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Quantum Monte Carlo methods have been developed to calculate properties of quantum many-
body systems. The motivation is basically the same as for classical systems. In classical many-
body system, direct simulations have proved the only way to get thoroughly reliable information
about many-body effects, particularly as the systems get more comples. Quantum systems reduce
to classical systems in certain limits (e.g. at high temperature) hence if one needs simulation
to do classical systems, one needs simulation to calculate the properties of quantum systems.
Quantum simulations are more challenging than classical simulations because not only do we have
the problems inherent in sampling 2 multi-dimensional space, also we do not have an analytic
expression for the function to be sampled. The simulation has to accomplish both tasks.

There is hope that QMC will be useful in providing exact results, or at least exact constraints,
on properties of many-body quantum systems. Except in a few cases, this hope is not fully realized
today. Fermion statistics remain a challenge to the practitioner of simulation techniques. Nonethe-
less the results are competitive with those from the other methods used for quantum system and
provide insight into the origin of properties of quantum systems.

There are two basic types of methods that I will discuss. In zero temperature methods (Vari-
ational Monte Carlo and Projector Monte Carlo) one calculates the properties of a single wave-
function. This is for when we need to calculate matrix elements like {¢|O|¢). In finite temper-
ature methods (Path Integral Monte Carlo) one takes a trace over the thermal density matrix:
Qexp(—FH).

The equivalent to Molecular Dynamics (Quantum Molecular Dynamics) does not exist in any
practical sense. In QMD one would take an arbitrary wave function and propagate it forward in
time, then compute some expectation values. The difficulty is that the full wavefunction must be
kept until it “collapses” with the final measurement. The amount of data needed grows exponen-
tially with the number of particles. One is forced to either simulate very small systems (i.e. less
than 5 particles) or to make serious approximations. Figure 1 shows a sort of family tree that
connects various simulation methods.

I will primarily discuss continuum models, not lattice models, although most of the techniques
can be carried over directly. As examples, | will discuss applications of these methods to helium
and electronic systems. I cannot even describe everything in these notes. They are provided as
a kind of review for the student. More extensive discussion of these topics is to be found in refs.
[20, 21, 22, 53, 51, 52].

First a few words on notation. I will always assume that the system is a non-relativistic collection
of N particles described by the Hamiltonian:

N
K== Vi+d v(ry), (1)
i=1

i<y

where A = h%/2m and v{r) is a two-body pair potential. Later we will see why relativistic or
spin Hamiltonians are more complicated to treat. I will stick to the first quantized notation in the
canonical ensemble. A boson wave function is then totally symmetrical under particle exchange and
a fermion function is antisymmetrical. The permutation operator acting on particle labels is denoted
PR. The symbol R refers to the 3N vector of particle coordinates, ¢ to the N spin coordinates,
and (r;,0;) to the 3 spatial and 1 spin coordinate of particle 4. Sometimes I will refer to the exact
eigenfunctions and eigenvalues of the Hamiltonian: (¢,(R), E,). A known {computable)} trial wave
function will be denoted W(R). The symbol [ will imply an integral over the full 3N dimensional
configuration space of the particles.

Quantum Monte Carlo methods are exclusively examples of Markov processes or random walks.
I discuss random walk methods in the first lecture, in the second lecture I discuss variational
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Monte Carlo which is a straightforward application of the Metropolis Monte Carlo method, the only
complication being that the wavefunction for fermion systems is a determinant. The Metropolis
method is appropriate when one wants to sample a known, computable function. If one had an
exact analytic expression for the many-body wave function, it would then be straight forward to
use this method to determine quantum expectation values for that state. However, such is not the
case, and one is forced to resort to either more complicated, or more approximate, methods. In the
third lecture 1 discuss, the projector Monte Carlo methods, where the transition rules are set up so
that the asymptotic population is the exact ground state wave function for a given Hamiltonian.
They involve using branching random walks. Finally in the fourth lecture I discuss, Path Integral
Monte Carlo, another application of the Metropolis algorithm; its complications stem from the
“ring-polymer” nature of the paths.

1 Random Walks

Let us start by reviewing the random walk or equivalently Markov chains. The application of these
‘deas have lead to one of the most important and pervasive numerical algorithm to be used on
computers: the Metropolis algorithm first used by Metropolis, Rosenbluth and Teller in 1953[1]. It
is a general method of sampling arbitrary highly-dimensional probability distributions by taking
a random walk through configuration space. Virtually all Quantum Monte Carlo simulations are
done using either Markov sampling or a generalization of the Metropolis rejection algorithm.

The problem with simple sampling methods is that their efficiency goes to zero as the dimen-
sionality of the space increases. Suppose we want to sample the probability distribution:

7!'(5) — emp[_zs(s)], (2)
where S(s) is the action, say BV (s) for the canonical classical Boltzmann distribution. The partition
function Z normalizes the function = in this space and is usually not known. A direct sampling
method, requires sampling a function with a known normalization. Suppose we can directly sample
a function pm(s). One can show that the Monte Carlo variance will depend on the ratio 7/pm.
7(s) is a sharply peaked function and it is very difficult to sample it directly because that would
require knowing the normalization, or equivalently the exact partition function of a nearby related
system. The efficiency would be related to the ratio of partition functions of the “model” systems
to the real system which goes exponentially to zero as the number of particles increases.

Let us briefly review the properties of Markov chains. In a Markov chain, one changes the state
of the system randomly according to a fixed transition rule, P{s — &), thus generating a random
walk through state space, {g, 81,52...}. The definition of a Markov process is that the next step
is chosen for a probability distribution fixed in “time” and depending only on the “present.” This
makes it very easy to describe mathematically. The process is often called the drunkard’s walk.
P(s — &') is a probability distribution so that it satisfies

Z'P(s—hs') =1 (3)

and
P(s— 5') > 0. (4)
If the transition probability is ergodic, the distribution of s, converges to a unique equilibrium

state. That means there is a unique solution to:

S w(s)P(s = &) = m(s). (5)

3



The transition is ergodic if:

1. One can move from any state to any other state in a finite number of steps with a nonzero
probability, i.e., there are no barriers that restrict any walk to a subset of the full configuration
space.

2. It is not periodic. An example of a periodic rule is if the hopping on a bipartite lattice always
proceeds {rom the A sites to the B sites so that one never forgets which site one started on.
Non-periodic rule holds if P(s — 3) > 0; if there is always some chance of staying put.

3. The average return time to any state is finite. This is always true in a finite system (it e.g.
periodic boundary conditions). It would be violated in a model of the expanding universe
where the system gets further and further from equilibrium because because there is no
possibility of energy flowing between separated regions after the “big bang”.

Under these conditions we can show that if f,(s) is the probability distribution of random walks
after n steps, with fo(s) the initial condition, then:

fa(s) =7+ €terdals), (6)
A

where the €y < 1. Hence the probability distribution converges exponentially fast to the stationary
distribution 7. Furthermore, the convergence is monotonic (it does not oscillate). Specifically, what
we mean is that the distance between f, and « is strictly decreasing: |f, — | > | fatr — 7.

The transition probabilities often satisfy the detailed balance property for same function: the
transition rate from s to s’ equals the reverse rate,

T(s)P(s — &) = (s P(s' - s). (M)

If the pair {m(s),P(s — &')} satisfy detailed balance and if P(s — s) is ergodic, then the random
walk must eventually have = as its equilibrium distribution. To prove this fact, sum the previous
equation over s and use Eq.(3) to simplify the right-hand-side. Detailed balance is one way of
making sure that we sample #; it is a sufficient condition. Some methods work directly with the
equilibrium Eg. (5) as we will see.

1.1 Metropolis

The Metropolis (rejection) method is a particular way of ensuring that the transition rule satisfy
detailed balance. It does this by splitting the transition probability into an “a priori” sampling
distribution T (s — s") (which is a probability distribution that we can sample) and an aecceptance
probability A(s — s') where 0 < A < 1.

P(s = 4&)=T(s > s)A(s - ). (8)

In the generalized Metropolis procedure, (Kalos and Whitlock, 1986), trial moves are accepted
according to:
A(s = &) = min[1,q(s' — )], (9)
where ()T (s )
n_ T(&)T(s — s
as —~ ) = 7(8)T(s - &)’
It is easy to verify detailed balance and hence asymptotic convergence with this procedure by
looking at the 3 cases:

(10)
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e s = & (trivial)
e gls— s <1
e g{s—s)21

Two common errors are: first, if you can move from state s to s’ then the reverse move must
also be possible (both T'(s — s’) and T(s’ — s) should be zero or non-zero together) and secondly
moves that are not accepted are rejected and remain at the same location for at least one more
step. Accepted or rejected steps contribute to averages in the same way.

Here is the generalized Metropolis algorithm:

1. Decide what distribution to sample (7(s)) and how to move from one state to another, T'(s —
s')

2. Initialize the state: pick so.
3. To advance the state from s, to 8;41:

e Sample ¢' from T'(s, — &')

o Calculate the ratio:
(T (s’ — s,)

1 AT (5 — )

(11)

e Accept or reject:
If ¢ > 1 or if ¢ > u, where u, is 2 uniformly distributed r.n. in {0, 1) set 8,41 = &

Otherwise set 5541 = 55
4. Throw away the first & states as being out of equilibrium.
5. Collect averages every so often, and block them to get error bars.

Consider the sampling of a classical Boltzman distribution, ezp(—8V(s)). In the original
Metropolis procedure, T(s — s') was chosen to be a constant distribution inside a cube and zero
outside. This is the classic rule: a single atom at a single time slice is displaced uniformly, the cube
side A is adjusted to achieve 50% acceptance. Since T is a constant, it drops out of the acceptance

formula. So the update rule is:
r=r+u-1/2A (12)

and accept or reject based on ezp(—g(V(s') —V(s)). Moves that lower the potential energy are
always accepted. Moves that raise the potential energy are often accepted if the energy cost (relative
to KgT) is small. Hence the random walk does not simply roll downhill. Thermal fluctuations can
drive it uphill.

Some things to note about Metropolis:

o One nice feature is that particles can be moved one at a time. Note that N steps of Metropolis
takes the same amount of time as 1 step of Molecular Dynamics. Consider what would happen
if we moved N hard spheres all together. Let p be the probability of getting an overlap in the
move of one hard sphere. Then the probability of getting an acceptance with N hard spheres
is (1 — p)¥ = ezp(N In(1 — p)). In order to get any acceptances one would have to decrease
§ so that p = 1/N which would require extremely small steps.




o Note that we need both the forward probability and the reverse probability if one has a non-
uniform transition probability. Also note that we cannot calculate the normalization of r-it
is never needed. Only ratios enter in.

The acceptance ratio (number of successful moves/total number of trials) is a key quantity to
keep track of and to quote. Clearly if the acceptance ratio is very small, one is doing a lot of
work without moving through phase space. On the other hand, if the acceptance ratio is close
to 1, you could probably try larger steps and get faster convergence. There is a rule-of-thumb
that it should be 1/2, but in reality we have to look at the overall efficiency.

One can show that the Metropolis acceptance formula is optimal among formulas of this kind
which satisfy detailed balance.

In some systems, it is necessary to have several different kinds of moves, for example, moves
that change path variables and other moves that change the permutation. So it is necessary
to generalize the Metropolis procedure to the case in which one has a menu of possible moves.
There are two ways of implementing such a menu. The simplest is to choose the type of move
randomly, according to some fixed probability. For example, one can choose the particle to
be updated from some distribution. One must include in the definition of T'(s — s') the
probability of selecting that move from the menu (unless you can argue that it cancels out.)
A more common procedure is to go through all possible atoms systematically. After one pass,
moves of all coordinates have been attempted once. In this case, individual moves do not
satisfy detailed balance but it is easy to show that composition of moves is valid as long as
each type of move individually satisfies detailed balance. Having many types of moves makes
the algorithm much more robust, since before doing a calculation one does not necessarily
know which moves will lead to rapid movement through phase space.

Since asymptotic convergence is easy to guarantee, the main issue is whether configuration space
is explored thoroughly in a reasonable amount of computer time. Let us define a measure of the
convergence rate and of the efficiency of a given Markov process. This is needed to compare the
efficiency of different transition rules, to estimate how long the runs should be, and to calculate
statistical errors. The rate of convergence is a function of the property being calculated. Generally
one expects that there are local properties which converge quickly and other properties (such as
order parameters near a phase boundary) which converge very slowly.

Let O(s) be a given property and let its value at step k of the random walk be ©f. Let the
mean and intrinsic variance of © be denoted by

O = (O) (13)

and B
o5 = ((Or — O)) (14)
where the averages (...} are over 7. These quantities depend only on the distribution 7, not on

the Monte Carlo procedure. We can show that the standard error of the estimate of the average,
O, over a Markov chain with P steps, is

2
error[0] = fo%. (15)
P
The correlation time, kp, defined as
= (O — O)(Op — O
k=1 o0
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gives the average number of steps to decorrelate the property ©O. The correlation time will depend
crucially on the transition rule and has a minimum value of 1 if one can move so far in configuration
space that successive values are uncorrelated. In general, the number of independent steps which
contribute to reducing the error bar from Eq. 15 is not P but P/k.

Hence to determine the true statistical error in a random walk, one needs to estimate the
correlation time. To do this it is very important that the total length of the random walk be much
greater than Kp. Otherwise the result and the error will be unreliable. Runs in which the number
of steps is P » ko are called well converged. In general, there is no mathematically rigorous
procedure to determine x. Usually one must determine it from the random walk. It is a good
practice occasionally to run very long runs to test that the results are well converged.

The correlation time defined above is an equilibrium average. There is another correlation time
relevant to Markov chains, namely, how many steps it takes to reach equilibrium from some starting
state. Normally this will be at least as long as the equilibrium correlation time, but in some cases
it can be much longer. The simplest way of testing convergence is to start the random walk from
several, radically different, starting places and see if a variety of well-chosen properties converge
to the same values. A starting place appropriate for a dense liquid or solid is with all the atoms
sitting on lattice sites. However, it may take a very large number of steps for the initial solid to
melt. Metastability and hysteresis are characteristic near a (first-order) phase boundary. A random
starting place is with placing each variable randomly in the total space. It may be very difficult for
the system to go to the equilibrium distribution from this starting place. More physical starting
places are well-converged states at neighboring densities and temperatures.

