci., Part B: Polymer Phys

Binder K and Reger JD 1992 Adv. Phys. 41 547

Binder K and Sillescu H 1989 in Encyclopedia of Polymer Science and Engineering, Suppl.
Yol ed Mark H (New York: Wiley) p. 297

Binder K and Stauffer D 1972 J. Stat. Phys. § 49

Binder K and Stauffer D 1976 Advanc. Phys. 25 343

Binder K and Wang JS 1989 I. Stat. Phys. 55 87

Binder K and Young AP 1986 Rev. Mod. Phys. 58 801

Binder K, Bowker M, Inglesfield JE, and Rous PJ 1995 Cohesion and Structure of Surfaces
{Amsterdam: Elsevier)

Binder K, Evans R, Landau DP and Ferrenberg AM 1996 Phys. Rev, E53 5023;

Binder K, Landau DP and Wansleben S 1989 Phys. Rev. B40 6971



Binder K, Nauenberg M, Privman V and Young AP 1985 Phys. Rev. B31 1498

Binder K, Rauch H, and Wildpaner V 1970 I. Phys. Chem. Solids 3] 391

Blote HWT and Nightingale MP 1982 Physica A112 405

Blote HWJ and Nightingale MP 1989 J. Stat. Phys. 33 285

Borgs C and Kappler $ 1992 Phys. Lett. A17{ 37

Borgs C and Kotecky K 1990 I. Stat. Phys. 61 79

Borgs C, Kotecky R and Miracle-Sole § 1991 J. Stat. Phys. 62 529

Borniz AB, Kalos MH, and Lebowitz JL 1975 J. Comput. Phys. 17 10

Bray AJ 1994 Adv. Phys. 43 357

Brézin E 1982 J. Phys, (France) 43 15

Brézin E and Zinn-Justin J 1985 Nucl. Phys. B257 [F$14] 867

Brochard F, Jouffray J and Levinson P 1983 Macromolecules |6 2638

Brown RG and Ciftan M 1996 Phys. Rev. Lett. 76 1352

Bruce AD 1996 preprint

Cardy JL and Nightingale MP 1983 Phys, Rev. B27 4256

Carlsson J 1988 Phys. Rev. C38 1879

Carmesin I and Kremer K 1988 Macromolecules 21 2819

Ceperley DM 1996 Monte Carlo and Molecular Dynamics of Condensed Matter Systems eds
Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 443

Ceperley DM and Kalos MH 1979 Monte Carlo Methods in_Statistical Physics ed Binder K
(Berlin: Springer) p. 145

Challa MSS and Hetherington JH 1988 Phys, Rev, A38 6324

Challa MSS, Landau DP, and Binder K 1986 Phys. Rev. B14 1841

Ciccotti G and Ferrario M 1996 Monte Carlo and Molecular Dynamics of Condensed Matter

Systems eds Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 107

Ciccotti G and Hoover WG 1986 eds. Molecular Dynamics of Condensed Matter Svstems

(Amsterdam; North-Holland)
Cicootti G and Ryckaert J-P 1980 Molec. Phys. 40 141
Compagner A 1991 Amer. J. Phys. 59 700
Compagner A 1995 Phys. Rev. E52 5634
Compagner A and Hoogland A 1987 J. Comput. Phys. 71 391
Coniglio A and Klein W 1980 J. Phys. A]3 2775
Creutz M 1983 Phys. Rev. Lett. 50 1411
Creutz M 1987 Phys. Rev. D36 515
Dagotto E and Kogut J 1987 Phys. Rev. Lett. 58 299
Desai RC, Heermann DW and Binder K 1988 J. Stat, Phys. 53 795
Deutsch H-P 1993 J. Chem. Phys. 99 4825
Deutsch H-P and Binder K 1992 Macromolecules 25 6214
Deutsch H-P and Binder K 1993a J. Phys. II (France) 3 1049
Deutsch H-P and Binder K 1993b Macromol. Symp. 65 59
Doll ID and Dion DR 1976 J. Chem. Phys, 65 3762

Domb C and Green MS 1976 eds Phase Transitions and Critical Phenomena, Vol 6 (London:

Acadenic)

Dietrich 5 1988 Phase Transitions_and Critical Phenomena_ Vol Xl eds Domb C and
Lebowitz JL (London: Academic) p. 1

