UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
N —
Tnm INTERNATIONAL ATOMIC ENERGY AGENCY Q@
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LC.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE
H4.SMR/994-12 |

SPRING COLLEGES IN
COMPUTATIONAL PHYSICS

19 May - 27 June 1997

THE F PROGRAMMING LANGUAGE

M. METCALF
CN Division
CERN
CH 1211, Geneva 23
SWITZERLAND

MAIN BUILDING STRADA COSTIERA. 51 TEL. 2240111 TELEFAX 224163 TELEX 460392 ADRIATICO GUEST HOUSE V1A GRIGNANG, 9 TEL.22424) TELEFAX 224531 TELEX 460449
MICROPROCESSOR LAB. V1A BEIRUT, 31 TEL. 2249911 TELEEAX 224600 TELEX 460392 GALILEC GUEST HOUSE V1A BEIRUT. 7 TEL.2240311 TELEFAX 2240310 TELEX 460392

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

The F Programming Language

Ralph Frisbie
Ventura College, Ventura, CA
Richard Hendrickson
Imaginel, Inc., Albuquerque, NM
Michael Metcalf
CERN, Geneva, Switzerland

Abstract

We introduce a new programming language, F, that is intended for the teaching of modern concepts.
Strong 1yping and a strict syntax facilitate teaching and learning. The language is available in opti-
mized form for all major platforms and some teaching experience has already been gained.

1 Why a new language?

Is the teaching of programming languages in a crisis? At least to judge from the interviews in a
recent issue of ACM SIGPLAN Notices [1], there is some divergence of views among experts on what
is desirable and where the field is headed. However, among the points made in the article, specifically
on programming languages, are the need for strong typing, the difficulty of jumping straight into object
orientation, the desirability of abstract data types, the need to avoid teaching too many concepts that are
too little understood, the fact that C++ is too big and complex and that PASCAL appears to be of no
long-term use, the need to concentrate on fundamentals, and a noticable affection for Scheme.

Apart fom this final point, we would like to think that the recent development of the F programming
language satisfies all of these criteria. It is stongly typed and has abstract data types. It is defined in terms
of a BNF that is strict and leads to early detection of most errors. All interprocedural interfaces are
explicit. A modular programming style is encouraged, and the existence of pointers provides support for
data structures. A powerful numerical capability and array handling facilities make it particularly useful
in scientific applications. Finally, generic functions, user defined types, and operator overloading provide
a basic introduction to object oriented programming.

The language is embedded in an environment that makes it simple for students who have no prior
computing skills to use and to debug, and a number of books at various levels have been and are being
published. One of these, {2], contains the complete langage definition. The full BNF description of the
language is available at the URL http: //www. imaginel.com/imaginel. Thus, we consider that
F is now a real option for introduction as a first teaching language in many computing classes.

2 Easy and safe

A language intended for teaching must not only contain an adequate set of programming facilities,
it must be safe and predictable. Also, the syntax should be unambiguous, allowing only one way to
express any particular concept. We describe here these aspects, before turning to its powerful features in
the following section.

In the F programming language, there are only two types of independently compilable program
units: the main program and the module. Thus, apart from trivial problems that can be solved without
recourse to other procedures, the bulk of a real program has to be split into one or more moduiles whose
procedures are invoked by the main program. In this way, a modular style is not simply encouraged, but
actually imposed on the student, who thereby acquires this important habit immediately. Of course, an
advantage of this style is that all procedure interfaces are explicitly available at compile time, enabling a
complete check of them by the compiler, leading to early detection of errors and a fast debugging cycle.
In addition, F requires that each module entity be declared public or private, giving a high degree
of protection to module variables and procedures.

F is o strongly typed language, requiring all typed entities — variables and functions - to be ex-
plicitly typed. Any entity detected by the compiler that has not been assigned a type. such as a misspelt
variable name. will cause it to flag an error. Furthermore, any other attributes that an entity might have.
for instance that it is dynamically aliocatable at run time, must be specified on the associated type state-
ment. In this wuy. all the attributes of a given entity are immediately visible. :

The long-standing controversy over the GO TO statement has been resolved in F by excluding it,
together with any form of statement label. The combined set of control structures in F — if-then-else,
case. do with exit and cycle — ensure adequate contro! of program flow. For those situations where some
form of exception handling is to be expected, particularly in the input/outpur and allocate statements. a
testable return vanable 1s made available.

