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THE TIGHT-BINDING TECHNIQUE

The basic idea behind the tight-binding technique is to search for a basis
whicl 1s demmnerable infinite, reasonably localized on atoms or groups of
aroms which constitute the solid, and in which basis the representation
of the hamiltonlan 1s a sparse matrix.

The potential seen by an electron in a solid near one of its constituent
atoms 1s not very different from the isolated atomic potential. However,
the porential is rather different in the interstitial region. Here the solid
potential is rather flat. One simple choice of the basis is the local atomic
orbitals.

Let us expand the wave-function in this basis :
\Ijﬁ(ﬁ) - ch CD(L - Ln)
T
The Blocli Theorem then implies that :

ilr) = > explekp,)o(r — r,)

If we now notice that the basis functions satisty :
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The Schrodinger equation gives :

T‘Dk(l_) + Z"Y(T_ - Ln)qlﬁ(ﬂ) (2)

- n

Gathering together equations (1) and (2) and using the Bloch represen-
tation : Also assuming that the basis is orthogonal which in fact a simple
atomlc bhasis 18 not.

(E — Ey)Vg(r) = Y exphr,)W(r — r)e(r — 1)
Multiplving by ¥i(r) and integrating over all space :
E = Ey + Yexp(kr,) [ dré*(r — )W (r)o(r)

where : W(r) =\V{r — +,)-Ur — 1r,)

EXAMPLE : A LINEAR CHAIN



Suppose :

[ W) olada = —a {0 >0)
/: ol —a) Wir) o(x)de = =3 (3>0)
[Corrta) W) olwyde = 5

All other integrals are supposed to be small.

Case 1 : If the atomic orbitals are symmetric : 3 = —.3 < ()

E, = Ey — oy, — 23, cos{ha)

Case 2 : If the atomic orbitals are antisymmetric .3 = —3 > 0

E, = Ey — o, + 23, cos{ka)

BAND CROSSING AND HYBRIDIZATION

So far we have expanded the wavefunction only in terms of sviumetric or
antisviuinetric atomic orbitals. Let us now extend the basis and include

hoth types :



We(r) = A4Pi(r) + AT
Wile) = doexp(ikr,)olr — ry)
Uir) = Yexp(thry)ollr — 1)

Putting this into the Schrodinger equation and using orthogonality we

pet

AE - E) + AEp, = 0
A By + AE-E,) = 0

where

Epn = ZEXp(t&-L)]d%QD s (2 — ) W(r)o.r)
Ey = Yexp(hr) [dré s (2 — r) W (z)ou(r)
Four onr linear chain example we have :

n=0 term in the sum vanishes because of the antisvmmetry of the mte-

eratd. The leading terms are :



n=1: E,, = 2/~ sin(ka)

n=1: k., = 2:~/ sinka

The set of equations have a solution if :

(E — EJkN(E — Euk)) — 445+ sin(ka) = 0

This has two solutions :

‘ 1 X

B = [ E B+ (B - B i )
_ ]- o~ md I 2T,

E = E l: E(J —I_ E \/7E E “J: [ Sin (!‘”):L

Suppose the bands don’t cross : then

at k=0 Et = E; — «, + 23, and
E_ = E|] — 2-55

at k= 7/u: ET = Ey— «a, — 23, and
E- =L, - a.+ 23

andd ~a, — 2.0, > —a, 4+ 23,



Suppose the branches cross and at k=k,., E,(k;) = E,(k))= E,

At k=k, .

ET = E. 4+ /v sin(ka)
E- = E. - vy sin{ka)

The + Dbranch always remains above the E,. and the - branch always
helow, The limits at the Brillouin Zone boundary are :

at k= 7/u: E- = Ey — ey — 23, and
E+ = E[| — fly +2j5

Hybridization tends to open a gap at the band crossing. Again .

At k=0.
for the - branch : A1=0, Ay=1 — symmetric
for the + branch @ Ay=1. Ay=0 — anti-svmmetric

At kiﬁ/u.
for the + branch © A =0, Ay=1 — symmetric
for the - hranch © Aj=1. Ay,=0 — anti-symmetric



In between the coetlicients are neither O nor 1. so there is mixed svmmetry.