The efficiency of a random-walk procedure (for the property O) is defined as how quickly the
errors bars decrease as a function of computer time,

1

EO = W: (17)
where T is the computer time per step. Hence the efficiency is independent of the length of the
calculation and is the figure-of-merit for a given algorithm. The efficiency depends not only on the
algorithm but also on the computer and the implementation. Methods that generate more steps
per hour are, other things being equal, more efficient. We are fortunate to live in a time when
the efficiency is increasing because of rapid advances in computers. Improvements in algorithms
can also give rise to dramatic increases in efficiency. If we ignore how much computer time a move
takes, an optimal transition rule is one which minimizes Ko, since o5 is independent of the sampling
algorithm.

There are advantages in defining an intrinsic efficiency of an algorithm since one does not
necessarily want to determine the efficiency for each property separately. It is best to optimize
an algorithm to compute a whole spectrum of properties. Diffusion of paths through phase space
provides at least a intuitive measure of convergence. Let us define the diffusion constant Dg of an

lgorithm b
algorithm by (B — )]
Dgp = ) (18)

where R,41 — R, is the total change in one Monte Carlo step and T is the CPU time per step.
Note that this change is zero if a move is rejected. For the “classic” Metropolis procedure we see
that the diffusion constant is roughly:

Dgr x (A)A% (19)

Hence one wants to increase A until the acceptance ratio starts decreasing too rapidly. This leads
to an optimal choice for A. The values of these diffusion constants depend not only on the computer

7



and the algorithm, but also on the physics. Diffusion of the atoms in a solid is much less than in a
liquid, irrespective of the algorithm.

Usually transition rules are local; at a given step only a few coordinates are moved. If we try
to move too many variables simultaneously, the move will almost certainly be rejected, leading to
long correlation times. Given a transition rule, we define the neighborhood, N (s), for each point
in state space as the set of states s’ that can be reached in a single move from s. (It is essential
for detailed balance that the neighborhoods be reflexive. If &' is in the neighborhood of s, then s
is in the neighborhood of s’.) With the heai-bath transition rule, one samples elements from the
neighborhood with a transition probability proportional to their equilibrium distribution,

Mg

C,’

Tup(s— ) = (20)

where the normalization constant is
Ci= 3, mo (21)
s"EN(3)
Then one sees, by substitution into the acceptance probability formula, that the acceptance prob-
ability will be

A(s - ¢') = min [1, %—] . (22)

If the neighborhood of s equals the neighborhood of s' then all moves will be accepted. For all
transition rules with the same neighborhoods, the heat-bath rule will converge to the equilibrium
distribution fastest and have the smallest correlation time. Within the neighborhood, with heat
bath one comes into equilibrium within a single step.

This heat-bath rule is frequently used in lattice spin models where one can easily compute the
normalization constant, Cy needed in the acceptance ratio formula and to perform the sampling.
The heat-bath approach is not often used in continuum systems because the normalizations are
difficult to compute; note that the integral in Eq. {21) extends over all space. In Monte Carlo on a
classical system, the new atom could be anywhere in the box. One has to compute a one-particle
partition function at each step. A repulsive potential will cut holes in the uniform distribution
where another atom is present. Although it would be possible to develop sophisticated ways of
sampling Ty p, it has been found more efficient to further approximate Tyg by some function
that can be sampled quickly and let the Metropolis algorithm correct the sampling, since all that
matters in the end is the efficiency. For continuum systems the idea is to find a method close to
the heat-bath rule, so that the correlation time is small, but with a transition rule which is able to
be executed quickly.

1.2 Dynamical Monte Carlo

Let me introduce a different way of generating random walks, based on an evolution equation. In
nature, equilibrium distributions are generated by an evolution process. The diffusion Monte Carlo
algorithm and the classical simulation methods known as Brownian dynamics and smart Monte
Carlo are more naturally regarded as local dynamical random walks.

Suppose we want to sample the distribution exp(—8V (R)). The Smoluchowski equation

—dn(R,t)/dt = —~VD(R)[Vr — SF(R)~], (23)
is the unique “master” equation which is:

e local in space
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s goes to the Boltzmann distribution

e is Markovian.

Here D(R) is, in general, a many-body tensor (usually taken to be a constant diagonal tensor) and
F = -VV is the force.

The asymptotic solution of 7(R,t) will be 7(R) exp(—BV(R)). It is easy to see that this
distribution satisfies dx/dt = 0. If we assume the process is ergodic, since it is Markovian, this
must be the only solution.

Let us define the Green’s function: G(R, Rg;t) is the solution to Eq. (23) with the boundary
condition at zero time: G(R, Ro;0) = 6(R — Ro). We can prove that the Green'’s function satisfies
detailed balance:

x(R)G(R — R';t) = 7(R)G(R' — R;t), (24)
for any value of t. (To do that one writes the evolution equation for the symmetrized Green’s
function: (x(R)/x(R))Y?G(R — R';t), and sees the right hand side of the master equation is an
Hermitian operator which implies that the symmetrized Green's function is symmetric in R and R'.
} Then G can be used for a transition probability and it will always give an acceptance probability
of unity. Also it gives interesting dynamics (not MD but dynamics of viscous particles always in
contact with a heat bath).

The Smoluchoski equation leads to an interesting process but we can only calculate G in the
short-time limit. In the following I explain a general procedure for devising an algorithm of sampling
G. Let us calculate the moments of G,

I(Ro,t) = f dR(R — Ro)"G(Ro — R;t). (25)

Take the time derivative of this equation, use the master equation on the r.h.s., and Green’s theorem
to get a simple integral over G on the r.h.s (we interpret this as an average < ... >). We assume
there are no absorbing surfaces of the random walks. Then,

dlo/dt = 0. (26)

This implies the normalization of G is always one so the evolution describes a process which neither
creates nor destroys walks. The next moment is:

dl,/dt =< BDF + VD > . (27)

Let us assume that F and V.D are slowy varying. Then we can replace them by the values at the
intial points and integrate:

< R, >= Ro + t|BF (Ro) + VD(Ro)} + O[t*]. (28)

The equation for the second moment (in general a second rank tensor) is:

dl,Jdt=2< D> +2< (R— Ro)(BF + VD) >. (29)
Integrating,
< (R - Ro)? >= 2D(Ro)t + O[t’]. (30)
The solution at small time is a Gaussian distribution with the above mean and covariance.
G4(R, Ro;t} = exp(~(R — R:) (2D(Rg)t)_1(R - Rt)][QWtdet(D(Ro))]_llz. (31)
9




According to the central limit theorem, Egs. 28-30 are all that is needed to simulate the random
walk if the time step t is sufficiently small.

We have not yet discussed the diffusion tensor. For simplicity, one normally assumes that
D(R) = DoT is a constant, unit tensor. In this case Dy can be absorbed into the units of time.
Physically more complicated tensors are related to “hydrodynamic” interactions and will lead to
different dynamics but the same static properties.

Then the acceptance probability a constant diffusion is given by:

A =min [1,eap(-B(V(r') - V(r)) - B(F(r) + F(r')) (2(r' = r) - BD(F' - F))/4)].  (32)

The acceptance ratio goes to unity at small t. One can possibly make more accurate schemes by
including off-diagonal components in the second moment. We can choose for a transition probability
the most general correlated Gaussian in 3n variables,

Ts(R) = /(21)3™det(A)e~(R-R)2A) " (R-R) (33)

where the 3 x 3 positive-definite covariance matrix A and the mean position vector B can be
arbitrary. Suppose we solve equation (29) to one higher order:

A = 2Tt — VYV (Ry). (34)

We can sample the multivariate Gaussian distribution. One Cholesky-factorizes the covariance
matrix as A = SS7, where S is an upper triangular matrix. Then if x is a vector of Gaussian
random numbers with zero mean and unit variance, Sy + B has the desired mean and variance,
The diagonal divisors in the Cholesky decomposition of A are needed to find the actual value of
T(R — R') and the acceptance probability for a move. The effect of interactions is to push the
mean position of an atom away from its current position if other particles are nearby. Similarly, the
covariance is changed by interactions with neighboring particles. In directions where the curvature
of the potential is positive, the cage of surrounding atoms results in a narrower Gaussian’s being
sampled.

2 Variational Monte Carlo

We now turn to the first and simplest of the Quantum Monte Carlo methods, Variational Monte
Carlo (VMC). The VMC method was first used by McMillan[8] to calculate the ground state
properties of liquid “*He and then generalized to fermion systems by Ceperley et al[9]. It is a
relatively simple generalization from a classical Monte Carlo simulation to VMC.

The variational theorem says that for ¥ a proper trial function, the variational energy of the
trial function is an upper bound to the exact ground state energy:

_ Y (R)H¥(R)

=TT mum

> Ey. (35)

One occasionally sees mistakes in the literature, so let me remind you of the conditions that the
trial function must satisfy:

L. HW is well defined everywhere which means that both ¥ and V¥ must be continuous wherever
the potential is finite,

10



- aa - Beds s A . A RS e

AA N A BB LA KBE i . &E A4 . A A B

LAS .

2. The integrals [ |¥|?, [ ¥*HV, and [ |¥H]|? should exist. The last integral is only required to
exist for a Monte Carlo evaluation of the integrals. If it does not exist the statistical error of
the energy will be infinite.

3. ¥ has the proper symmetry: ¥(R) = (-1)P¥(PR) for fermions and the right behavior at
the periodic boundaries.

In the continuum, it is important to show analytically that properties 1 and 2 hold everywhere,
particularly at the edges of the periodic box and when two particles approach each other. Otherwise
either the upper bound property may not be guaranteed. The Monte Carlo error estimates are not
valid. For a lattice spin model, only item 3 is applicable. ‘

The variational method is then quite simple. Use the Metropolis algorithm to sample the square
of the wave function: (R 2

"= P
Then the variational energy is simply the average value of the local residual energy over this distri-
bution,

(36)

By = [#(R)EL(R) = (EL(R))y. (37
where the local energy of ¥ is defined as:
EL(R) = VT 'H¥(R). (38)

Variational Monte Carlo(VMC) has a very important zero variance property: as the trial func-
tion approaches an exact eigenfunction, ¥ — @, the local energy approaches the eigenvalue ev-
erywhere, Er{R) — E,, and the Monte Carlo estimate of the variational energy converges more
rapidly with the number of steps in the random walk. Of course, in this limit the upper bound is
also becoming closer to the true energy. It is because of the zero variance property that Quantum
Monte Carlo calculations of energies can be much more precise than Monte Carlo calculations of
classical systems. Fluctuations are only due to inaccuracies in the trial function.

2.1 The Pair Product Trial Function

Now consider a system interacting with a one-body (e. g. an external potential) and two-body
potentials. Froebinius proved many years ago that the ground state of a real Hamiltonian (i.e. no
magnetic fields) can always be made non-negative. This implies that the ground state has Bose
symmetry. .

The pair product trial function is the simplest generalization of the Slater determinant and the
ubiquitous form for the trial function in variational Monte Carlo:

Y(R,0) = exp{— Z u(r,-j)]det[ﬂk(r,;, i)l (39)
i<

where 8;(r, o) is the kth spin-orbital and u(r) is the “pseudopotential” or pair-correlation factor.
This function also goes by the name of a Jastrow[10] wave function, although Biji[11] much earlier
described the motivation for its use in liquid *He. Closely related forms are the Gutzwiller function
for a lattice, or the Laughlin function in the fractional quantum hall effect. Both u(r) and 8i(r, o)
are in principle determined by minimizing the variational energy.
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2.2 Details

I will only mention a few details concerning VMC. First, how do the particles move? On a lattice
one can make a random hop of a particle or a spin flip. In the continuum, in the classic Metropolis
procedure, one moves the particles one at a time by adding a random vector to the particle’s
coordinate, where the vector is either uniform inside of a cube centered about the old coordinate,
or is a normally distributed random vector centered around the old position. Assuming the first
kind of move for the ith particle, the trial move is accepted with probability:

o(R — R) =| W(R)/¥(R) "= exp[-2} (u(r - 1j) —u(ri— ;)] | L 0(r})Cri [, (40)
i P

where the matrix, C, is the transposed inverse to the Slater matrix.

;gk(fi)ckj = 6k (41)

By the elementary properties of determinants C is also proportional to the cofactor matrix, so we
have used it to calculate the acceptance probability. Let me remind the reader that the evaluation of
a general determinant takes O(N?) operations. The evaluation of the fermion part of the acceptance
ratio will take O(N) operations if C is kept current. If a move is accepted, C needs to be updated(9]

Cix = Cjk + [8ji — b;]Cux/b; (42)

b; = 31, 0x(r")Cri which takes O(N?) operations. Hence to attempt moves for all N particles (a
pass) takes O{N3) operations. (Remember it is particle ¢ which is being moved.)

The local energy, needed to evaluate the variational energy is calculated by applying the Hamil-
tonian to the trial function:

EL(R)=V(R)+ XY _[VIU - > V2,(r)Cri — G¥], (43)
i k

where G; = =~V U + 3, Vil (r:)Cri, and U = 3 u(ri;). Thus the inverse matrix is also needed to
determine the local energy. Very often the orbitals are taken to be exact solutions to some model
problem, in which case the term V2@ (r;}, will simplify. Finally note that using Green’s identity
allows several alternative ways[9] of calculating the variational energy. While some of them are
simpler and do aot involve so many terms, for a sufficiently good trial function, the local energy
estimator of eq. (43) will always have the lowest variance. The other forms of the energy give
useful tests of the computer program and the convergence of the random walk. (Exercise )

2.3 Optimization of Trial Functions

Optimization of the parameters in a trial function is crucial for the success of the variational method
and important for the Projector Monte Carlo method. There are several possibilities of the quantity
to optimize and depending on the physical system, one or other of the criteria may be best.

e The variational energy: Ey. Clearly one minimizes Ey if the object of the calculation is to
find the least upper bound. There are also some general arguments suggesting that the trial
function with the lowest variational energy will maximize the efficiency of Projector Monte
Carlo[23].