Diinweg B 1996 Monte Carlg an lecular Dynamics of Condensed Matter Systems eds
Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 215

Diinweg B and Binder K 1987 Phys. Rev. B35 6935

Edwards RG and Sokal AD 1988 Phys. Rev. D38 2009

Edwards RG and Sokal AD 1989 Phys. Rev. D40 1374

Eichhorn K and Binder K 1995 Europhys. Lett. 30 331



Eichhorn K and Binder K 1996 J. Phys.: Condensed Matter § 5209

Eisenriegler E, Kremer K and Binder K 1982 ]. Chem. Phys. 77 6296

Ermak DL and Mc Cammon JA 1978 ], Chem. Phys. 69 1352

Escobedo FA and de Pablo JJ 1995 J. Chem. Phys. 103 2703

Family F and Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific)

Feder J 1988 Fractals (New York: Plenum)

Ferrenberg AM and Landau DP 1991 Phys. Rev. B44 5081

Ferrenberg AM and Swendsen RH 1988 Phys. Rev. Lett. 61 2635

Ferrenberg AM and Swendsen RJ 1989 Phys. Rev. Lett. 63 1195

Ferrenberg AM, Landau DP and Wong YT 1992 Phys. Rev. Lett. 69 3382

Fisher ME 1967 Physics 3 267

Fisher ME 1971 Critical Phenomena ed MS Green (New York: Academic) p. |

Fisher ME 1974 Rev. Mod. Phys. 46 587

Fisher ME and Berker NA 1982 Phys. Rev. B26 2507

Fisher ME and Nakanishi H 1981 J. Chem. Phys. 75 5857

Fisher ME and Privinan V 1985 Phys. Rev. B32 447

Fortuin CM and Kasteleyn PW 1972 Physica 37 536

Freirie F, O'Connor D and Stephens CR 1994 J. Stat. Phys. 74 219

Frenkel D 1993 Computer Simulation_in Chemical Physics eds. Allen MP and Tildesley DJ
(Dordrecht: Kluwer) p. 93

Frenkel D and Smit B 1996 Understanding Molecular Simulation: From Algorithms to
Applications (New York: Academic)

Frick M, Pattnaik PC, Morgenstern I, Newns DM and von der Linden 1990 Phys. Rev. B42
2665

Furukawa H and Binder K 1982 Phys. Rev. A26 556

de Gennes PG 1979 Scaling Concepts in Polymer Physics (Ithaca, N.Y.: Cornell Univ, Press)

Gerling RW and Hiller A 1993 Z. Physik B30 207

Gillan MJ and Christodolous F 1993 Int. J. Mod. Phys. C4 287

Glauber RJ 1963 J. Math. Phys. 4 293

Goodman J and Sokal AD 1986 Phys. Rev. Lett. 36 1015

Goodman J and Sokal AD 1989 Phys. Rev. D40 2035

de Grand T 1992 Computational Methods in Field T eds. Gausterer H and Lang CB
{Berlin: Springer) p. 159

Gross DHE, Ecker A, and Zhang XZ 1996 Ann. Physik 5 446

Gubemnatis JE and Kawashima N 1996 Monte Carlo and Molecular Dy‘namics of Condensed
Matter Systems eds Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 319

van Gunsteren WE, Berendsen HIC and Rullmann JAC 1981 Molec. Phys. 44 69

Gunton JD, San Miguel M and Sahni PS 1983 Phage Transitions and Critica! Phenomena, Vol
8 eds Domb C and Lebowitz JL (New York: Academic) p. 267

Guttmann AJ 1989 Phase Transitions and Critical Phenomena, Vol 13 eds Domb C and
Lebowitz JL. (London: Academic)

Hammersley JM and Handscomb DC 1964 Monte Carlo Methods (London: Chapman and
Hall)

Hammond BL, Lester WA Jr and Reynolds PJ 1994 Monte Carlo Methods in_ab_tnitio
Quantum Chemistry (Singapore; World Scientific)

Hammrich O 1993 Z. Phys. B32 501

Hansmann U, Berg BA and Neuhaus T 1992 Int. J. Mod. Phys. C3 1155

Harris R 1985 Phys. Lett. 111A 299

Hasenbusch M and Meyer S 1991 Phys. Rev. Lett. 66 530

Hasenbusch M and Pinn K 1993 Physica A 192 342

Hasenbusch M and Pinn K 1996 preprint HUB-EP-96/12

Hasenbusch M, Meyer § and Mack G 1991 Nucl. Phys. B (Proc. Suppl) 20 110



Heermann DW 1996 Monte Carlo and lar Dynamics of ed Matter ms ¢ds
Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 887