Hybridization tends to make angular momentun labeling no longer suit-

able,

3-D CRYSTAL LATTICES

The generalization is straightforward. For example if we only retain the
diagonal clement -I and the nearest-neighbour off diagonal elements -.J.

then

for the hoo.o. lactice :

E = Ey — I — 87J cos(kya/2) cosihya/2)cos{k.q/2)

for the f.o.c. lattice :

E = E, — I — 4T (cos{kya/2)cos(h.a/2) 4+ cos(k.a/2)
cos(kea/2) + cos(k.a/2) cos(kya/2))



SILICON

Silicon (or Germanium) crystallizes inn the diamond lattice. Each atom
has four nearest neighbours. The outermost electrons of Si are s*p? in
the atom. Since these two levels are almost degenerate. in the solid they
hvbridized and form the four sp® hybridized orbitals which bond with the
four nearest neighbours in a tetrahedral covalent bonding configuration.

The diamond lattice can be thought of as a fcc lattice with two atoms per
unit cell : one at (000) and the other (1/4,1/4.1/4)d along the diagonal
(d=v/3a}). The unit cell of the f.c.c. lattice is shown in the figure.

Thus in there are eight orbitals per unit cell.

Basis : . »(r) where m goes over the four sp® hybridized orbitals on
the atom labeled by « in the n-th unit cell.

@m,l,n — Qbm(L - £n)

C.bm.?.,n — qu(-t - 'y — b)

where : b = (1/4.1/4,1/4)d.

The secular equation involves a 8x8 determinant :

|EI — Hy — H{S(k)|| = 0

i



feosihy ) cos(koaf2) + cos(h a/2) cos{hpa/2) + cos{kpaf2) cos{hk,a/2)) = S(k)

The cight solutions of the above secular determinant gives the cight va-
lence and the eight conduction bands.

DIFFICULTIES

The LCAO tight-binding described above has several difficulties :

1. The basis is not really orthogonal. The secular determinant involves
an overlap matrix S rather than I. This problem can be overcome by
orthoconalizing the basis set. This immediately leads to the prob-
lem than the off-diagonal matrices (which were earlier almost nearest
neighbour) become long ranged. sparseness is lost and this immedi-
atelv detracts from the advantage of a tight-binding formulation.

2. The basis is restricted to only the lower valence states. This gives a
vood description of the wavefunction near the atoms. but is not good
in the interstitial.  Inclusion of higher valence states mereases the
ratk of the secular determinant and makes computational that much
more difficult. Unbound continuum cannot be raken into account at

all.

3. The basis 1s overcoomplete and there may be lincar dependences.
This would mean that the overlap matrix has a zero eigenvaluce and
the seenlar determinant is trivially satisfied for all values of E. Even

10



if the eigenvalue is small, the actual computation of the low lving E's
Lecowe maccurate.,

11



if the cigenvalue 1s small, the actual computation has a corresponding

loss of accuracy in E.

Long experience of chemists show that many of the properties of solids
and wolecules are dominated by short-range interactions : the local chem-
istryv of the svstem. The equilibrium distance in a covalent bond varies
little from one crystal to another. So do many properties like force con-
stants. dipole moments and polarizabilities. This transferability . for
exarnple. allows us to deduce about the local structure in an amorphous
semiconductor to be deduced from its infra-red and Raman vibration

spectra.

MODERN QUANTITATIVE FORMS OF TIGHT-BINDING

WANNIER FUNCTIONS

Let ns consider the wave-function corresponding to a particular band

(labeled by b} -

HUu(r) = EgpWVis(z)

These functions obeyv the Bloch Theorem and are orthonormal for differ-

ent values of k.