12
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e The dispersion of the local energy: o f[(H~ Ey)¥)? . If we assume that every step on a QMC
calculation is statistically uncorrelated with the others, the dispersion is proportional to the
variance of the calculation. There are some indications that minimization of the dispersion is
statistically more robust than the variational energy because it is a positive definite quantity
with zero as a minimum value.

e The overlap with the exact wave function: [¥¢. This is equivalent to finding the trial
function which is closest to the exact wave function in the least squares sense. This is the
preferred quantity to optimize if you want to calculate correlation functions, not just ground
state energies. Optimization of the overlap will involve a Projector Monte Carlo calculation
to determine it, which is a more computer intensive step.

I will now review the analytic properties of the optimal pseudopotential, u*. Suppose we assume
that the spin-orbits come from an exact solution of a one-body potential.

— AV, (r) + v (r) ~ €x)fi(r) =0 (44)

Let us examine the dominant terms in the local energy eq. (43) as 2 particles are brought together.
In a good trial function the singularities in the kinetic energy must cancel the the singularities of
the potential energy. In this limit the local energy will have the form:

EL(R) = v(r) + 22V2u(r) - 2A(Vu(r))* + .., (45)

where = is the distance separating the particles. An intuitive result emerges: e ") will equal
the solution to the 2-body Schroedinger equation. For He atoms interacting with a Lennard-Jones
potential 4¢(c/r)'?, at small distances this gives: u(r) = ((2602)/(25)\))1/2(0'/1')5. For the Coulomb
potential this equation can be used to derive the cusp condition.

ui; (0
e,-e_,-+2(A,-+AJ-) ;;'( ) =0 (46)
T4
Now let us turn to the large r behavior of the optimal u{r) where a description in terms
of collective coordinates (phonons, or plasmons) is appropriate. The variational energy can be
written as:

By =Er+ Z(vk — M%) (Sk — 1) (47)
k

where Ep is the fermion energy in the absence of correlation, v and ug are the fourier transforms
of v(r) and u(r), and Sk is the static structure factor for a given u(r). Minimizing Ev with respect
to uz and making the RPA assumption of how Sk depends on ug: S;l = .S'D_kl + 2puy where p is the
particle density and Soy is the structure factor for uncorrelated fermions, we obtain[13] the optimal
pseudopotential at long wavelengths:

1 2pvk]1/2

1
— il 4
2pup = e + [Sck + k2 (48)

For a short-ranged potential, (e.g. liquid helium), v, can be replaced by a constant and and we
find the Reatto-Chester[14] form: u(r) o« r~2. But for a charged system, where vg o« k7%, then
u(r) oc r7L.

This raises a very important point which we will not have space to go into. Optimal pseudopo-
tentials are always long-ranged in the sense that correlation will extend beyond the simulation box.
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The ground state energy is little affected by this tail in the wave function, but response functions,
such as the dielectric function or the static structure factor are crucially dependent on using the cor-
rect long-range properties. In order to maintain the upper bound property, the correlation function
must be properly periodic in the simulation cell. For high accuracy results and physically correct
properties in the long wavelength limit, the Ewald image method[2, 13] is needed to represent the
correct long-range behavior of the optimal trial function.

It is possible to carry out further analysis of the optimal correlation factor using the Fermi-
Hypernetted-Chain equation. However, at intermediate distances or for highly correlated or com-
plex systems, a purely Monte Carlo optimization method is needed. The simplest such method
consists of running independent VMC runs with a variety of different variational parameters, fit-
ting the resulting energies with a quadratic form, doing more calculations at the predicted minimum,
until convergence in parameter space is attained. The difficulty is that close to the minimum the
independent statistical errors will mask the variation with respect to the trial function parameters.
The derivative of the variational energy with respect to trial function parameters is very poorly
calculated. Also, it is difficult to optimize by hand, functions involving more than 3 variational
parameters.

A correlated sampling method, known as reweighting[20, 9] solves this problem. One samples
a set of configurations {&;} (usually several thousand points at least) according to some distribu-
tion function, usually taken to be the square of the wavefunction for some initial trial function:
|¥:(R; ao)|®. Then the variational energy (or variance) for another trial function can be calculated
by using the same set of points:

_ 2 w(R;,a)Er(R;,a)
B = ==

where the weight factor w(R) = |¥r(R;a)/Pr(R;a0)|* and the local energy is Er(R,a). The
weight factors take into account that the distribution function changes as the variational parameters
change. One then can use a minimizer to find the lowest variational energy or variance as a function
of a keeping the points fixed. There is a dangerous instability: if the parameters move too far away,
the weights span too large of a range and the error bars of the energy become large. The number
of effective points of a weighted sum is N.;s = (3" w;)?/ Y- w?. If this becomes much smaller than
the number of points, one must resample and generate some new points. Using the reweighting
method one can find the optimal value of wavefunction containing tens of parameters.

(49)

2.4 Beyond the pair-product trial function

Relatively little has been done to take the variational results beyond the two-body level. 1 will
describe several of the recent directions. The possibilities for improving the pair-product trial
function in a homogenous one-component system are relatively limited.

The dominant term missing in the trial function for a bosonic system is a three- body (or polar-
ization) term with the functional form of a squared force:

2
Us(R)=-)_ [ZE(W)TI'}] - (50)

1
The new variational function () can be shown to be roughly given by £(r) = du(r)/dr. The
overall functional form of the polarization (the form of a squared force) makes it rapid to
compute: the computational time being of the same order of magnitude as the 2 body pair
function.

14



a A A&

. A AR 1 A EE L A A8 -

ALk B

A2 A B EEBRSSAES 2 .E A28 .

A AAa

terms Ev [Ev — Eqo]/[2T]
uMcMillan | —5.702(5) 5.1%
uoptimized | —6.001(16) 1.1%
u, € —6.901(4) 0.86%
DMC —7.143(4) 0.0%

Table 1: The energies of liquid *He in Kelvin/atom at zero pressure and zero temperature with
various forms of trial functions. In the first column u refers to pair correlations, { implies that
three body terms were included. The second column shows the variational energies and the third
column the percentage of the energy missed by the trial function. The numbers in parenthesis are
the statistical error in units of 0.01K. The numbers are from Moroni et al. [19]

terms Ey [Ev — Eo)/[2T] | Ern ref.
u —1.15(3) 5.7% —3.20(3) | 116]

u — optimized | —1.30(3) 5.7% ~2.20(3) | [19]
u,é _1.780(17) 4.6% ~2.20(3) | [16]
w1 —1.730(4) 3.7% —2.37(1) | [16]
u €, | —2.163(6) 1.3% ~2.37(5) | [17]
eTp. ~2.47 0.0% —2.47

Table 2: The energies of liquid 3He in Kelvin/atom at zero pressure and zero temperature with
various forms of trial functions. In the first column u refers to pair correlations, £ implies that
three body terms were included and 7 means backfiow terms were included. BCS refers to the
spin-paired trial functions in egs. (14-15). The second column shows the variational energies and
the third column the percentage of the energy missed by the trial function. The fourth column
shows the results with the Fixed-Node Green’s Function Monte Carlo to be described in the next
section. The numbers in parenthesis are the statistical error in units of 0.01K.

For a fermion system, the interaction can affect the nodes of the interacting wave function. The
simplest correction in a homogenous system is known as “backflow”. The particle coordinates
in the Slater determinants become “quasi-particle” coordinates:

det[01(5;, 0:)], (51)

where the ‘quasi-particle’ coordinates are defined by: §; = 7i + 1; n(ry)7y;. Backflow is
needed to satisfy local current conservation. However the computation of the determinant
and energy become much more complex, because each element of the Slater matrix now
depends on all the electron coordinates.

Table 1 gives VMC energies for *He and Table 2 for 3He, for a variety of trial functions. It is
important to realize that the kinetic and potential energies are almost completely cancelling out,
liquid helium is very weakly bound. The third column (Ev — Eg)/(2T) is a measure of the accuracy
of the trial function, where T = 12.3K is the kinetic energy and Ep = —2.47K is the ground state
energy. This ratio is independent of how the zero of potential energy is defined and is equal to
the percentage error in the upper bound for a harmonic potential. The chief motivation for the
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simulation of *He is that the results can rather directly be compared with experiment, assuming of
course that the assumed inter-atomic potential is known accurately enough. There is a gratifying
convergence toward experiment as more terms are added to the trial function. The most important
terms beyond the pair-product level are the backflow terms.

2.5 Problems with Variational Methods

The variational method is very powerful, and intuitively pleasing. One posits a form of the trial
function and then obtains an upper bound. In contrast to other theoretical methods, no further
essential approximations need to be made and there are no restrictions on the trial function except
that it be computable in a reasonable amount of time. There is no sign problem associated with
fermi statistics in VMC. To be sure, the numerical work has to be done very carefully which means
that convergence of the random walk has to be tested and dependence on system size needs to be
understood. To motivate the methods to be described in the next section, let me list some of the
intrinsic problems with the variational method.

e The variational method favors simple states over more complicated states. One of the main
uses of simulations is to determine when and if a zero-temperature phase transition will occur.
As an example, consider the liquid-solid transition in helium at zero temperature. The solid
wave function is simpler than the liquid wave function because in the solid the particles are
localized so that the phase space that the atoms explore is much reduced. This means that
the difference between the liquid and solid variational energies for the same type of trial
function, ( e.g. a pair product form) the solid energy will be closer to the exact result than
the liquid and hence the transition density will be systematically lower than the experimental
value. Another illustration is the calculation of the polarization energy of liquid 3He. The
wave function for fully polarized helium is simpler than for unpolarized helium so that the
spin susceptibility computed at the pair product level has the wrong sign!

¢ The optimization of trial functions for many-body systems is very time consuming, partic-
ularly for complex trial functions. In the 1 component system (say the electron gas) one
only has to optimize a single u(r) function, the orbitals are determined by symmetry. In
the HyO molecule, one has 5 different 3-dimensional orbitals (some related to each other by
symmetry} and a 6-dimensional correlation function (u(r;,r;)). Clearly it is quite painful to
fully optimize all these functions! This allows an element of human bias; the optimization is
stopped when the expected result is obtained.

o The variational energy is insensitive to long range order. The energy is dominated by the
local order (nearest neighbor correlation functions). If one is trying to compare the variational
energy of a trial function with and without long range order, it is extremely important that
both functions have the same short-range flexibility and both trial functions are equally
optimized locally. Only if this is done, can one have any hope of saying anything about the
long range order. The error in the variational energy is second order in the trial function,
while any other property will be first order. Thus variational energies can be quite accurate
while correlation functions are not very accurate.

e You almost always get out what is put in. Suppose the spin-orbitals have a Fermi surface.
Then the momentum distribution of the pair product trial function will also have a Fermi
surface although it will be renormalized. This does not imply that the true wave function has
a sharp Fermi surface. Only for localized spin-orbitals will a gap appear.
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3 Projector Monte Carlo

In the last lecture, I discussed the variational Monte Carlo method. Now I will turn to a potentially
more powerful method where a function of the Hamiltonian projects out the the ground state, hence
the name, projector Monte Carlo. In fact, the nomenclature of the various quantum Monte Carlo
methods is not at all standardized. The table shows the operators that have been used as projectors,
or Green’s functions. For simplicity I will only discuss Diffusion Monte Carlo although most of what
I say carries over immediately to the other projectors.

A sequence of trial functions is defined by repeatedly applying the projector, G(R, R'): to some
initial state ¥o(R): ‘

Yri1(B) = e E0y(R) = [ dR'G(R, R)pu(R). (52)

The effect on the trial function of the Green’s function is seen by expanding the trial function in
the exact eigenfunctions ¢, of the Hamiltonian. The nth iterate is:

$n(R) =Y ¢a(R) < $altpo > ™7 (FaE1), (53)

The Green’s function shown in the table will all project out the state of lowest energy having a
non-zero overlap with the initial trial function:

Jim $a(R) = o(R) < doltpo > 775 7F7), (54)

The role of the trial energy, Er is to keep the overall normalization of ¥, fixed, which implies
Er =~ Ep. The timestep, T, controls the rate of convergence to the ground state.

Now the application of the Green’s function involves a 3N dimensional integral. Hence one N

gets larger than a few, one must do the integral with Monte Carlo. The interpretation of Eq. (52)
is very similar to the Markov chain we discussed earlier. The probability of starting a random walk
at Ry is ¥o(R;) (For the moment let us discuss the case where ¥ is non-negative, the boson case.)
To sample 4 (R), we choose moves from Rp to Ry from the Green’s function G(Ry, Ro). In the
limit that the time step approaches zero, a coordinate space representation of the Green’s function
is:
(BoRL —r(V(R)-Er) | 0(r?), (55)
The iteration equation, eq. (52) , has a simple interpretation in terms of branching random walks
since the first factor is the Green’s function for diffusion and the second is multiplication of the
distribution by a positive scalar. Luckily both are non-negative so a probabilistic interpretation is
possible. Such is not the case for arbitrary Hamiltonians. The branching process makes, projector
Monte Carlo differ from a Markov process: walks are allowed to split and to die.

The computer algorithm is quite simple: an ensemble of configurations is constructed with a
Metropolis sampling procedure for ¥(R). This is the zeroth generation, i.e. n = 0. The number
of configurations is the population of the zeroth generation, P,. Points in the next generation are
constructed by sampling the Gaussian distribution in eq. (55) and then branching. The number of
copies of R’ in the next generation is the integer part of

< Rle~"(M-ET)| R 5= (4mhr) 3N 2~

m = u+ exp[-7(V(R) — ET)] (56)

where u is a uniform random number in (0,1). If the potential energy is less than the ground
state energy, duplicate copies of the configuration are generated. In succeeding generations, these
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Method G(R, R') ref.
Dif fusion DMC | exp{-7(H — E7)] | [26, 27]
Green/sFunction GFMC | [1+7(H — E7)]™" | [24, 25]
Power PMC (1-7(H - Er)] |[28]

Table 3: The Green’s functions for various projection methods. 7 is the timestep, and E7 is the trial
energy. They have all been normalized to be unity at the origin and to have the same derivative.

walks propagate independently of each other. In places of high potential energy, random walks are
terminated.