Heermann DW and Burkitt AN 1990 Physica A162 210

Heermann DW and Burkitt AN 1992 The Monte Carlo Method in Condensed Marter Physics
(Berlin: Springer) p. 53

Heermann DW and Stauffer D 1980 Z. Phys. B40 133

Herrmann HJ 1986 Phys. Rep. 135 143

Herrmann HJ, Janke W and Karsch F 1992 eds Dynamics_of First Qrder Phase Transitions
(Singapore: World Scientific)

Heuer H-O 1990 Computer Phys. Commun. 59 387

Hill TL 1956 Statistical Mechanics (New York: McGraw Hill)

Hill TL 1963 Thermodynamics of Small S!E!. ems (New York: Benjamin)

Hohenberg PC and Halperin BI 1977 Rev. Mod. Phys. 49 435

Holm C and Janke W 1996 Phys. Rev. Lett.

Hu CK 1984 Phys. Rev. B29 5103

Hu CK and Mak SK 1989 Phys. Rev. B40 5007

Hilller A 1992 Z. Phys. B88 79

Haller A 1994 Z. Phys. B9S 63

Imry Y 1980 Phys. Rev. B2} 2042

Imry Y 1984 J. Stat. Phys. 34 849

Ito N and Suzuki M 1991 Phys. Rev. B43 3483

James F 1990 Computer Phys. Commun, 60 329

Jannink G and des Cloizeaux J 1990 Polymers in Solution: Their Modeling and_Their Structure

{Oxford: Oxford University Press)

Janke W 1994 Computer Simulation Studies in Condensed Matter Physics VII eds. Landau

DP, Mon KK and Schiittter H-B (Berlin: Springer) p- 29

17

Janke W and Kappler S 1995 Phys. Rev. Lett. 74 212

Janke W and Sauer T 1994 Nucl. Phys. B (Proc. Suppl.) 34 771

Janke W and Sauer T 1995 J. Stat, Phys. 78 75

Kalos MH 1984 Monte Cario Methods in Quantum Problems (Dordrecht: Reidel)
Kalos MH and Whitlock P 1986 Monte Carlo Methods I; Basics

Kémmerer §, Dinweg B, Binder K, and D'Onorio de Meo M 1996 Phys. Rev. B53 2345
Kandel D and Domany E 1991 Phys. Rev. B43 8539

Kandel D, Ben-Av R and Domany E 1990 Phys. Rev. Lett, 63 941

Kandel D, Dotmany E and Brandt A 1989 Phys. Rev. B40 330

Kaski KK, Binder X and Gunton JD 1984 Phys. Rev. B29 3996

Katori M and Suzuki M 1987 J. Phys. Soc. Jpn 56 3113

Kawasaki K 1972 Phase Transitions and Critical Phenomena, Yol 2 eds Domb € and Green

MS (New York: Academic) p. 443

Kehr KW and Binder K 1984 Applications of the Monte Cara Method in Statistical Physics ed
Binder K (Berlin: Springer) Chapter 6

Kehr KW, Binder X and Reulein SM 1989 Phys. Rev. B39 4891

Kerle T, Klein J and Binder X 1996 Phys. Rev, Lett. 77 1318

Kikuchi M and Ito N 1993 J. Phys. Soc. Jpn 62 3052

Kim JK 1993 Phys. Rev. Lett. 70 1735

Kirkpatrick § 1979 Ill-Condensed Maiter eds Balian R, Maynard R and Toulouse G
{Amsterdam: North-Holland) p. 321

Kirkpatrick § and Stoll EP 1981 I. Comput. Phys, 40 517

Knuth D 1969 The Art of Computer Programming, Vol 2 (Reading, MA: Addison-Wesley)

Kramer EJ, Green P, and Palmstrom CJ 1984 Polymer 25 437

Kreer M and Nielaba P 1996 Monte Carlo_and Molecular Dynamics of Condensed Matter