Another safety measure is to require that all procedure arguments be specified with an intent
attribute specifyving whether the argument is an input, output, or input/output variable. Unintentional
overwriting and the returning of undefined quantities thus become nearly impossibie.

Finally. a degree of self-documentation is imposed, as each module or procedure is terminated with
an end statement bearing its name, and the language keywords and the names of the intrinsic functions
are reserved words, preventing them from being used in confusing ways.

To give the flavor, here is a module procedure to calculate the mean and variance of an array x:

subroutine calculate{x, mean, variance, ok)

real, dimension(:), intent{in) :: x
real, intent{out} :: mean, variance
logical, intent{out) 1 ok
integer i n
n = size{x) ! size is a&n intrinsic function
ok =n >» 1
select case {(n)
case (2:)
mean = sum(x)/n ! sum i1s an intrinsic functicn
variance = sum{ (x-mean)**2})/(n-1)
case (1)
mean = x(1)
variance = 0.0
case default
mean = 0.0
variance = 0.0

end select
end subroutine calculate

Taken together, the strict syntax requirements enable a student to advance quickly once the basic
rules have been grasped. F is easy to teach, easy to lean, and easy to debug.

3 Modern features in F

F provides a complete array processing facility, including memory allocation and deallocation; a
pointer facility: user defined types and operators on them; and a large number of intrinsic functions.

Arrays are first class objects and there is great flexibility in their use and dimensions. Arrays can be
of any type. including user-defined types. Since defined types can have array components, it is possible
to have arrays of arrays to any depth.

Arrays have a shape, which is the combination of rank (number of dimensions) and extents in each
dimension. Extents can be variable; by default array subscripts start at one, but the starting and ending
value can be declared with any vatues. The rank is a declared attribute and must be from 1 to 7. Further
properties are:

— Arrays can have a constant shape in a main program, in a module, or in a module subprogram.

— Dummy argument arrays assume the shape of the actual argument used in the procedure invoca-
tion. The F compiler automatically passes on the shape as part of the call.

— Within a procedure, automatic arrays are local arrays that have a shape that is determined on entry.

This is usually used to give working arrays a size based on the size of dummy arguments. For

example:

A - &, s s - S e e s -

- A A A

A &

M EaN A NaE A o2 BB -

&= R =

AA N A BA A AMEBRE A .k a=s -

Wl E & . AR .

subroutine example (A, N}

integer, intent(in} i1 N
rea., intent(inout), dimension {(:,:) :: A
real, dimension (size(A,2), size(A,1l), N} :: copies_of_ A _transpose

creates a local array that can hold N copies of the transpose of the argument array A.

— Allocatable arrays can be allocated and deallocated at run-time and allow storage to be sized to
run-time requirements. Unlike automatic arrays they can persist between procedure calls.

F's rich urray processing facility goes further. All of the operators and essentially all of the intrinsic
functions operate on arrays in an element-by-element way. If A, B, and C are arrays, then A = B +
sqrt (C) is equivalent to executing the statement for corresponding elements of the arrays. The arrays
in such an expression must be “conformable”, that is, have the same shape, but they do not need to have
the same subscript values as long as they have the same number of elements in each dimension. Scalars
can be freely intermixed with arrays and “conform” in shape to any array.

Section subscripts access array elements in a regular pattern. If A is declared as a rank-two array,
then A and A (:, :) both refer to the entire array, A(1:10, 1:M} is a two-dimensional 10xM comer of
the array. and A (I:J:K, 3) is a one-dimensional section of the 3rd column of A whose elements are
A(T).A{I+K).A(I+2*K).... The last element is usually A (I+n*K) where n is the largest integer
such that I+n“K is less than or equal to J. If K is negative then the section runs backwards.

Sections. or even whole arrays, can be zero-sized, for example if M above is less than 1. In this
case an operation on the array is essentially a “do nothing™ and there is no need for explicit tests for end
cases.

Vector subscripts access irregular patterns. If INDEX is an array of integers then B (INDEX) is
the array with efements B (INDEX (1)) for all valid subscripts 1.

There is 2 where construct which masks array assignments.

where (A > 0)
B = sqgrt (A}

elsewhere
A =0
B =0

end where

calculates the square root where it makes sense and zeros out array elements elsewhere.

Pointers '! can be used to point to arrays or array sections. Although normally used for list pro-
cessing they are also very useful to point to sections of arrays when the subscripts are tedious to write
out. For example. if INSIDE is a pointer to a two-dimensional array, then

INSIDE => A(2:N-1, 2:M-1)
will point to the “inside” of the NxM array A.