This procedure is a Markov process where the state of the walk in the nth generation is given by
{Fa; Ry, Ry,...Rp,}. Hence it has a unique stationary distribution, constructed to be the ground
state wave function.

The population (number of walkers) fluctuates from step to step. The trial energy, ET, must
be adjusted to keep the population within computationally acceptable limits. This is done by
adjusting the trial energy as:

Er = Ey + kIn{P*/ P), (57)

where P is the current population, P* is the desired population, Ey is the best guess of the ground
state energy, and & is a feedback parameter adjusted to be small as possible while achieving the goal
of stabilizing the population around the target, P*. If it is too large, one can bias the distribution.

3.1 Importance Sampling

The ahove scheme, first suggested by Fermi, was actually tried out in the first days of computing
some forty years ago [29]. But it fails on many-body systems because the potential is unbounded.
For example, a coulomb potential can go to both positive and negative infinity. Even with a
bounded potential the method becomes very inefficient as the number of particles increases since
the branching factor grows. But there is a very simple cure discovered by Kalos [25] for GFMC,
but equally applicable to any projector method. Importance sampling multiplies the underlying
probability distribution by a known, approximate solution which we call the trial or guiding function,
TU(R). Multiply eq. (52) by ¥, the trial function, and define f,(R) = ¥(R)%,(R). Then:

fapr = Ve TH=Er)y, / dR'G(R, R)) fo(R)) (58)

where G(R,R/) = 0~'e~"("-Er}¥ is the importance-sampled Green’s function and the initial
conditions are fo(R) = U?(R)W(R)yo(R). It is easily shown by differentiating G with respect to T
that it satisfies the evolution equation:

- w = — Z AVi{ViG 4+ 2GV;In(Y(R))] + [EL(R) — ET)G, (59)
t
where Ep(R) is the local-energy defined in the previous lecture. As we discused earlier, we can
consider each term on the right-hand side as a process in the random walk. The three terms on
the right-hand side correspond to diffusion, drifting and branching. We have already discussed
diffusion and branching. As the trial function approaches the exact eigenfunction, the branching
factor approaches unity; thus a sufficiently good trial function can control the branching.

The importance sampled DMC algorithm is
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1. The ensemble is initialized with a VMC sample from ¥*(R).
2. The points in the configuration are advanced in time as:
Rot1 = Ry + x + AV In(¥(Rn)*), (60)
where x is a normally distributed random vector with variance 2Ar and zero mean.
3. The number of copies of each configuration is the integer part of
exp(—7(EL(R,) — ET)) + 4, (61)
where  is a uniformly distributed random number in (0, 1).
4. The energy is calculated as the average value of the local energy: Eq = {(EL(Rn)).
5. The trial energy is periodically adjusted to keep the population stable as in Eq. (57).

6. To obtain ground state expectations of quantities other than the energy, one must correct the
average over the DMC walk using the so-called ‘mixed estimator,” Vipiz =< ¢o|V|¥ >, and
the variational estimator [20]. For example the potential energy is calculated as:

< ¢o|V]do >= 2 < ¢o|V|¥ > = < ¥|V[¥ > +O([do - o]2). (62)

The first term on the LHS is the mixed estimator produced by the projector Monte Carlo, the
second term the variational estimate. If the mixed estimator equals the variational estimator
then the trial function has maximum overlap with the ground state.

Note that repeated use of step 2 alone would generate a probability density proportional to o2
e. if we turn off the branching we recover VMC.

In the GFMC algorithm introduced by Kalos there is no error resulting from taking a finite
timestep which makes it very useful for performing precise energy calculations. Its essence is
identical to the above algorithm. The new algorithmic features of GFMC are the introduction of
intermediate points and the sampling of the value of the timestep.

3.2 The Fixed-Node Method

We have not discussed at all the problem posed by fermi statistics to the projector Monte Carlo
method. First let us consider the difficulty in implementing the non-importance sampled algorithm.
The initial condition ¢o(R) is not a probability distribution since a fermion trial function will have
an equal volume of positive and negative regions. Hence we must use the initial sign of the wave
function as a weight for the random walk. That leads to an exact but slowly converging algorithm
that we will discuss in the next subsection.

Importance sampling cures this defect of the initial condition. The initial distribution |¥(R)|
is positive, but the Green’s function, G(R, R') can be negative if a step changes the sign of .
Thereafter a minus sign will be attached to the waltk which will lead to a growing statistical
variance for all matrix elements. There is a simple way to avoid the sign: forbid moves in which
the sign of the trial function changes. This is the fixed-node (FN) approximation.

In a diffusion process, forbidding node crossings puts a zero boundary condition on the evolution
equation for the probability. This solves the wave equation with the boundary conditions that it
vanish wherever the trial function vanishes. One can easily demonstrate that the resulting energy
will be an upper bound to the exact ground state energy[30]; the best possible upper bound with
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the given boundary conditions. With the FN method, we do not necessarily have the exact fermion
energy, but the results are much superior to those of VMC. No longer do we have to optimize two-
body correlation factors, three-body terms etc., since the nodes of the trial function are unchanged
by those terms. One is exactly solving the wave equation inside the fixed-nodal regions, but there
is a mismatch of the derivative of the solution across the boundary. The nodes have an unequal
pressure on the two sides unless the nodes are exact. Where comparison has been done between
the energy of the trial function, the energy of the fixed-node approximation and the exact energy,
one generally finds that the systematic error in the FN calculation is three to ten times smaller
than it would be for a well-optimized VMC energy. See Table 1.

The nodes obviously play a very important role since, as we have seen, if the nodes were exactly
known, the many-fermion system could be treated by Monte Carlo methods without approximation.
Let me briefly recap a few basic facts about nodal surfaces. First note that the ground state wave
function can be chosen real in the absence of magnetic fields; the nodes are the set of points
where ¢(R) = 0. Since this is a single equation, the nodes are in general a (3N-1) dimensional
hypersurface. (A common confusion is between these many-body nodes and those of the spin-
orbits which are 2D surfaces in a 3D space.) When any two particles with the same spin are at
the same location the wave function vanishes. These coincident planes, with r; = r; are (3N-3)
dimensional hypersurfaces. In 3D space they do not exhaust the nodes, but are a sort of scaffolding.
The situation is very different in 1D where the set of nodes is usually equal to the set of coincident
hyperplanes. Fermions in 1D are equivalent to 1D bosons with a no-exchange rule.

Nodal volumes of ground state wave functions possess a tiling property[31]. To define this
property first pick a point, Ry, which does not lie on the nodes. Consider the set of points which
can be reached from Ry by a continuous path with ¢{R) £ 0. This is the volume in phase space
accessible to a fixed-node random walk starting at Ry. Now consider mapping this volume with the
permutation operator {only permute like spins), 1. e. relabel the particles. The tiling theorem says
that this procedure completely fills phase space, except, of course, for the nodes. Thus one does
not have to worry about where the random walk started; all starting places are equivalent. This
theorem applies for any fermion wave function which is the ground state for some local hamiltonian.
Excited states, ground states of non-local Hamiltonians, or arbitrary antisymmetric functions need
not have the tiling property. More extensive discussion of fermion nodes and some pictures of
cross-sections of free particle nodes are given in ref. [31].

3.3 Exact Fermion Methods

As accurate as the FN method might be, it is still unsatisfactory since one does not know how the
assumed nodal structure will affect the final result. One might guess that long-range properties,
such as the existence or non-existence of a fermi surface will be determined by the assumed nodes.
The FN algorithm only improves the bosonic correlations of the trial function, and may not change
the genuine fermion features. There are some fairly simple ways of improving on the FN method,
but their use is limited to small systems, though by small it may be possible to do rather accurate
“exact calculations” of fifty or more particles.
The transient estimate (TE) method calculates the ratio:

WHe HH-ET)J
Erp(t) = ff Ve—t(H-Er)y (63)

where H is the exact [amiltonian (not the fixed-node Hamiltonian) and ¥ is an antisymmetric trial
function. Clearly the variational theorem applies so that E7g(t) > E;. Also the energy converges
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exponentially fast in ¢:
Jim Erg(t) = Eo+ 0(e™) (64)

where E, is the gap to the next excited state with the same quantum numbers as the fermion
ground state. In a Fermi liquid, this is the gap to the state with the same momentum, parity and
spin. It is obtained by making 2 particle-hole excitations.

For a method to find self-consistently its own nodes, the walks must be able to go anywhere, and
so the drift term in Eq. (59) must not diverge at the nodes. Hence we must distinguish between
the antisymmetric trial function that is used to calculate the energy, W(R), (this is always assumed
to be our best variational function) and a strictly positive guide function, ¥c(R), used to guide
the walks. The guide function appears in the drift and branching terms of eq. (59) and will be
assumed to be a reasonable boson ground state trial function, while the trial function appears in
eq. (63). The ¥ importance-sampled Green’s function is:

G(R,R';t) = ¥g(R) < Rle™"(F-E)| R > UG (R)), (65)
and we can rewrite eq. (63) as:

fo(R)ELT(R)G(R, R';t)o(R)VE(R')

[o(R)G(R, R’ o (R)VA(R) (66)

Erp(t) =

where o(R) = W(R)/¥g(R) and Er7(R) is the local energy of ¥. In the limit, Vs — ¥, o(R)
equals the sign of the trial function at the point R.
Recapping, the transient estimate algorithm is:

1. Sample configuration R’ from the square of the guide function with VMC. That corresponds
to the rightmost factor in Eq. (66).

2. Record the initial sign of the walk, o(R').

3. Propagate the walk forward an amount of time, ¢ with the Green’s function, G(R,R;t). If a
branch occurs, each branch will count separately.

4. The weight of the walk arriving at Ris o{R)o(R'). The energy at time t is computed as:

where the averages are over all random walks generated by this process.

We see that the weight of the walk is positive if the walk crosses an even number of nodes (or
does not cross at all) and is negative if it crosses once or an odd number of times. Hence the nodes
of the true wave function can differ from those of the trial function if there is an unequal diffusion
of walks from the negative and positive regions.

The release node (RN) algorithm[30, 32] is an improvement on this TE method. Instead of
starting the projection from the trial function, one begins the projection from the fixed-node solu-
tion. There are several advantages. First of all boson correlation within the fixed-nodes is already
optimized, thus the projection time is only determined by the time to adjust the position of the
nodes. Second, one can directly calculate the difference between the exact result and the fixed-node
solution. It turns out that this is given by the local energy of walks as they cross the nodes. Thus
the difference is obtained with more statistical accuracy than either energy alone which allows the
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convergence to be carefully monitored. Finally, the release node method can be conveniently inte-
grated into a fixed-node program. The only modifications are to introduce a guide function, and
to keep track of the energy as a function of time since nodal crossing,

However, there are serious problems with both the TE and RN method. Let us examine how the
statistical error of the eq. (63) depends on the projection time. It is not hard to see that the value
of both the numerator and denominator are asymptotically proportional to exp(—t{(Ep — Et)).
Thus to keep the normalization fixed our trial energy must be equal to Er. But, because the guide
function allows the walks to cross the nodes, the population will increase as exp(~t(Eg — E7))
where Ep is the boson energy. From this, one can demonstrate that the signal-to-noise ratio
vanishes exponentially fast. This is a general result. In any fermion scheme, as soon as negative
weights are introduced the statistical error will grow as:

€gtat = e_t(EF_EB)' (68)
The behavior is physically easy to understand. Qur estimator depends on finding differences be-
tween random walks crossing an even or an odd number of times. As soon as there is substantjal
mixing, the difference becomes harder and harder to see. Note that the exponential growth rate
depends on a total energy difference. This implies that the transient estimate algorithm is guar-
anteed to fail if N is sufficiently large; the statistical errors will be too large. Nonetheless reliable
results have been obtained for systems of 54 fermions.

The convergence problem is actually a bit more subtle since the projection time, t, can be
optimized. The projection time should be chosen to give approximately equal statistical errors and
systematic errors coming from non-convergence of the projection. Taking these errors from eqs.
(64,68) we find the total error will decrease as:

£,

€ « P77 = .
1= 5{Er - E5 + B,)

(69)

where P is the total number of steps in the random walk. Only for bosons will 5 = 1/2. Any
excited state will converge at a slower rate. Note that 5 o< 1/N for a fermion system. Inverting this
relation, we find that the computer time needed to achieve a given error will increase exponentially
with N.

One possibility for improving this convergence is to use all of the information given in the
function, Erg(t), rather then just the value of the energy at the largest time. Crudely speaking,
we can fit this function with a sum of exponentials and thereby try to extract the asymptotic limit.
This “inverse Laplace transform” problem is well-known to be numerically unstable. It has been
suggested[33] in the context of Quantum Monte Carlo for lattice models that the proper way to
perform such a function fit is with the maximum entropy statistical method, wherein a model of
the expected density of states is used to bias the result, thereby regularizing the fitting problem,
We[34] have applied these ideas to the TE and RN methods on simple problems and shown that
they do indeed reduce the statistical and systematic errors.

There have been many attempts to “solve” the fermion sign problem. For example, one can try
to pair positive and negative random walks in the TE method. This is difficult in many dimensions
simply because the volume of phase space is so large than random walks rarely approach each other
and no such schemes have yet succeeded for more than a few particles.