Systems eds Binder K and Ciccotti G (Bologna: Italian Physical Society) p. 501



Kremer K and Binder K 1988 Computer Phys. Rep. 7 259

Kremer K and Grest GS 1990 J, Chem. Phys. 92 5057

Kremer K and Grest GS 1995 Monte Carlo and Molecular Dynamics Simulations in Polymer
Science ed Binder K (New York: Oxford Univ. Press) p. 194

Kremer K, Baumgiriner A and Binder K 1982 J. Phys. A15 2879

Krinsky S and Mukamel D 1977 Phys. Rev. B16 2313

Kumar SK 1994 Computer Simulation of Polymers ed Colbourn EA (Harlow: Longman) p.
228

Landau DP 1992 The Monte Carlo Method in Condensed Matter Physics ed Binder K (Berlin:
Springer) p. 23

Landau DP 1996 Mogte Carlo and Molecular Dynamics of Condensed Matter Systems eds
Binder K and Ciccotti G (Bologna: Italian Physical Society} p. 309

Landau DP 1976a Phys. Rev. B13 2997

Landau DP 1976b Phys. Rev. B14 255

Landau DP and Binder K 1985 Phys. Rev. B3] 5946

Landau DP and Binder K 1990 Phys. Rev. B4] 4633, 4786

Landau DP and Pai § 1996 Thin Solid Films 272 184

Landau DP, Tang SY and Wansleben 5 1989 J. Phys. (Paris) 49, Colloq. 8, 1525

Landau LD and Lifshitz EM 1958 Statistical Physics (Oxford: Pergamon)

Leamy HI, Gilmer GH, Jackson KA and Bennema P 1973 Phys. Rev. Lett. 30 601

Lee J 1993 Phys. Rev. Lett. 71 211

Lee J and Kosterlitz JM 1991 Phys. Rev. B43 3265

Lee JK, Barker JA and Abraham FF 1973 J. Chem. Phys. 58 3116

Lee KC 1995 J. Phys. A: Math. Gen. 28 4835

Lehmer DH 1951 Proceedi he 2nd_Symposium on Large-Scale Digital

Machinery (Cambridge, MA: Harvard Univ. Press) p. 142

Lemak AS and Balabaev NK 1995 Molecular Simulation 15 223

Levesque D, Weis JJ, and Hansen JP 1984 Applications of the Monte Carlo Method in
Statistical Phystcs ed Binder K (Berlin: Springer) p. 37

Li XJ and Sokal AD 1989 Phys. Rev. Lett, 63 827

Li XJ and Sokal AD 1991 Phys. Rev. Lett. 67 1482

Linke A, Heermann DW and Altevogt P 1995 Computer Phys. Commun. 30 66

Linke A, Heermann DW, Altevogt P and Siegert M 1996 Physica A 222 205

Litz P, Langenbach S and Hiiller A 1991 ). Siat. Phys. 66 1659

Liverpool TB and Glotzer SC 1996 Phys. Rev. E53, R4255

Lutjten 1996 preprint

Luijten E and Blote HWJ 1996 Phys. Rev. Lett. 76 1557

Luijten E, Blote HWJ, and Binder K 1996 Phys. Rev. E54

Lyubartsev AP, Martsinovski AA, Shevkunov SV and Vorontsov-Velyaminov PN 1992 ),
Chem. Phys. 86 1776

Machta J, Choi YS, Lucke A, Schweizer T and Chayes LV 1995 Phys, Rev. Lett 75 2792

Madras N and Sokal AD 1988 J. Stat, Phys, 50 109

Mandelbrot BB 1982 The Fractal Geometry of Nature (San Francisco: Freeman)

Margolina A and Herrmann HY 1984 Phys, Lett, {04A 295

Marinari E and Parisi G 1992 Europhys. Lett. 19 457

Marsaglia GA 1968 Proc. Natl. Acad. Sci. (USA) 61 25

Marsaglia GA 1985 Computer Science and Statistics; The Interface ed L Billard (Amsterdam:
Elsevier) p. 1

Marsaglia GA, Narasumhan B and Zaman A 1990 Computer Phys. Commun. 60 345

Marx D 1994 Molecular Simulation 12 33

Marx D and Nielaba P 1992 Phys. Rev. A45 8968

Marx D, Opitz O, Nielaba P and Binder K 1993a Phys, Rev, Lett, 70 2908



Marx D, Sengupta S and Nielaba P 1993b J. Chem. Phys. 99 6031

Marx D, Sengupta S, Opitz O, Nielaba P and Binder K 1994 Molecular Phys. 83 31

Meakin P 1988 Phase Trapsitions and Critical Phenomena, Vol 12 eds Domb C and Lebowitz
JL (New York: Academic) p. 336