As well as pointing to existing memory, pointer arrays can also be directly allocated, the normal
way to create storage in nodes of linked lists.

The programmer must put the target attribute on any variable which might be pointed to. F
compilers have a reasonable chance to optimize code because of this restriction.

F also supports user-defined data types, structures, and user-defined operators for them. Operators,
such as + or sgrt. can be overloaded and operate on user-defined types. Types can be recursive and
contain elements of the same type to form lists and trees. Defined types can be “private” and the com-
ponents are not directly available to the user — functions or defined operators must be used — or they can
be ~public” and the user can directly set and reference components. In the latter case there is alsc an
automaticatly created constructor function for the type.

F supports all of the usual data types: real, complex, integer, logical, and characters and all of the
operations on them that make sense. F gives special support to numerical precision and accuracy for
the real and complex data types. They can be declared as ordinary “real” or “‘complex” and they get the
default single precision on the given platform. However, using a set of intrinsic inquiry functions they can
also be declared to have a specified minimum precision and/or exponent range. Thus, if the expression

I Note: F puinters are not like C pointers — they are in the form of an attribute given to a variable or function, rather than
heing a data (vpe in their own right — and so (dangerous) pointer arithmetic is not possible.

selected real kind (10, 50) is used in a declaration sequence, the variables will have at least 10
digits of precision and an exponent range of at least 50. On some machines this is “single” precision
and on cthers it is ~“double™. It 1s a compile-time error to ask for more precision than the hardware can
support.

F provides all of the common mathematical functions, sin, max, log, etc.; a built-in random number
generator: i set of inquiry functions for the floating-point data types, epsilon, huge, tiny, etc.; and string
manipulation functions that locate substrings within a string or trim trailing blanks, etc. It also has a
complete set of array functions such as transpose or matrix multiplication and a set of mathematical
reduction functions. sum, product, etc., as well as a set of logical reduction functions such as count
which counts the number of true instances in its argument. The reduction functions can reduce an entire
array of any rank to a scalar or they can reduce along a particular dimension, producing row sums or
column sums for example.

We conclude this section with an example of 2 module procedure to locate a node of a given name
in atree structure.

! Look for name in the tree rooted at root. If found,
! make the module variable current point to the node
recursive subroutine look(rooct, name)
use node_module ! definition of a node and access variable current

type(node}, intent{in), target :: root ! user-defined type
character{len=*}, intent(in) :: name
type (node), pointer :: child
]
if {root%name == name) then ' % qualifies a component
current => root ! pointer assignment
else
child => root%child
do
if (.not.associated(child)} then ! intrinsic function
nullify(current) ! null if name not found
exit ! exits loop
end if

call look(child, name)
if (associated({current)) then
return
end if
child =» child%sibling
end do
end 1if
end subroutine look

4 Teaching F

F is being used to teach the introductory one-semester programming course at Ventura College.
The only prerequisite is college algebra. The course is taken primarily by sophomore students planning
to transfer to one of the state Universities in engineering or science. This course fulfills the lower division
programming requirement for these students.

The Windows 95 version of F ships with an environment, F_world, and the product installs very
easily from the three supplied disks. The student version may be run from either a command line or
from the F_world environment. The command-line option behaves as a classical compiler/linker, whereas
F_world is an integrated environment combining editing, compiling/linking, and a language documenta-
tion facility.

The F_world interface is used for the beginning students. This requires the students to create each
module as a scparate window then validate each module in the correct order. F_world is straightforward,
intuitive. and quickly mastered by all students. F diagnostics are rather good. The policy is that if a
serious error is discovered early in the listing, a misspelt keyword for instance, that line is diagnosed
and the scan is terminated. This scheme appears reasonable, and has been routinely adopted in teaching
students in other languages — correct the first error, ignore the rest, and obtain another error scan.

4 A A A oA & - & ;|| e

a s &

A Ea R 4 s . Bs A -8 A8

AL B A B A L ABE LA -8 2s . AA B

B s Bedil 4 A RSB .

The F_world environment supports a fill-in-the-blanks keyword template capability, but at Ven-
tura College only the editing features of the environment are used. It supports multiple windows, and a
reasonable tull editing capability.

The command line options of F are not used by students, but are used often in lectures and for
preparation Although this method might be preferred and is shown to students, they have already found
4 method that works (F_world environment, editor mode), and rarely change.