There is some confusion about the nature of the ‘fermion’ problem in the literature. Note that
the TE and RN methods do converge to the exact fermion energy. A proper statement of the
fermion sign problem is in terms of complexity theory. Namely how long does it take to achieve a
given error estimate, and, more precisely, how does this scale with the number of fermions. Clearly
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one of the important tasks of simulations is to calculate properties of systems near phase transitions
so the ability to do large systems is crucial. In the TE method, the computer time to reach a given
precision grows exponentially with the number of fermions. I would say that a complete solution
of the fermion problem would be an approximation free algorithm which scales as some low power
of the number of fermions.

Let me just briefly mention the computational complexity of simulations of a few physical
systems. Properties of classical systems can be simulated in time O(N). Simulations of equilibrium
properties of quantum bosons at zero or non-zero temperature are also O(N). A Heisenberg model
on a bipartite lattice, or any 1D fermion system is @(N). Variational MC calculations of fermion
systems are calo(N®) in general, but the exponent would be smaller if localized spin-orbits are used.
The Hubbard model at half filling on a bipartite lattice[35] is O(N %) using the projection Monte
Carlo method and auxiliary field techniques. This is the only non-trivial ‘fermion’ problem solved.
Known algorithms for general fermion systems are O(e*N). Barring a breakthrough, one can still
reduce the rate of exponential growth, k, or use the TE or RN methods to gain confidence in FN
and VMC calculations of much larger systems.

3.4 Lattice models

Let me briefly discuss the application of these methods to lattice problems. Most of the methods
described here work also for lattice models, for example variational Monte Carlo and importanced-
sample projector Monte Carlo. One important difference is that it is convenient to use the power
Green’s function to project out the ground state because the energy spectrum is bounded from
both above and below. In this method, the Hamiltonian is directly used to hop the spins without
time step error. The time step must be chosen to obey:

2
T mar ET (70)
where E,... is the maximum energy to avoid negative matrix elements. Since the maximum energy
is proportional to the number of sites, 7 « 1 /N. This is normal since after N time steps, all spins
on the average will be updated, just like in a classical Monte Carlo of a lattice model. Importance
sampling enters in the same way. Details can be found in ref. [28].
The conditions on a lattice model not to have a sign problem are easy to state. The Green’s
function must be non-negative so it can be interpreted as a probability. This implies that the
off-diagonal elements of the Hamiltonian should be non-positive.

<sHls' >< 0 V s#s'. (71)

(We will discuss a more general relation in a moment). Of course, we can choose to do the random
walk in any convenient basis, so the question becomes: is there any local basis that can be shown
to satisfy the above inequalities? The exact eigenfunction basis satisfies these conditions but we
do not know how to transform into that basis unless the eigenfunctions are known. Anyhow the
eigenfunction basis is non-local and would not scale very well with the number of lattice sites. As
far as I know, there has not been a systematic search through local basis transformations to see if
some of the other interesting lattice models might be solvable.

The fixed-node approximation is different for a lattice model because random walks can directly
pass from one nodal region to the other without crossing a place where the trial function vanishes.
A walker could pick up an unwanted minus sign if there are 2 many-body configurations (s, s'),
with (s|H|s'}¥(s)¥(s') > 0. These are called sign-fiip hops. Recently Ten Haff, van Bemmel and
co-workers [37] have shown that for a lattice model, it is possible to modify the Hamiltonian is
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such a way that the fixed-node energy is an upper bound for a lattice model. The sign-flip matrix
elements are set to zero and an extra potential is added to the diagonal:

Verf(s) =VIs)+ 2_ <s|H|s' > U(s')/¥(s) (72)
s'eSF

This is the generalization of the continuum fixed-node method to an arbitrary lattice model. It has
the properties that it gives a lower energy than the variational method but still an upper bound
to the ground state energy. Hence, it gives the exact answer if ¥ is exact. However in contrast
to the continuum, the magnitude of the wavefunction, not just its sign, enters. Going to a lattice
does not at all change the TE and RN methods. They are useful ways of estimating the fixed-node
approximation for a lattice model.

What I have not discussed are the common methods for performing simulations of lattice models.
These are based on applying the Stratonovitch-Hubbard transformation{35] to e **. An auxiliary
field is introduced in place of the electron-electron interaction. Except for the case of the half-filled
Hubbard model on a bi-partite lattice, sign problems remain.

3.5 Complex Wavefunctions

In this section I briefly mention the generalization of these methods to situations where the wave-
function is necessarily complex. Variational methods are straightforward in principle: one simply
samples the square of the modulus of the wavefunction. See, for example [38]. One complication is
in finding good wavefunctions, particularly in periodic boundary conditions since now the phase of
the wavefunction can be periodic or more generally quasi-periodic. For the projector MC methods,
the fixed-node method can be generalized to the fized-phase method. Here the phase is fixed by
a variational wavefunction and the modulus is exactly solved for using the Diffusion Monte Carlo
method. All that needs to be changed (over the zero field situation) is to add an additional term
to the potential energy equal to:

Vers(R) = V(B) + X = JT[Vig(R) + A(r)]’ (73)

where ¢(R) is the phase and A the vector potential. If the phase is exact, the exact energy
is obtained even if the trial modulus was not exact. Otherwise, the best upper bound over all
functions with that phase is found. Applications to quantum Hall systems are discussed in ref.
[39]. An application to a vortex in superfluid helium is discussed in ref. [40]

3.6 Treatment of Atomic Cores in QMC

The core electrons pose a problem for QMC methods because the core energy is much larger than
chemical energies and the relevant distance scale of core states is much smaller. The scaling of
computer time grows = Z® with the atomic number, Z. Obviously, all-electron calculations quickly
become intractable (at least to reach a fixed accuracy on the energy) as Z increases.

The core electrons create two basic problems. The first one is that the very small size of the
core region requires a different strategy for sampling the core region otherwise the time step that
controls the movement of electrons will scale as Z~2%. Although this might be technically difficult
it is not the main obstacle. One can modify the propagator [42] so that it reflects the strong
localization of the core charge and thus to a large extent avoid substantial slowing down of the
simulations.

Far more severe are the local energy fluctuations caused by the strong potentials and large
kinetic energies in the core. Because of a rapidly changing density it is very difficult {although,

24



4 a2 s A S8 A4 - A & 8 -

Ak =

A B A 4 B BE 2 - A Aas .

Ak =B

perhaps, not impossible) to design a trial function which can decrease these fluctuations. Even
though correlation is relatively less important in the core, on the absolute scale it is still very
large. The core, because of the high density, large potentials and large kinetic energy, is always
the strongest fluctuating term of the local energy. Fortunately, for most valence properties the
core remains practically inert and has a negligible impact on the valence properties. This fact can
be used to eliminate the core electrons from the calculations and replace them with effective core
Hamiltonians.

In LDA calculations, pseudopotentials (or effective core potentials) are almost always used
to increase the efficiency of calculations, even for calculations involving hydrogen! This allows
smoother wave functions which in turn reduces the number of basis functions. It has been found
that transferability (the ability of a pseudo-atom to mimic a full-core atom) is governed by norm
conservation, and pseudopotentials are constructed so that the pseudo-orbitals match the full-core
orbitals outside the core.

Bachelet et al. [43], in the pseudo-Hamiltonian approach, proposed to replace the action of
the core on the valence states by an effective single electron Hamiltonian. The most general one
electron Hamiltonian which is local, spherically symmetric and Hermitian, has a local effective
jonic potential and a spatially varying radial and tangential mass. Outside the atomic cores the
potential becomes Coulombic and the mass becomes the usual scalar constant mass. The freedom
in the effective ionic potential, the tangential and the radial mass can be used to tune the pseudo-
Hamiltonian to mimic the action of the core electrons on the valence electrons. The approach has
a great advantage in that the resulting valence Hamiltonian is local and all virtues of the DMC
method immediately apply. For example, the fixed-node approximation gives an upper bound
and release-node calculations can then converge to the exact answer. Calculations on silicon have
demonstrated the practicality and accuracy of this approach [44].

The disadvantage of the pseudo-Hamiltonian is that one does not have very much flexibility
in matching the core response to valence electrons with different angular momentum because the
restrictions on the mass tensor are too severe, especially for first row and transition metal atoms,
i.e. for the atoms with strong nonlocalities.

The usual form of a valence-only Hamiltonian is:

Hyat = Hi. + w (74)

with the local part given by:

Hipe = Z ‘%V? + _XI':WOC(T”) + %z _1“ . (75)

A
i M

The nonlocal pseudopotential operator W includes pseudopotentials v(r) for a small number of
the lowest symmetry channels labeled by £ (usually spd)

28 4+1
(RIWIRY =3 ypm ve(rir)
Ii ¢

§(rir — riy)
!

XTI

Py(F1 - &) (76)

where P; is the Legendre polynomial. Therefore the valence states of different symmetry experi-
ence different potentials in the core region. The variational Monte Carlo can accommodate such
Hamiltonians without major problems, and Fahy et al [52, 32] used nonlocal pseudopotentials for
the first VMC simulations of solids.
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The nonliocality, however, is a problem for the DMC simulations because the matrix element for
the evolution of the imaginary-time diffusion is not necessarily positive. For realistic pseudopoten-
tials the matrix elements are indeed negative and thus create a sign problem (even for one electron)
with consequences similar to those of the fermion sign problem.

In order to circumvent this problem it was proposed by Hurley and Christiansen[45] and by
Hammondet al. [46] to define a new transformed effective core potential by a projection onto a
trial function

Vs (B) = ¥7'(R) [ dR/RIW|R) U (R) (77)

The new effective potential is explicitly many-body but local and depends on the trial function.
However, the DMC energy with V¢ will not necessarily be above the true eigenvalue of the original
H,,; and will depend on the quality of Y7 (R).

A number of VMC and DMC calculations of atomic, molecular and solid systems have been
carried out by this approach. This includes sp and transition element atoms [47], silicon and
carbon clusters [49, 50], nitrogen solids [48]. Our experience indicates that with sufficient number
of valence electrons one can achieve a high final accuracy. This, however, requires using 3s and 3pin
the valence space for the 3d elements and, possibly, 2s and 2p states for elements such as Na. Once
the core is sufficiently small, the systematic error of the fixed node approximation is larger than
the systematic error from pseudopotentials and their subsequent projection in the DMC algorithm.
Recent reviews of applications of QMC to chemistry are in refs. [41, 51]. A recent book on the
subject is ref. [52].

3.7 Problems with Projection methods

The projection method shares many of the same problems with the variational method. In fact it
is useful to think of the projection method as a “super-variational® method. In both VMC and
DMC there is a premium for good trial functions; that is the most straightforward way of making
progress to solving the many-fermion problem.

e The fixed-node result is guaranteed to be closer to the exact answer than the starting vari-
ational trial function. Since the FN algorithm automatically includes bosonic correlation,
the results are much less likely to have the human bias than with VMC. There is also the
possibility of new things coming out of the simulation. For example, one may observe a
particular type of correlation completely absent from the trial function. Hence it is always
good to pay close attention to correlation functions computed by DMC since that it is a good
way of learning what is missing in the trial function. But it is slower than VMC because the
timestep needs to be smaller. The cost in computer time is typically a factor of 2 to 10.

o Although the probability distribution does converge to the exact answer, in practice, this does
not always occur in any given calculation of a many-body systems. The situation is similar
to that of a classical simulation near a phase boundary. Metastable states exist and can have
a very long lifetime. However, with DMC the importance sampling always biases the result If
the trial function describes a localized solid, even after complete convergence, the correlation
functions will show solid-like behavior. Careful observation will reveal liquid-like fluctuations
indicating the presence of the other state. The ability to perform simulations in a metastable
state is useful but the results must be interpreted with caution.

¢ Importance sampling is only a partial cure to the unbounded fluctuations of the branch-
ing method. As N increases, sooner or later the branching becomes uncontrollable. Most
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projector Monte Carlo calculations have fewer than several hundred fermions. The finite
temperature Path Integral Monte Carlo based on the Metropolis method does not suffer from
the problem of uncontrolled branching.

e Although the fixed-node approximation dramatically improves energies, other properties, such
as the momentum distribution may not be improved. To explore the metal-insulator phase
transition with FN-DMC, one must come up with a sequence of nodes spanning the transition
and use the upper bound property of the fixed-node approximation.

e Release node calculations only improve the nodes locally. If t is the release node projection
time, then we can move the nodes a distance of at most /6N At.

e The projector methods can only calculate energies exactly. For all other properties one
must extrapolate out the effect of the importance sampling. This is a real problem if one is
interested in obtaining asymptotic behavior of correlation functions. There are ways of getting
around some of these problems but none are totally satisfactory. The Path Integral finite
temperature methods are much superior to Projector Monte Catlo for calculating correlation
functions.

4 Path Integral Monte Carlo

This section is an abridged version of the longer review article "Path integrals in the theory of
condensed helium” [53].