Meirovitch H and Alexandrowicz Z 1977 Molecular Phys. 34 1027

Metropolis N, Rosenbluth AW, Rosenbluth MN, Tellér AH and Teller E 1953 I, Chem. Phys.
211087

Milchev A, Binder K and Heermann DW 1986 Z. Phys. B63 521

Mon KK 1988 Phys. Rev. Lett. 60 2749

Mon KK 1996 Europhys. Lett, 34 399

Mon KK and Binder K 1992 J. Chem. Phys. 96 6989

Mon KK and Binder K 1993 Phys. Rev. E48 2498

Mon KK and Jasnow D 1984 Phys. Rev. A30 670

Mon KK, Wansleben S, Landau i)P and Binder K 1989 Phys. Rev. B39 7089

Mouritsen OG 1990 Kinetics of Qrdering and Growth at Surfages ed Lagally MG (New York:
Plenum) p 1

Miiller M and Binder K 1995 Macromolecules 28 1825

Milller M and Paul W 1994 J. Chem. Phys. 100 719

Miiller M and Wilding NB 1995 Phys. Rev. E5] 2079

Miiller M, Binder K and Oed W 1995 J. Chem. Soc,, Faraday Trans. 91 2369

Muller-Krumbhaar H and Binder K 1972 Z. Physik 254 269

Miller-Krumbhaar H and Binder K 1973 J, Stat. Physik 8 1

Miiser MH 1996 Molecular Simulation [7 131

Miiser MH and Nielaba P 1995 Phys. Rev. B52 7201

Miiser MH, Nielaba P and Binder K 1995 Phys. Rev. BS] 2723

Najafabadi M and Yip S 1983 Scr. Metall. 17 7199

Nattermann T and Villain J 1988 Phase Transitions 11 5

Nienhuis B 1984 J, Stat. Phys. 34 731

Novotny MA 1993 Phys. Rev. Lett. 70 109

Novotny MA 1995 Phys. Rev. Lett

Oed W 1982 Angew. Informatik 7

Ohno K and Binder K 1991 I. Stat. Phys. 77 6296

.14l

358

de Oliveira PMC, Penna TIP and Herrmann HJ 1996 Brazilian J. Phys. 26 677

d'Onorio de Meo M, Heermann DW and Binder K 1990 J. Stat. Phys. 60 585

d'Onorio de Meo M, Reger JD and Binder K 1995 Physica A220 628

Onsager L 1944 Phys. Rev. 65 117

de Pablo J7, Laso M and Suter UW 1992 I, Chem. Phys. 96 2394

Palmer RG 1982 Adv. Phys. 31 669

Panagiotopoulos AZ 1987 Molec. Phys. 6] 813

Panagiotopoulos AZ 1992 Molecular Simulation § |

Panagiotopoulos AZ 1994

Levelt-Sengers IMH (Dordrecht: Kluwer)

Pandey RB, Milchev A and Binder K 1996 preprint

Parisi G and Ruiz-Lorenzo JJ 1996 Phys. Rev. B34 3698

Parrinello M and Rahman A 1980 Phys, Rev. Lett. 45 1196

Patrascioiu, A and Seiler E 1994 Phys. Rev. Lett. 73 3325

reritical Fluids-Fundamentais for Application eds Kiran E and

Paul W, Binder K, Heermann DW and Kremer K 1991 I. Phys. (Paris) [[ ] 37

Pereyra V, Nielaba P and Binder K 1993 J. Phys.: Condens, Matter § 6631

Pereyra V, Nielaba P and Binder K 1995 Z. Phys. B97 179

Potts RB 1952 Proc. Cambr. Philos. Soc. 48 106

Privman V (ed) 1990 Finit

(Singapore: World Scientific)

caling and th

umerical

imulation of Statistical



Privman V and Fisher ME 1983 J. Stat. Phys. 33 285

Privman V and Rudnick J 1990 J. Stat. Phys. 60 551

Promberger M and Hiiller A 1995 Z. Phys. BZ7 341

de Raedt H 1996 Molecular Dynami ndensed r Systems ed
Binder K and Ciccotti G (Bologna: Societa [taliana di Fisica) p. 401

de Raedt and Lagendijk 1985 Phys. Rep, 127 233

de Raedt H and von der Linden 1992 The Monte Carlo Method in Condensed Matter Physics
ed. Binder K (Berlin: Springer) p. 249