The actual purpose of this course is:

To give an introduction to computing for the engineer or scientist.

To teach those students how to solve elementary problems with the computer using F.

To generate in the students an appreciation for the power of the computer.

To do the aubove without generating computer phobia.

This is a first course in programming and, as is usual for this class, a few of the students have
no prior computer experience, a few have Basic, and one was repeating the introductory course after
dropping out of a previous Fortran 77 class taught by an unstructured engineer. This student’s interesting
comment was that F is a lot better as he had started in a class where extensive GOTO's and statement
labels were used. After a couple of sessions with F’s constructs, he really came to appreciate them. With
F. all the objectives were met at least as well as has been done previously using Fortran or Pascal.

Overall. the class did well, retaining about the same percentage of the presented material as in a
regular Fortran class. However, with F they have a good introduction to pointers, array operations, and
modern contro! structures. F has been demonstrated to be a good introductory language that grows on
the lecturer. 1t is small, consistent, and has no redundancies. Therefore, it’s lean, not overinflated as are
the languages designed by large committees with the history, legacy code, and compromises therein.

There are several features of F which are particulary appreciated in teaching to the beginner. The
visibility of both variable and procedure names is simpler to define than in Pascal, and is a real im-
provement over older Fortrans. The concept of a ‘statement’ is clear and simple. There are no compound
statements such as the if in Pascal. The only form of the comment is the | — any text on any line after
one ! in any position is comment. This makes it simpler for the student and simpler for the teacher ~
one never has the problem of the line of code being Jooked at actually being commented out by being
embedded within some { } or /* */ over many lines.

Thus. F is to be preferred to Pascal as an introductory course for engineering students. They are
exposed to a modern and structured method of writing programs, and do so using a language they are
more likely to encounter in the real world of scientific/engineering simulations, analysis, and research

£ b~

5 The Origins of F
Compilers for F are now available for Windows 95/NT, Windows 3.1/DOS, most UNIX machines,

and the Macintosh PowerPC. How can F be available on so many platforms? F is actually a subset of
Fortran 90 and F compilers are based on existing Fortran 90 compilers. When most people think of
Fortran they think of %)

445 IF(ZONE(j4-1}) 470,485,455

450 k3= k3+1
IF(D(j5)*(D(j5—1)*(T—D(j5—2))**2+(S—D(j5—3))**2 +

1 (R-D{j5-4))**2)) 445,480,440
455 m= m+1l

IF(m-ZONE(l))} 465,465,460
460 m= 1

465 IF(il-m} 410,480,410
However, Fortran underwent a significant modernization in 1990 when many new features were added.

Fortunately for existing codes (and coders), the features were added to the language. Unfortunately for
new programmers (and new programs) nothing was removed from the language. The F subset removes

2 This is an cxcerpt from the Livermore Loops, an important set of performance measurement codes. For non-Fortran people,
the 3-branch 1F would transfer control to the first statement labe! if the test expression was negative, to the second label if
the expression was zero. and to the third label if the expression evaluated to greater than zero. Production quality optimizing
compilers could “easily understand” this particular sequence in the mid 80’s. Production quality humans still have trouble
with it.

all of the old. redundant, confusing, difficult-to-use syntax and semantics and retains the new modemn
features. and docs it in a way that preserves access to existing code and to Fortran’s historic emphasis
on high performance computing. Since it is a subset of a widely used longuage. a student who learns F
won't have to unlearn anything after graduation; they might have to learn a little more, but that isn’t all
bad.

In some engineering curricula, Fortran is the first and only language required of majors. Fortran
90 has now become a big, cumbersome language supporting many obsolete features, yet the beginning
engineer/scientist needs to learn it. F offers a structured introduction to that language which the engi-
neer/scientist will use to analyze systems and create his own programs, even large ones. Since the only
real pedagogical concern is that the student does not see Fortran as it actually exists in the real world, a
little time at the end of a course might be devoted to discussing the obsolete featres they may expect to
see there.

But the thrust of F is not just as an entry into the world of Fortran - it is intended as a valid
replacement for Pascal. Basic, and especially C as a first programming language.

6 Availability of F

F is currently available from Imaginel at http://www.imaginel.com/imaginel or, by
e-mail, at infc@imaginel.com There are alse several F programming books and over 300 example
programs available from the Web site.