In the rest of this review I will discuss what I consider to be the the most powerful quantum sim-
ulation method: path integral Monte Carlo. First consider what we must do to simulate a quantum
system at finite temperature. We must sample an energy eigenstate with probability proportional
to the Maxwell-Boltzmann distribution: ezp(—BE;) and then sample the spatial distribution from
|#(R)|2. A simpler procedure is to recall the properties of the thermal density matrix. Recall
that all static properties (in principle, dynamical properties also) of a quantum system in thermal
equilibrium are obtainable from the thermal density matrix. If this sounds unfamiliar, the reader
might wish to review the material in Feynman[54]. In this section, we detail the basic mathematical
properties of the density matrix, give the relationship between the density matrix, path integrals,
and the statistical mechanics of classical “polymers,” explain how Bose symmetry is expressed with
path integrals and fix the notation and terminology of our description. In thermal equilibrium,
the probability of a given state ¢ being occupied is e~Ei/ksT  with T the temperature. Hence the
equilibrium value of an operator O is

(0)= 25 < ¢i|0|¢s > e 75 (78)

where the partition function is

Z = Z e_'GEi (79)
and B8 = 1/kgT. The position-space density matrix is

p(R,R;B) = <Rl ¥R > (80)
= Z¢:(R)¢f(R’)e—3E‘,

27



In the position representation, the expectation of O becomes
0y =z~ dedR'p(R,R';ﬁ) < RIO|R’ > (81)

The following simple, exact property of density matrices is the basis of the path-integral method.
The product of two density matrices is a density matrix:

e~ BB H _ =B H ~BH (82)
Written for positions, one has a convolution,

p(R1, R3; B1 + B2) = /dRzP(Rl,Rz:ﬁl)P(RmRs;ﬁz)- (83)

The path-integral formula for the many-body density matrix is arrived at by using the product
property M times, giving an expression for the density matrix at a temperature 7', in terms of
density matrices at a temperature MT. In operators,

e PR = (e"TH)M , (84)

where the time step is 7 = 8/M. Written in the position representation,

o(Ro, Rag; ) = f f dRidR;...dRyr_1p(Ro, Ry;T)p(Ry, By 7) ... p(Ragor, Rasi7).  (85)

If M is finite we have a discrete-time path. If the limit M — oo is taken, one has a continuous path
{R;} where 0 < t < . But note that Eq. (85) is ezact for any M > 1. The second property that
is needed by path integrals is that, for MT large enough, we can write down a sufficiently accurate
approximation to the density matrix. Thus we shall be able to write down an explicit form for
the low-temperature density matrix which, however, involves many additional integrals. Suppose
the Hamiltonian is split into two pieces, H = 7 + V, where 7 and V are the kinetic and potential
operators.
We can approximate the exact density matrix by the product of the density matrices for 7 and
V alone. One might worry that this will lead to an error in the limit as M — oo with small errors
building up to a finite error. According to the Feynman-Kacs or Trotter formula[55], one does not
have to worry:
e~ ATHV) = im [e_TTe"TV]M. (86)
Moo

Let us now write the primitive approximation in position space,
p(Ro, Ry 7) » de1 (Role™ | Ry ) (Rule™™| Rz) (87)

and evaluate the kinetic and potential density matrices. Since the potential operator is diagonal in
the position representation, its matrix elements are trivial:

<R1|€-TV|R2> = e_Tv(R")é(Rg - Rl) (88)

The kinetic matrix can be evaluated using the eigenfunction expansion of 7. For the moment,
consider the case of distinguishable particles in a cube of side L with periodic boundary conditions.
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Then the exact eigenfunctions and eigenvalues of 7 are L—3N[2¢iKaR and AKZ, with K = 27n/L
and n a 3N-dimensional integer vector. Then

<R016—7T|Rl> - E [3N g=7TAKZ—iKn(Ro—F1) (89)
_ - Ry)®
= (4rr) 3N 2exp [_(&IFQ—] . (90)

Equation (90) is obtained by approximating the sum by an integral. This is appropriate only if the
thermal wavelength of one step is much less than the size of the box,

ar < L2 (91)

Using Eqs. (85), (87), (88),and (90) we arrive at the discrete path-integral expression for the
density matrix in the primitive approximation:

M
p(Ro, Ras; B) = del . .dRpy_1(4xAT) 3N M Zoxp (— 3 [(ﬁ":;%——w + TV(Rm)D . (92)

m=1

This expression relates the quantum density matrix at any temperature to integrals over the path
R, ...Ra_y of something that is like a classical Maxwell-Boltzmann distribution function. This is
the famous mapping from a quantum system to a classical system. The Feynman-Kacs formula, to
be used later, is obtained by taking the limit M — co, making a continuous path.

Of particular importance for the Monte Carlo evaluation is the following corollary of the con-
volution property: if the density matrix is non-negative for any time step 7, by which we mean
p(Ry, Rz;7) > 0V (Ry, Rz), then the density matrix is non-negative for all positive multiples of
7. But we see that the density matrix in the primitive approximation is non-negative, so that the
density matrix at all temperatures must be non-negative.

All the approximations are controllable. The price we have to pay for having an explicit expres-
sion for the density matrix is additional integrations; altogether 3N (M — 1). Without techniques
for multidimensional integration, nothing would have been gained by expanding the density matrix
in a path. Fortunately, simulation methods can accurately treat such integrands. Since we have a
non-negative integrand [see Eq. (92)] the time to do a Monte Carlo calculation (with a predefined
error) will scale roughly linearly with the number of integrals. It is feasible to make M rather large,
say in the hundreds or thousands, and thereby systematically reduce the time step error.

The time step is defined as:

T= B/M (93)
and a single Ry is referred to as the kt* time slice. Again Ry represents the 3N positions of the N
particles: Ry = {rix,-- .,TNk} and rik, a bead, is the position of the ith particle in the kth time

slice. The path is the sequence of points {Ro, Ry, .., Rar-1, Ry} The time associated with the

point Ry is defined as & = k7.
A link m is a pair of time slices (R,,-1, Rr) separated by time 7. The action of a link is defined

as minus the logarithm of the ezact density matrix:

8§™ = S(Rpn-1, B T) = - In[p(Rm—1, Rni 7)]- (94)
Then the (exact) path-integral expression becomes
M
p(Ro, RM,ﬁ) = /dR}_ . .dRM_l exp [*— Z Sm] - (95)
m=1
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There will be contributions to §™ coming from each term of the Hamiltonian. It is convenient to

separate out the kinetic action from the rest of the action. The exact kinetic action for link m will
be dencted K™,

m_ 3N (Rpo1 — Rm)2
K™ = = In(4m A7) + — o (96)
The inter-action is then defined as what is left:
U =U(Rmoy, Ryi7) = S™ — K™, (97)

The approximation [Eq. (87)] of allowing the kinetic and potential energies to commute will be
called the primitive approzimation. In the primitive approximation, the inter-action is

UP = ZIV (R} + V(R (98)
We have symmetrized U™ with respect to R,, and R,,_;.

We can interpret the path-integral expression, Eq. (92), as a classical configuration integral; the
action is analogous to a classical potential-energy function divided by kgT. In the classical analog,
the kinetic link action corresponds to a spring potential connecting beads representing the same
atom in successive time slices. The classical system is a chain of beads connected with springs. We
call such a chain a polymer. In fact, the bead-spring model of real-life polymers has had a long and
useful history. The potential action represents forces between beads of different atoms, keeping the
polymers out of each other’s way (for a repulsive potential). The potential is represented by an
inter-polymeric, potential which is peculiar from the classical point of view in that it interacts only
at the same “time” and only between beads on different chains.

Thermodynamical properties, or static properties diagonal in configuration space, are deter-
mined by the trace of the density matrix, i.e., the integral of Eq. (92) over Ry with Ry = Ras. The
formula for diagonal elements of the density matrix then involves a path that returns to its starting
place after M steps: a ring polymer.

Because the partition function of the quantum system is equal to the partition function of
the classical system, and because of the central importance of the partition function in statistical
mechanics, there is an exact, systematic procedure for understanding many properties of quantum
systems purely in terms of classical statistical mechanics.

The same word applied to the quantum system and the classical system can mean quite different
things. To further avoid confusion we do not refer to the “energy” of the polymer model, but
to its action. Another confusing term is entropy. The entropy of a quantum system decreases
with temperature. But at low temperature, the corresponding polymer system is becoming more
disordered. The confusion arises because the “temperature” of the polymer model is not equal to
the quantum temperature.

To translate what we mean by temperature into the polymer model we must find how 8 appears
in the action. It is best not to see how the time step appears in the action because the time step is
fixed by requiring that the action be accurate. Hence the spring constant and the interbead potential
should be fixed as temperature varies. This means that 8 will be proportional to the number of time
slices. The lower the temperature, the more beads on the polymer. Zero temperature corresponds
to infinitely long chains. One might worry that sooner or later space will be completely filled by
beads. This is not a problem because only beads at the same “time” interact, and hence any given
bead always sees N other beads. Time is a word that can have at least three different meanings:
real time in the quantum system, the “imaginary time” of the path integrals, and the time related
to how the path is moved in the computer program. We shall call this last time, steps, moves, or
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sweeps. If we confuse the first two meanings of time, a word can have exactly the opposite meaning
in the quantum and polymer systems. For example, the “velocity” of a bead is usefully defined as
its displacement from one time slice to the next, divided by r. But with this definition atoms that
are “fast” correspond to low-energy atoms, because they are spread out and their kinetic energy is
small. On the other hand, particles that are trapped in a small region have a small “velocity” and
a high energy. The inversion of meaning comes because path integrals are in imaginary time. The
kinetic energy in the primitive approximation is

-3z {(B5E))

Kinetic energy is a constant minus the square of the “velocity.” The constant needs to be there so
that the total kinetic energy will always be positive. It is possible for a single realization of a path
to have a negative kinetic energy, by being spread out more than usual, but the average over all
paths must be positive.

4.1 Path Integrals and superfluidity

The density matrices up to this point have been appropriate to distinguishable (Boltzmann) particle
statistics, since the indistinguishability of particles was not taken into account. For Bose systems
only totally symmetric eigenfunctions ¢;(R) contribute to the density matrix; those such that
¢:(PR) = ¢;(R) where P is a permutation of particle labels, i.e., PR = (rp,,rp, ...tPy). Define
the particle symmetrization operator

PH(R) = % " $(PR). (100)
P

If the Hamiltonian is symmetric under particle exchange, all states are either even or odd with
respect to a given permutation. Then P will project out Bose states. If we apply P to the density
matrix, we will obtain the bosonic density matrix. Written in position space this is

p5(Bo, RiiB) = 3 3 p(Ro, PR f) (101)
B

where pg is the boson density matrix and p is the boltzmannon density matrix.

A straightforward evaluation of the permutation sum is out of the question once N gets large,
since there will be N! terms. Fortunately, each term in the sum is positive, so we can sample
the permutations in the sum. A bosonic simulation consists of a random walk through the path
space and the permutation space. For Fermions the cancellation between the contributions of even
and odd permutations generally rules out a Monte Carlo evaluation of the integrand without some
major modification, to be discussed in the last section.

The partition function for a Bose system has the form

M
1
ZB = -ﬁ;.[dRo .dRM_..l exp (—- X_:l Sm) ) (102)

with new boundary conditions on path closure: PR, = R,. Paths are allowed to close on any
permutation of their starting positions. The partition function includes contributions from all
N! closures. At high temperature the identity permutation dominates, while at zero temperature
all permutations have equal contributions. In the classical isomorphic system, ring polymers can
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“cross-link.” (We only mean to be suggestive: cross-linking of real polymers is quite different.) A
two-atom system of M links can be in two possible permutation states: either two separate ring
polymers, each with M links, or one larger polymer with 2M links.

Any permutation can be broken into a product of cyclic permutations. Each cycle corresponds
to several polymers “cross-linking” and forming a larger ring polymer. Quantum mechanically
the liquid does this to lower its kinetic energy. In the classical language, cross-linking takes place
to maximize the “entropy”; there are many more cross-linked configurations than non-cross-linked
ones. According to Feynman’s 1953 theory[56] the superfluid transition is represented in the classical
system by the formation of macroscopic polymers, i.e. those stretching across an entire system and
involving on the order of N atoms. What we shall see in the following sections is the explicit
dependence of superfluid properties on these macroscopic exchanges. Monomers are atoms not
involved in an exchange-atoms ¢ such that P; = ¢. We shall find that the average monomer density
is directly related to the free energy of an isotopic impurity.

In the absence of interaction, the size of a path {or polymer) is its thermal wavelength,

Ag = (260)2 (103)

When the size of the polymer equals the interpolymer spacing, roughly p~1/% it is at least possible
for the polymers to link up by exchanging end points. This relationship, Ag = p~!/?, defines the
degeneracy temperature

ledﬁ'z

Tp = ity (104)

For temperatures higher than T, quantum statistics (either bosonic or Fermionic) are not very
important.

In a liquid state, T'p gives a surprisingly good estimate of the superfluid transition temperature.
For ideal Bose condensation in three dimensions, T./Tp = 3.31. For liquid *He at saturated-vapor-
pressure (SVP) conditions (essentially zero pressure), T./Tp = 2.32.

Qualitatively, one can understand why there will be a phase transition when the temperature is
low enough. From Feynman[56]: “A single large polygon of r sides contributes a very small amount
y" with y < 1. But a large polygon can be drawn in more ways than a small one. Increasing
the length » by one increases the number of polygons available by a factor say s (perhaps 3 or 4)
although the contribution of each is multiplied by y. Thus if sy < 1 (high T} large polygons are
unimportant. As T falls, suddenly when sy = 1 the contributions from very large polygons (limited
by the size of the container) begin to be important. This produces a transition.”

4.2 The momentum distribution

London supposed the superfluid transition to be the analog of the transition that occurs in an
ideal Bose gas, where below the transition, a finite fraction of particles occupy the zero-momentum
state. It is hard to understand how particles with strong repulsive interactions could behave like
free particles. Penrose and Onsager[57] defined Bose condensation in an interacting system as
the macroscopic occupation of a single-particle state, namely the state of zero momentum. Using
Feynman's partition function and arguments concerning cycle length distribution, they showed that
there would be Bose condensation below T, but not above. They estimated that at zero temperature
8% of the atoms have precisely zero momentum.

The condensate fraction has a simple meaning in terms of path-integrals. The probability
density of observing a single atom with momentum k& is defined as

e, = (27r)‘Nd/dk2...de Ungb(R)e—fﬁ'Rr, (105)
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where ¢(R) is the many-body wave function. If we perform the integrals dks...dky and thermally
occupy the many-body states we find

1 —ik(ry -t
e = Wf drydr}e 1 ~Fn(ry, x}), (106)
where the single-particle density matrix is

Q
n(ry,ty) = —Z-fdrg..der(rl,rg,...,rN,r'l,rg,...,rN;ﬁ). (107)

According to Eq.(106), the momentum distribution is the Fourier transform of an off-diagonal
element of the density matrix. The paths that we have been discussing up to this point, each ending
at the start of another particle’s path, cannot be used to calculate the momentum distribution.
Simply put, to get an observable in momentum space we cannot do the simulation entirely in the
position representation. The method by which to calculate the single-particle density matrix is
quite simple: one samples paths from the probability distribution,

1
(R, r]) = —Z-—'p(rl, r2, ..., TN, Ty, F2y .-, TN; B), (108)

where Z’ is a new normalization constant and r and r’ are independent variables. This density
matrix is expanded into a path. We were careful when we defined the path-integrals to do it for a
general {off-diagonal) matrix element. Then the distribution of ry and r} is given by

a(r,¥') « (6(r, - 1)6(x} — ) (109)

n

where the brackets denote an average over x,,. The classical simulation to be performed is of (N —1)
ring polymers and 1 linear polymer.