I



The Wannier functions are defined by :

Wiyl —r,) = N_l/QZexp(—-tﬁ.g,,)\IlM(L)
k

These functions are also orthonormal :
(I/Vb(ﬁ - Kn.)“/Vb’(f. - Ln)) = 54’11)’6mn

Inversion vields :

Teo(r) = N7V2Yexp (shor, )Wl — 1)

The choice of the phase is so taken that the phase of W(0) is real and
positive.  This results in the Wannier function having its maximum at
the location 1, and decaying away from the lattice sites. The orthogo-
nality requires the Wannier functions to have long oscillating tails. Thus

localization is not really achieved.

Constrinerion of Wannier functions are carried out by a variational proce-
dure. First of all trial wave functions are chosen with the correct syinme-
try. but no orthogonality : Fy(r — 1,:{a,}). Out of these an orthogonal

12
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set is preparved again with the correct svinmetry. (This is done to avoud
the orthioconalization catastrophe). The parameters are determined by

the variational minimization of the functional :

(m | H|W,

(1))
(W ()| W(2))

Sce Kol and Onffroy . Phys. Rev. B10, 448 (1973)

Once the Wannier functions are set up. we use these as the tight-binding
hasis set as before. The secular equation follows :

|ET - Hw(k)[} = 0

where : 1

Hyy (k) Ze\p (1k.ry) [U PVHWL (1 — 1)

Again. the basis is useful only if the overlaps are short-ranged.

THE CHEMICAL PSEUDO-POTENTIAL

Localized orbitals theory works if the distortions associated with neigh-
hourine cuvironuients are small and the orbitals associated with the

13



atours or groups of them can be used as a basis of huilding up the solid
out of rhie ~“building blocks™. The building blocks are chemically in-
variant ad need not be recalculated for everv new svstem. This is
the idea of transferability. Wannier functions have long orthogonal-
1ty based tails which sample distant environment. and are therefore not
really fight-binding. Can we set up such localized basis set ?

Scee o Anderson PW.. Phys Rev Lett 21, 13 (1968) : Phvs. Rev. 181.25
{1969) Weeks et.al. J. Chem. Phys. 58, 1388 (1973)

The first condition is that the localized functions must belong to the band
subspace of the solid. If these are basis for expansion of wave functions
in the bhand. then they should belong to the same subspace and not be
outside it.

Define the projection operator on the band as :
Po= 2 [V (T
k

and :
‘¢Tl> = P|C)n>

This leads to

- e v -
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H|o,) — PHPlo,) = 0 (3)

Lot H, correspond to the isolated atom/molecular building block and

m,e%) = E)lo,)

The localized orbitals we want differ from these isolated atom orbitals. If
the offect of the environment is small, then they differ but little and the
localized orbitals we want are distortions of the atomic orbitals - distorted
by the bonding with the environment.

The basis is built up by trying to satisfy the above equation
with the disforted form orbitals ¢, as closely as we can in the
given subspace.

pan|(pn> — En|@n> (‘Jf)

If we add up the above two numbered equations we obtain :

{Hn + (Lrn. - P['np)}k)”) = E*"O”> (:

[ |
S

where.

15



v, = H - H, = > 17
EIY

where V) is the perturbation induced by the atom m on the

LN

potential at the atom n.

Moreover, the new basis so derived (from each atom) pans the
entire band subspace :

’p = ZZ |®N)S;1711<G)?H
nom

Andersen argued that the rather complicated projection op-
erator above can be replaced by the much simpler P,, on the
neighbouring atoms. This reduced the defining equation in a
much simpler form :

Hiow) = Euon) + X 1om){@m|Vilon)

L&

We shall now use this basis and expand the wavefunction in the
band as a linear combination. The usual variational principle
then yields the secular equation :

HE(Snm - Dnm“ = ()

1g
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where.

Dnn = Eu = Eg +
S {onlVilon) = (@nldm)(onlVnloh)}

and

Dmn = (cbﬂnfrg |G)m>

Note that since, unless we have all atoms exactly alike, V] +#

1L

1", So, in general, pseudo-hamiltonian D is not symmetric.We
have reduced the situation to one in which the secular equa-
tion resembles that of a orthonormal basis, but the pseudo-

hamiltonian is not symmetric. In fact, D = S~' H.

17
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