Rao M and Beme BJ 1978 Mol, Phys. 37 455

Rao M and Levesque D 1976 J. Chem. Phys. 63 3233

Ray JR 1991 Phys. Rev. Ad4 4061

Ray JR 1993 J. Chem. Phys. 98 2263

Recht JR and Panagiotopoulos 1993 Moi. Phys. 80 843

Reger JD and Young AP 198 Phys. Rev. B37 5987

Rickwardt Ch, Nielaba P, and Binder K 1994 Ann. Phys. (Leipzig) 3 483

Rieger H 1995 Phys. Rev. B32 6659

Rouault Y, Baschnagel J and Binder K 1995 J. Stat. Phys. 80 1009

Rovere M, Heermann DW and Binder K 1588 Europhys. Lett. 6 585

Rovere M, Heermann DW and Binder K 1990 J. Phys.: Condens. Matter 2 7009

Rovere M, Nielaba P and Binder K 1993 Z, Physik B3¢ 215

Rosenbluth MN and Rosenbluth AW 1955 J. Chem. Phys. 23 356

Sadiq A 1984 J. Comput. Phys. 35 387

Sadiq A and Binder K 1983 Surf. Sci. 128 350

Sadiq A and Binder K 1984 J. Stat. Phys. 35 517

Salsburg ZW, Jacobson D, Fickett W and Wood WW 1959 J. Chem. Phys. 30 65

Sariban A and Binder K 1987 J. Chem. Phys. 86 5859

Sariban A and Binder K 1988 Macromolecules 21 711

Schmid F and Binder K 1992a Phys. Rev. B46 13533

Schmid ¥ and Binder K 1992b Phys. Rev. B46 13565 '

Schmidt KE and Ceperley DM 1992 The Monte Carlo Method in Condensed Matter Physics
ed Binder K (Berlin: Springer) p. 203

Schmidt KE and Kalos MH 1984 Applications of the Monte Carlo Method in Statistical
Physics ed Binder K (Berlin: Springer) p. 125

Schmittmann B and Zia RKP 1995 The Phase Transitions and Critical Phenomena Vol 17 eds
Domb C and Lebowitz JL (London: Academic)

Schwartz M 1991 Europhysics Lett, 15 777

Schweika W, Landau DP and Binder K 1996 Phys. Rev. B33 8937

Selke W 1988 Phys. Rep. 170 213

Shockley W 1938 J. Chem. Phys. § 130

Siepmann JI 1989 Molec. Phys. 70 1145

Siepmann JI and Frenkel D 1992 Motec. Phys. 15 59

Smit B 1988 Phys. Rev. A37 3481 *

Smit B 1993 Computer Simulation in Chemical Physics eds Allen MP and Tildesley DJ
(Dordrecht: Kluwer) p. 173

Sokal AD 1993 te Carlo an lecular Dynamics Simulations in Polymer Science ed
Binder K (New York: Oxford Univ. Press) Ch. 2

Sprik M 1996 Monte Carlo and Molecular Dynamics of Condensed Matier Systems eds Binder
K and Ciccotti G (Bologna: Societa Italiana di Fisica) p. 43

Stauffer D 1979 Phys. Rep. 54 1

Stauffer D 1985 An Introduction to Percolation Theory (London: Tayler and Francis)

Stauffer D and Aharony A 1992 Int tion_to_Percolation Th (Basingstoke Hauts:

Taylor and Francis)



Steele WA 1978 J. Phys. Chem. 82 817

Stoll E, Binder K and Schneider T 1973 Phys. Rev. B8 3266

Stephanow MA and Tsypin MM 1991 Nucl. Phys. B356 420

Swendsen RH and Wang JS 1937 Phys. Rev, Lett. 58 86

Swendsen RH, Wang JS and Ferrenberg AM 1992 The Monte Carlo Method in Condensed
Matter Physics ed Binder K (Berlin: Springer) p. 75

Suzuki M 1986 ed Quantum Monte Carlo Methods (Berlin: Springer)
Suzuki M 1992 ed Quantum Monte Carlo Method in Condensed Matter Physics {Singapore:

World Scientific)

Tamayo P, Brower RC and Klein W 1990 J. Stat. Phys. 58 1083

Tausworthe RC 1965 Math. Comput. 12 201

di Tolla FD, Tosatti E and Ercolesi F 1996 Monte Carlo and Molecular Dynamics of
Condensed_Matter Systems eds Binder K and Ciccotti G (Bologna: Societa ltaliana di
Fisica) p. 345

Tsypin VA 1954 Phys. Rev. Lett. 73 2013

Valleau IP 1993 I. Chem. Phys. 99 4718

Valleau JP and Torrie GM 1977 Quantum Statistical Mechanics, Part A: Equilibrium

Techniques ed. Berne BI p. 169 (New York: Plenum)

Van Beijeren H and Nolden I 1987 Structure and Dynamics of Surfaces I eds Schommers W
and Van Blanckenhagen P (Berlin: Springer)

Verdier PH and Stockmayer WH 1962 J. Chem. Phys. 36 227

Vollmayr K, Reger ID, Scheucher M and Binder K 1993 Z. Physik B91 113

Wall FT and Mandel F 1975 J. Chem. Phys. 63 4592

Wang JS 1991 Physica A164 240

Wang JS 1996 1. Stat. Phys. 82 1409

Wang 1S, Swendsen RH and Kotecky R 1989 Phys. Rev. Lett. 63 109

25

Wang JS, Swendsen RH and Kotecky R 1990 Phys. Rev. B42 2465

Wang JS, Selke W, Dotsenko VS and Andreichenko VB 1990 Physica A164 221

Weber H, Marx D and Binder K 1995 Phys. Rev. B51 14636

Widom B 1963 J. Chem. Phys. 39 2808

Wilding NB 1993 Z. Physik B93 113

Wilding NB 1995 Phys. Rev. E52 602

Wilding NB 1996 Annual Reviews of Computational Physics IV ed Stauffer D {Singapore:
World Scientific) p. 37

Wilding NB and Bruce AD 1992 I. Phys: Condens. Matter 4 3087

Wilding NB and Miiller M 1994 I, Chem, Phys. 101 4234

Wilding NB and Miiller M 1995 J. Chem. Phys. 102 2562

Wilding NB and Nielaba P 1996 Phys. Rev. E53 926

Wildpaner V 1974 Z. Physik 270 215

Wittmann H-P and Kremer K 1990 Computer Phys. Commun, 61 309

Wittmann H-P and Kremer K 1992 Computer Phys. Commun. 71 343

Wolff U 1988a Phys. Rev. Lett. 60 1461

Wolff U 1988b Nucl. Phys. BJ00 [FS22] 501

Wolff U 1989a Phys. Rev. Lett. 62 361

Wolff U 1989b Phys. Lett. B238 379

Wolff U 1989c Nucl. Phys. B322 759

Wolff U 1992 Computational Methods in Field Theory eds Gausterer Hand Lang CB (Berlin:
Springer) p. 127

Wood WW 1968 Physics of Simple Liquids ed Temperley HNV, Rushbrooke GS, Rowlinson
IS (Amsterdam: North-Holland)

Wu FY 1982 Rev. Mod. Phys. 54 235

Yang CN 1952 Phys. Rev. 85 808

26



Young AP 1996 tlo_and

lecuiar

mi f Condensed M

Binder K and Ciccottic G (Bologna: Societa Italiana di Fisica)

Zettlemoyer A 1969 ed Nucleation (New York: M. Dekker)

Zettlemoyer A 1977 ed Nucleation II (New York: M. Dekker)

Zhang MQ 1989 J. Stat. Phys, 56 939

Zom R, Herrmann HJ and Rebbi C 1981 Computer Phys. Commun. 23 337

stem

eds

® ® 0 ® ®

® ® O ©

® ® ® ® ®
4

® ® 0 ® ®

® O+ ® O

® ®

@6

® ®
@
® @
® ®

@

®
®
&
®
G)

005

000

T

INDEX T VALUE RESULT

-nns

Fie},i

il e v:‘ -0.39:003

(ii} o ¥ 0.69+0.01 .

i) Te Y' 1442003 Flg-'l
liv) o= ¥" -2

vl a ¥! 1!2]exucf

vil Ty ¥ 1



P_iM}
<1MI>

L finite

. . i TX/F
— -'>rc L—7
S Mypanc 381111 T,

1
Tc T

P, (M)

Frﬂ ,3 U< MM )

f Ik j;\ =Ty
1Y L—co
A .
S A Fl ?'6

7 N\

-Btv
ol
= .