At high temperature there is no particle exchange and the distance between the polymers is much
greater than the size of a given polymer, so the internal coordinates of the single linear polymer
will be almost free-particle like and its end-to-end distribution Gaussian: n(r,r) o exp[—(r —
r')2/(4AB)]. Taking the Fourier transform, we end up with the Maxwellian momentum distribution
with a width kpT. .

Now we have to consider how Bose statistics affects the types of paths that are allowed.
Care must be taken to understand the imaginary-time boundary conditions once permutations
are present. Suppose particle 1 is involved in a three-body cyclic permutation with particles 2 and
3. We know that particle 1 begins at r and ends at r’. That means one has the following boundary
conditions on the paths:

r = r(0),
ri(B) = r2(0),
r(8) = ra{0), (110)
r;3(8) = r.

It is simpler to state the conditions physically. There are two cut ends in the path space, but it does
not matter which particle labels are attached to the ends. If a macroscopic exchange is present,
as is usually the case in the superfiuid state, the two ends can become separated by much more
than a thermal wavelength if they are attached to a macroscopic exchange. How far they become
separated depends on the statistical mechanics of the polymer system and is different for bulk *He
and for ‘He films (i.e., in 2D or 3D).
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For a 3D bulk liquid the single particle density matrix in the superfluid state goes to a constant
at large . The momentum distribution, its Fourier transform, will then have a delta function at

the origin. We define the condensate fraction as the probability of finding an atom with precisely
zero momentum. This will equal

21} 1
o= C o - f dedr'n(z, v)

Q
= -gl-z-/drn(r). (111)

The factor (2x)Q~! comes about because ng is a probability density, while #g is a probability.
The last equation holds for a homogeneous liquid. If we take the volume of the box to infinity, the
condensate fraction is the large- distance limit of the single-particle density matrix,

fig = rli}rgo n(r). (112)
The condensate fraction is essentially the probability of the two cut ends attaching themselves to
a macroscopic exchange.

In *He films the momentum distribution is quite different at small momentum. At a nonzero
temperature the two cut ends never lose sight of each other. They feel an attraction to each other
which varies like min(|r — r|) at large separations. Hence the single-particle density matrix decays
to zero algebraically: n(r) o« 777. The strength of this interaction depends on the temperature
through the Kosterlitz-Thouless relation. n~! = 4% A\8p,, where p; is the superfluid density. Hence
a nonzero condensate only appears at zero temperature. Nonetheless the system is superfluid below
its transition temperature.

4.3 Response to rotation and the superfluid density

Superfluidity is experimentally characterized by the response of a system to movements of its
boundaries. The rotating bucket experiment was first discussed by Landau on the basis of his
theory of superfluidity. He predicted that superfluid helium would show an abnormal relation
between the energy it takes to spin a bucket and its moment of inertia. Suppose one measures
the work needed to bring a container filled with helium to a steady rotation rate. A normal fluid
in equilibrium will rotate rigidly with the walls. The work done is E = 1Jw? where I is the
momentum of inertia and w is the angular rotation rate. On the other hand, a superfluid will stay
at rest if the walls rotate slowly, so that a smaller energy is needed to spin up the container. The
liquid that stays at rest is the superfluid.

The effective moment of inertia is defined as the work done for an infinitesimally small rotation
rate,

dF d< L
r=2>| %52 (113)
dw w=0 duw w=0
where F is the free energy, £, is the total angular momentum operator in the 2 direction,
X9
z = h
L.=i ; 70 (114)

and #; is the angle of the ith particle in cylindrical coordinates. On the other hand, the classical
moment of inertia is given by

N
I =< mirf x 2% > . (115)
=1
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The ratio of the two moments is defined as the normal density; what is missing is the superfluid

density: I
Py B (116)

P p L
Thus the superfluid density is the linear response to an imposed rotation, just as the electrical
conductivity is the response to an imposed voltage.

One might not think that imaginary-time path-integrals would be appropriate to calculate the
superfluid density, since motion in real time is involved. This is not so. Statistical mechanics does
not require the use of an inertial reference frame. We can transform to the frame rotating with
the bucket to determine the free energy of rotation. The Hamiltonian in the rotating coordinate
system is simply given by

H, = Ho - wl,. (117)
Here Hg is the Hamiltonian at rest. We pick up the extra term in transforming the Schroedinger
equation from the laboratory frame to the rotating frame, since the new angle is given by ¢ = #—wt.
Now we have to find a path-integral expression for the effective moment of inertia defined in Eq.
(113). The following identity allows us to take the derivative of an exponential operator that
contains a parameter w. First we break up the exponential into M pieces:

de? M AfM
Fi)— - z e(k-1)A/Mdedw AM=-K)AIM (118)
k=1
Now we take the limit M — oo:
A 1
% :jo dte*? % el1-94, (119)

The first equation is appropriate to discrete-time path-integrals, the second should be familiar from
linear-response theory. Of course, if the derivative %—‘3- commutes with A, things are much simpler.
We do not want to assume that the potential is invariant with respect to rotations so that the
angular momentum operator does not commute with the Hamiltonian.

Now let us take the derivative of the rotating density matrix with respect to w, as required by

Eq. (113). We get

pn I, /ﬁ —(B—t)H p —tH
— = t dife Le 12
P IcZ T [ 0 ’ ( 0)
We have expressed the normal fluid density in terms of the matrix elements involving the system
at rest. Now we explicitly evaluate this in terms of discrete path-integrals by having the angular
momentum operate on the action. Since angular momentum commutes with the internal potential
energy, that term will not contribute. After some algebra we get

&_2m<A§>

12
p ﬁAIc H ( 1)
where we have defined two functions of a given path, namely the projected area
1
A=3 D ori X Tiga (122)
i

and the moment of inertia (this is a better definition than given previously)
I. = <Z mirg; - r;';j+1> . (123)
Ly
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The superfluid density is proportional to the mean-squared area of paths sampled for a container
at rest divided by the classical moment of inertia.

At high temperature the mean-squared area will be the sum of the mean-squared areas for each
atom’s path, since we can assume that the areas will be uncorrelated with each other. Hence the
superfluid density will be p,/p = 2A8/(3 < 72 >). It will be negligible once the size of the cylinder
is greater than the thermal wavelength.

But for a superfluid, the mean-squared area can be much greater. One finds that the superfluid
density approaches unity at low temperature. Superfluidity is a microscopic property that can be
defined in a finite system. It is not necessary to take the thermodynamic limit or to have a phase
transition to see its effect. The effect of Bose statistics in a Bose liquid is to reduce the number of
excited states and hence the coupling to an external potential. This can happen in a finite system
as well as in an infinite system.

Now let us change the geometry of the rotating cylinder, so we can see how superfluidity
manifests itself in periodic boundary conditions, Periodic boundary conditions are more convenient
for simulations, since no surfaces appear and there is no curvature in making a loop around the
boundaries. Instead of using a filled cylinder, we enclose the helium between two cylinders of mean
radius R and spacing d, where d € R. The classical moment of inertia will be mN R2? and the
area can be written as WR/2 where W is the winding number, defined as the flux of paths winding
around the torus times the circumference of the torus. Here we have ignored all nonwinding paths,
those paths which do not make a complete circuit around the cylinder, since their contribution is
O(R™?) and negligible at large R. Now substituting these values of A and I, into Eq. (121) for the
superfluid density we get

Py < w?>
SV (124)
where the winding number is defined by
W = f dt [-fﬂ] | (125)
‘ 0 di

1=1

In contrast to the area, tThe winding number is a topological invariant of a given path; one can
determine the winding number by counting the flux of paths across any plane; it does not matter
where the plane is inserted. We can think of these winding paths as the imaginary-time version of
circulating currents. Paths with a nonzero winding are the signal for superfluidity. This justifies
the claim made earlier, that the identification of a Bose superfluid requires the full imaginary-time
paths. Static correlation functions are not enough; one needs to know how the paths are connected
up. Macroscopic exchange is necessary to have both superfluidity and momentum condensation.
However, neither property is simply proportional to the number of macroscopic exchanges. In 3D
systems they go together; in 2D there is no condensation but the system is still superfluid.

4.4 Constructing the Action

It is clearly desirable to make a good but cheap approximation to the exact link action. The better
we can make the individual link action, the fewer the number of time slices and the shorter the
“polymer.” The sampling becomes much easier as the paths have fewer links and the estimation of
various quantities such as the kinetic energy have smaller statistical fluctuations. We have found
that accurate simulations of liquid helium using the primitive approximation for the action, Eq.
(92), would require an M = 1000 to reach the temperature of the superfiuid transition while using
a more accurate action uses only about M = 20 slices. Without improved actions the simulation
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of the superfiuid transition[58] (Ceperley and Pollock, 1986) in *He would not have been possible,
given the available resources. The task of finding a good action is different from that of finding a
good integrator for an ordinary differential equation, for example, Newton’s equation, because of
the fractal nature of the paths. Since paths do not have continuous derivatives, predictor-corrector
or leapfrog methods are not as useful. The exact action is a many-body function. If the interaction
is a pair potential, the exact action will have not only renormalized pair terms, but also three-body
terms, four-body terms, etc. Finding a good action is analogous to averaging out solvent degrees of
freedom in a liquid or of renormalizing out small-scale motions. We want to integrate analytically
over all the intermediate time steps so we can leave them out. The action is not a tremendously
sensitive function of the end points, since averaging over paths acts to smooth out the potential.

The “traditional” way in simulations of deciding that a time step is small enough is to study
the convergence of interesting properties with a series of long simulations with smaller and smaller
time steps. A better action will give the exact result with a larger time step. The primary quantity
to look at is the energy, since it is related to the partition function. But other static quantities such
as the kinetic energy, potential energy, and pair-correlation function should also be studied. The
main problem with convergence studies is that the convergence of the energy does not establish how
other quantities converge. For example, it is often found that the potential energy converges much
quicker that the kinetic energy. This means that the primitive action may correctly describe static
correlations, but not the imaginary-time dynamics, which as we have seen, are directly related to
superfluidity. Another practical annoyance of convergence studies is that one would need a new
one for every density and temperature; that is very costly. The computer time to converge the
statistical error becomes much longer as the time step is decreased. This is because paths with
smaller time steps move much more slowly through phase space and because the statistical error
of the standard estimator for the energy blows up at small 7.

Of course it is best to put in as many exact properties of the action as are known. The simplest
is the Hermitian property, namely, that U(R, R) = U(R',R). Without this property, paths will
not have “time-reversal” invariance. This property is easy to put in: one simply symmetrizes any
unsymmetrical form by using the action,

Us(R, ) = 5[U(R, R) + (R, B)] (126)

This can have the effect of making the action good to one higher-order if the unsymmetrical
components are the lowest-order errors. Another exact property is the behavior of the action as
two particles approach each other, the other particles remaining a constant distance apart. It can
be shown that the divergent part of the action should approach a two-particle form. For a Coulomb
interaction, this condition leads to a cusp condition on the action at r = 0:

f. . -
lim dU(R,R";T) _ e;€;

=— . 2
rij—+0 dri; (d—1)(X+ X5) (127)

Here e; is the charge on particle ¢ and A; = h%/2m;. The path averaging in the FK formula
smooths the potential. The smoothing makes the action finite at the origin instead of having a r1
singularity.

For a Lennard-Jones, r~1? potential, one can show that the action at small r must diverge as
»=5. These small 7 conditions can be established by looking at the residual energy of the action,
which we shall define in a moment. ne can also derive exact properties of the action at large
distances by considering the action as a function of the fourier transform of the density and then
going to the long-wavelength limit.
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Now let us begin the task of finding improvements to the primitive action. Semiclassical methods
rely on the fact that, at very high temperatures, the major contribution to the FK path-integral
comes from paths neighboring a single “classical” path. The most probable path connecting the
end points is obtained by optimizing the action in the Feynman-Kacs formula. Suppose it begins
at Ro and ends at Rp. Then the classical path will satisfy an equation of “motion”

d’R

proe 2AVV(R). (128)
This is Newton's equation of motion in the inverted potential —V (R). At sufficiently small “time,”
the action is dominated by the contribution from this one trajectory. This contribution can be
written in the familiar WKB form as an integral over the potential,

Rr  [V(R)+ E
SSC(RO:RF?T):"‘TE‘}']RO dz _(_i+_ (129)

The energy £ = -V(R) + 4—% (%?-)2 is a constant of “motion,” and the integration variable z is the
distance along the path; it has units of length. This formula is not very useful until we determine
how the energy depends on Ry, Ry and 7. The initial “velocity” of the classical path must be
chosen so that the path will end up at the final position at the right “time.” For small imaginary-
times 7, we can neglect the “acceleration.” The optimal path is then a straight line connecting R,
and Rp, and the action is the integral of the potential energy along this straight-line path,

1
Usc (Ro, R 7) = ffo dsV (Ro + (Re — Ro)s). (130)

This is a better approximation than the primitive approximation, since there is some contribution
from the entire region between Ry and Rp. Higher-order terms will both have to improve the
trajectory and have to average locally around the semiclassical path. It is difficult to make further
corrections to this formula in the general many-body case without ending up with an expression
that is too slow to evaluate at each step of the PIMC.