7 References

[1] Trott. P.. Programming Languages, Past Present and Future, ACM SIGPLAN Notices, 32(1),
pp. 14-57, 1997,

[2] Mercalf, M. and Reid, J., The F programming language, (Oxford U. Press), 1996.

it i

The F programming language is a dramatic new
development in scientific programming.

Building on the well-established strengths of Fortran, F
is a carefully crafted subset of Fortran that only contains
its modern features and has a perfectly regular syntax. F
is less unwieldy and more user friendly than Fortran and
has been specifically designed for teaching as a first
programming language, although it retains all the
enormously powerful numerical and data abstraction
capabilities of its parent language, Fortran 90.

F is the first programming language that is attractive to
both teachers and professional programmers as it allows
the student to learn clean modern concepts as well as
allowing the professional programmer to use the same
features and still be able to re-use existing code. Thus,
an array language becomes available as part of a
medium-size, widely-available language for the first
time, and in this respect, F is clearly superior to older
programming languages such as Pascal, C, and Basic.

This book is the first complete description of the F
programming language, setting out the syntax and

The F Programming Language
Hicl\ael HETCALF q.«c(T REWD

semantics of the language in a readable and thorough
way, making The F Programming Language essential
reading for everyone using F.

Contents: why F?; Language elements; Expressions and
assignments; Control statements; Program units and
procedures; Array features; Specification statements; Intrinsic
procedures; Data transfer; Operations ¢n external files.

256 pages, June 1996
0-19-850026-2 Paperback £16.95

Soc1ety for Op ic al Engmeers)

ThlS isa CODCISC, thorough,,
~and clearly written gulde to
“the world’s: largest
computer network

‘520 pages, 150 lme
ﬁgures OUPISPIE
June 1996

0-19—856456-2 Paperback £19.50

General Ed:tor. Valene Illmgworth S

'~ The fourlh edltlon o£ thls estabhshed and authontatwe

dictionary is expa.nded 1o embrace the developments of the
" last five years, including the Internet and all its '

ramifications. It is now more comprehensive than ever W1th
+ 2,000 more entnes than the tturd edmon ‘

600 pages
September 1996
0-19-853855 3 Hardback £25 00

Please turn over and complete the other side of this form.

v

It's easy to order Oxford books
by post, or, if you have a
credit card, by phone or fax.

u By post from the UK
Send your order form and payment to:
CWOQ Department, Oxford University Press.
FREEPOST NH 4051, Corby,
Northants NN18 9BR
No stamp required

s By phone
If you have a credit card. you can use our
24-hour credit card hotline:
from the UK 01536 454 534
from abroad + 44 1536 454 534

Please tell us the reference number shown

Please supply the following books:

Oty ISBN Author Title Price!
‘ . L L £

L L [l L £
| I | L i L £

L L 4 L £

VAT {for EC customers from owtside the UK)2 £
Postage & packing T

TOTAL (£

in the bottom right-hand corner of the form.

2 By post from Eire, Europe,
and the rest of the world
Send your order form and payment to:
CWO Department, Oxford University Press.
Saxon Way West. Corby,
Northants NN18 9ES

1 By fax
If you have a credit card, you can fax your
order form to us:
from the UK 01536 746 337
Jrom abroad + 44 1536 746 337

4 Please allow 10 days for delivery in the
UK; 28 days elsewhere.

Tick here if you do not wish to be
sent information about QUP books in
the future.

Thank you for your order

1 Prices and extents of books are accurate 3 Postage and packing charges

a1 the time of going to press, but are {ingluding VAT)
liable to alteration without notice. UK orders under £20, add £2.06
over £20, add £3.53
over £50, add £4.70
2 EC customers from outside the UK: Non-UK orders add 10% of the total
If you are registered for VAT or a Jocal price of the books.

sales tax, please provide your number:

L

Please deliver my books to: 4
Mr/Mrs/Ms/Dr/Prof/Cther {please specify) |

First name L

Surname f
Dept/Fac 1
Univ/Company 1
Address L

(Country} L
Postcode L

Email address L

How to pay

You may pay by credit card or by a cheque from a UK bank account. Please fill in the relevant part of the form.

D Credit card payment

Please charge £ to my MasterCard/Visa/American Express/Diners Club account

cortmamer [[T T T T T LT L [[T oo/

Signature

Credit card account address, if it is different from the delivery address:

|:] Cheque payment

I enclose a cheque for £ crossed and made payable to OUP. and drawn against a UK bank.

o496 20 9003 21061 A