0

z

P_{M}

LY
1) Hrvsn
10 S
i i
1 f - 1 l } la
i ; S5 =5, . J Symbol Quantity
065 '
" tHE— 1T (b) T e ks
S - S . «5%> /
S~ 5 060
2489
ﬁ /&% N Q'g: , @.,'__fg_: " M 055 F|9__+
W=y 2 2nf Y~ =g + 8y (20-1}
- o) RS 0.50
2 SR}
Ay{. - N (d] 045
2Ax l|-oxiodx[2;-l]‘ Yi"'fi’n)’nC-"
fe 040 ' : '
' vies vie) ol 02 03
Mas,~ \n/
L]
# e ® (e)
& — &

Ta R



<IMl>, <IP 1>

100 |

08

06 |

0.4

0.2

0.0

order-parameter

-

il .

ce-.

0.6

TiT,

susceptibility

kgrxl ™Y

kaT X'(LT}

FT% ,9

rr-{ | e ——

0 T
scaling of kg Ix
IF
0.1 : . 4 K MK
F + . . * o E\L‘:ﬂ .‘(0
. o
*
0.01¢ i .
E 4. L=20
X3 L=40 e
x: L=100 x
0.001+— SEEE— R
0. 1 10



specific heat

Tlatent heat

~C.

C&

energy

1.5 £
g o
1.4 F /./,
D
- g i
E 1.3 e
o E L
AN 5 s
A 1.2 B P
N - PO
E E ST e 483
e 1.1 i e 543
S E LT s --- 803
E- L
-
1-0-‘:lll!llillllIl|l|rl|llll|lr!1!lt|l
240 250 260 270 280 290
kpT/€e
F;_g -1/1
n x(Eallswi2)] ™
eIy T=T (D)
symbol | O

i 05 10 1 20 5 Y
expinDi2)iL

F1640.

susce ptibility

magnelization
Jurmp

. )
G =Xy

gty

0075



Y
T _x—.-
1'_‘ ------------ (IR EEIREIEEEEEIX N
1= a- ' :
1= " | :
= - L ! .
1= o —\—wats P2
0.4} L] 2
E 0.2. : ——————————— Q+00+QO*"*'01‘:
o
i b: I :
0.2+ - "e’:fd‘i:ﬁ : :
’ z cnn%lhon| L M
S R | T Lo\ ! e
: o L5 18 185 1.9 1.95 2 2.05 2. - : L F
. T _
-0.1 0.0 0.1 v q1'.;
-A{T-Tc) T " y T ~ . .
| ' disordered g oy I :
P : bO i :
Fi'a A8 ) 12| : condition I :
1.0 | : = :
PL M
-
'-|_-- 0.8 d [ N- I
m | I
X 06 | boel h
A
Fig fo & 0.4 ! 1
[ 8] 1
( mll\ <p0> p
0.2 f
0.0 - : : : \
a 0.10 0.15 0.20 0.25 0.30 0.3 ors b
W, T/T, =0.9554 P
----- -y
050 | ;
1.4
disordered : 025
1.2t :
ol FIG.18
10 ¢t
S 08 Q35
o
* 0.6 0SArmy o
04} -013

25 3.0 a5 4.0 4.5 5.0



| T I ] T 1 T
5 1 ( 4

, AAB and /\BA (a) h)

107 T 7] L i e m—
%]
.z 105//*\\A | w 00
I 0.2\ %
107 s /\_ 5
Q 2
g, | 01 0‘05"_ "\ | z 0.01 Frﬂ‘jvo
) g
c S
= 0,027\, 0007

-t 0 01 "'\ 005!

1 01 0.01 02 0 5 10 Monte Carlo steps/p.
ratio of transition rates concentration
1.0; ey

107 0.8
73] »
= 3
::—_j © 0.6F Frgl1
o 04E
Z 107
2 02 v .
© 0510152025303540

T(K)
1074 ! (A
1 01 - 001 0.2 05 10
ratin af tran<itinn rotec ronrontratinn Hn 19