For small “times” the Gaussian paths in the FK formula sample only a small region around
the initial and final points, with a size determined by the thermal wavelength A,. Suppose we
assume that the potential is quadratic in this region. Then the potential can be specified by giving
V(R*),VV(R"), and VVV (R*) where R* is some point in the neighborhood such as Ry or Rp.
The vectors and tensors have dimension 3N. The exact density matrix for a quadratic potential
is a Gaussian [54] Let us expand that exact density matrix for the harmonic potential in powers
of A, keeping in mind that the distance between the two “legs” of the density matrix, (R — Ro),
will be of order A,;. The result to order A is

Un(Ro, Rr;7) = TV(R™) + T;—AWV(R*) (131)
55 (B = Ro)VVV (E")(Rr — Ro) - %[VV(R*)}Z.

This expansion is equivalent to the Wigner-Kirkwood or £ expansion of the action if we make the
choice of B* = Ry.

If the potential energy is a sum of pair interactions, all of the terms except the last one are
also pair terms, since they are linear in V. Hence the effect of the second and third terms is to
renormalize a pair interaction. But one can show that the average of the third term over normally
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distributed values of {Rp — Ro) (those arising from a free-particle path) equals the negative of the
second term. As a result, the second and third terms together have a much smaller average effect on
the probability distribution of a path. This effect pushes their combined effect to higher-order in 7.
We shall call the last term the polarization action, since it is similar to the energy of a polarizable
atom in an electric field. This term is not a pair sum, but the first genuine many-body contribution
to the action.

Although one is picking up higher-order contributions with the harmonic expansion, it is not
uniformly convergent for a hard potential. At large r, where the potential is small, the expansion is
adequate, but at small r, where quantum effects are very important, all terms in the expansion are
large. Suppose the potential goes as r~12 at small r. Then the second and third terms will diverge
as r—11 while the last term will diverge as 7~ 2% at small 7. In fact, quantum diffraction causes the
exact action to diverge only as 775, Clearly the expansion does not converge at small r.

The helium-helium interaction is better thought of as a hard-sphere interaction, i.e., having an
infinite strength, for which the fi expansion does not converge since the gradients of the potential
do not exist. This expansion (where one does a Taylor expansion of the potential about a nearby
point) can only be trusted if the higher-order terms are much less than one.

A better approach for a hard-sphere-like system is to determine the exact action for two atoms
and then to use that to construct a many-body action. To justify this approach, first assume that
the potential erergy can be broken into a pairwise sum of terms,

V(R) = v(ri—rj). (132)
i<
Now apply the Feynman-Kacs formula. What enters is the integral of the potential energy along a
path. Let z;; be the exponentiated integral of the pair energy along a random walk,

T;; = exp [—- /OT dt’u(r,-j(t)] . (133)

Then z;; is a random variable drawn from some distribution function that depends on the end
points (Ro, RF). In terms of these random variables the FK formula for a pair potential reads,

eV =< H:E,'j > . (134)
i<j
If the variables z;; are uncorrelated with each other, we can interchange the product and averaging

operation,
eV~ H < Ty > (135)

But the average on the RHS is exactly the interacting part of the exact action for a pair of atoms.
The patr-product action is
Us(R,R';7) = _up(rij, vifs 7), (136)
1<)
where uy(r;j,r};; 7) is the exact action for a pair of atoms.
This approximation has several advantages over the other approaches. First, it is exact for
a pair of particles by definition. Since most collisions occur between atoms two at a time, they
are described correctly. The errors of Uz come from three- and higher-body correlations. As an
example, consider particle 1 interacting with two other particles, say 2 and 3. If the path goes
toward particle 2, then vy is larger and w3 is smaller than average, and vice versa if it goes
toward particle 3. This correlation effect is not large in a homogeneous system, since there are
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other particles in other directions which will have the opposite correlations, so that most of the
many-body effects tend to cancel. Considerations like this suggest that the pair product will be
correct to lowest order in a density expansion of the action, since it is only when we have three
atoms in close proximity that we make a substantial error.

The exact pair action can be calculated efficiently by the matrix-squaring method introduced
by Storer[59]. First, the pair density matrix is factorized into a center-of-mass term that is free-
particle like and a term that is a function of the relative coordinates. Without loss of generality
one can consider only the density matrix for a single particle in a spherical external potential. One
now expands the relative pair density matrix in partial-waves:

y = 1 ) eilf

1, _ m ZI:_OO PI('.", T ,T)e’ : 2D

p(rar ,T) = (137)
T Lico(20+ Dpy(r, 73 7) Pi(cosf), 3D

where @ is the angle between r and r’. Each partial-wave component is the density matrix for a
1D particle in a potential with an additional centrifugal term and satisfies the Bloch equation:
) i d?
_Op(r,rt) _ [~
dt dr?
with boundary conditions p;(r,7’;0) = é(r—+’) and p;(0,r'; ) = 0. The effective potential is defined
as

+ Bi(r)]p(r, ;1) (138)

(139)

ulr) = v+ 27\ wp+1), 30

A ] (4*-1), 2D
472

Since each partial-wave is a Green’s function, they satisfy the convolution equation,
q

pi(r, 1) = /(; dr'’pi(r, 7" 2 pi{r” 7 T [2) (140)

This is the basic equation of the matriz-squaring method. If we square the density matrix & times,
it will result in a lowering of the temperature by a factor of 25. Each squaring involves a one-
dimensional integral for each value of r, v/, and {. If a uniform grid in » and »' is used to tabulate
the density matrix and the trapezoidal rule is used for integration, one literally can square the
matrix, pi(r, r').

Once the pair density matrix is computed for some value of 7, we must reexpress it in a form
such that it can be quickly evaluated during the Monte Carlo simulation. Summation over partial-
waves is too slow, particularly at large r and small 7; one would need on the order of r /AT
partial-waves. It is convenient to use the three distances

g=(e[+[rD)/2, s=r—r'], z=]|r{-]|r], (141)

wherer = r; —r; and r’ = r! —r’. The variables s and 2 are small, on the order of the thermal
de Broglie wavelength A;, and so we can expand the action in a power series:

u(r,r';7) = (142)

ug(r; 7) + ug(r’s T n X S ath_s
= DETEROET) | 53 s lgsm)ais),
k=1 7=0

The first term is the end-potnt action. The following terms are purely off-diagonal contributions.
The functions ug;(g) can be determined by a least-squares fit to the partial-wave expansion and
tabulated for use in the subsequent Monte Carlo calculations.
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4.5 Path Sampling Methods

Here we consider how to do the multidimensional integrations and summations that path-integrals
require. The total configuration space to be integrated and summed over is made of elements:
s = [P,Ry,...., Ry where Ry = {rix...rnx} are the path variables and P is the permutation
that closes the path, Ryry1 = PR;. We wish to sample these elements in the simulation from the
probability distribution

m(s) =

where S¥ is the action of the k** link. The partition function Z normalizes the function = in this
space. This distribution is different from that of a simple liquid because the points on the path
are linked together by the kinetic springs, which can cause the convergence of simple simulation
techniques to become exceedingly slow. Ways of speeding up the convergence have been addressed
by several methods, which we shall discuss.

Before we begin the discussion of Monte Carlo methods, the reader may be asking whether
the molecular-dynamics (MD) method may be used instead. Indeed, such methods are useful for
some path-integral applications, and several results have appeared[60]. The chief difficulty with
dynamical methods, by which we mean those in which the paths variables change continuously
with an artificial dynamics, is that it is not possible for the permutation to change continuously,
since it is a discrete variable. Hence dynamical methods by themselves cannot treat problems in
which quantum statistics are important. But even for systems of distinguishable particles, there
are particular problems in applying MD methods to path-integrals.

There are two major concerns with MD methods: ergodicity and efficiency. It is easy to see
that a free-particle path-integral system will never come into equilibrium. The classical analog is
a collection of uncoupled harmonic oscillators which will never exchange energy with each other.
Then the “time” averages will be different from phase-space averages. But even with an interparticle
interaction, if the time step 7 is small enough, ergodicity is a major worry. One can break up the
long-term correlations by periodically resampling the momentum. This can be done in a continuous
fashion by using a Nose thermostat, or one can resample the velocities (hybrid Monte Carlo) each
dynamical step and accept or reject the changed velocities. Using these methods one is guaranteed
to get convergence to the right distribution.

Once ergodicity is ensured, the major concern with molecular dynamics is the efficiency of sam-
pling phase space. For small 7 one needs dynamical steps small enough to capture the oscillations
of the springs.One finds that the paths move very slowly through phase space. Tuckerman et al.[61]
have introduced novel methods for speeding convergence by separating the slow and fast dynamical
scales. In fact, the methods for separating these motions are an imitation of how one solves the
equivalent problem in Metropolis Monte Carlo simulation. They have shown in some cases that
path-integral molecular dynamics (PIMD) can be almost as efficient as PIMC.

We have already discussed the overall strategy for Metropolis Monte Carlo. Now consider the
problem of how best to sample a single point on the path. This is an elementary operation of the
path-integral algorithm.The task is to sample a point R at time 7 which is to be connected to two
fixed end points, By and R3, with imaginary-time coordinates, 0 and 27, respectively. Usually we
want to resample only a few coordinates, say only n < N particles are allowed to move.

In the simplest choice for the transition probability, the classic rule, a single atom at a single
time slice is displaced uniformly inside a cube of side A, adjusted to achieve 50% acceptance. t
s clear that A must be on the order of, or smaller than, the thermal de Broglie wavelength for a
slice, A m Ay = \/X_‘J: The heat-bath transition rule will have the smallest correlation time among
all transition rules. The neighborhood of this move is the subspace obtained by fixing 3(NM — n)

ezp[— it 59
= 1=, (143)
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variables and the permutation, but allowing n atoms at one time slice to vary throughout the box.

The optimal sampling distribution for a point R, conditional on the path’s having earlier visited
‘R, and later visiting R, is then proportional to

T"(R) x p(R1,R)p(R,Ra). (144)
Dropping factors independent of R and factoring out the free-particle action,
R-R,)?
T'(R) x exp |- 2l y(r, %)) - U(R,R) (145)

where the midpoint is R,, = (R) + R3)/2, the squared width is & = A7, and n is the number of
moving particles. The noninteracting density matrix gives a Gaussian centered at R, and width
v/o. This distribution can be easily sampled and is called free-particle sampling. Free-particle
sampling is already an improvement over classic sampling, because it leads to 100% acceptances
in the absence of the potential or in the high-temperature limit and because the step size A is
automatically set to be the width of the kinetic action.

A repulsive potential will cut holes in the free-particle Gaussian distribution where a nonmoving
atom is present or where two moving atoms overlap. To go beyond free-particle sampling, we can
choose for a transition probability the most general correlated Gaussian in 3n variables,

Ts(R) = 1/ (2m)3mdet(A)e~(R-RIQA)THR-FR) (146)

where the 3n X 3n positive-definite covariance matrix A and the mean position vector R are free
parameters of the sampling. We shall choose the mean and covariance to approximate the moments
of T*(R).

No matter how well single-bead sampling has been optimized, as the value of 7 decreases, the
random walk will diffuse through configuration space more and more slowly. In this subsection we
examine how the paths diffuse through phase space if the random walk consists of only single- bead
moves. We assume that the temperature is held fixed, but 7 and hence the number of time slices
varies. The largest displacement allowed by the free- particle density matrix is order A, = VAT
Interactions or poor sampling can reduce this displacement, but it is impossible for the average
displacement to become much greater than A;, since this is fixed by the kinetic springs.

We can calculate how fast a free-particle path will move through path space. Consider a Monte
Carlo procedure in which each bead is moved in turn. After a move of a single bead, the mean-
squared center of mass will change as

308
M3

so the computer time needed to get the center of mass to diffuse a fixed distance will also scale
as M3, Hence the efficiency of any Markov process that has single-time-slice moves will have a
correlation time that scales as M ™2 o 7° for large M. Entanglement effects coming from the
interaction of several atoms will slow the relaxation further. This scaling law, in conjunction with
the use of the primitive action, which necessitates very large values of M, has ruined many path-
integral studies. For example, using the primitive action requires a time step twenty times smaller
than the pair action. If one is also using single-slice sampling, this will slow convergence by a factor
of 8000.

The simplest multiple-slice move is a displacernent move, in which the entire chain is translated
by an amount §. One could say that we are treating the center of mass of a chain as a classical

< (§c)? > = L < (fr)r> <

e (147)
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degree of freedom. The size of the displacement § can be sampled from a uniform distribution
inside a cube with side A, with A chosen to maximize the mean-squared diffusion of the center of
mass. Usually this is done by making sure that the acceptance ratio is between 25% and 75%. The
kinetic action is unchanged by the displacement, assuming that the atom is not permuting with
another atom, otherwise all members of an exchange cycle must be displaced. Displacements will
be rejected if the chain ends up overlapping with another chain. If the temperature is somewhat
higher than the degeneracy temperature, so that the size of the path is less than the interparticle
spacing, these moves are very useful. The displacement will not change the internal shape of the
path; there has to be a different kind of move to do that. Since the move will take O(M) operations,
a displacement should be attempted much less frequently than other kinds of quicker moves.

To generalize the displacement move to the internal degrees of freedom of the paths we use the
normal modes of the kinetic action. These are obtained by a discrete Fourier transform along the
“time direction” [62]. We define the normal-mode coordinate by:

M
Qk = Z Rle'lfrikJ/M. (148)

=1

The total kinetic action is decoupled in normal modes,

K = 1 d R:— R:_)?
= m;( T :-—l)
- ’—\%Zsinz(wk/MHlez. (149)
k

Each of the 3N M normal-mode variables @ is independent of the others and has a Gaussian
distribution.

There are two quite different ways of using normal modes. First, in normal-mode sampling
one uses this form of the kinetic action to construct a transition move[63]. One samples one or
more @ from some transition probability, for example a Gaussian distribution with squared width,
AB/[2sin?(mk/m)]. Then the new path coordinates are determined by the inverse Fourier transform
and the move is accepted or rejected based on the change in action and the ratios of transition
probabilities. In the absence of a pair potential, all moves would be accepted. When a potential
is present, only the large & modes can be sampled directly from the free-particle Gaussian, since
they cause a small movement of the path. In contrast, the low k modes are moved only a small
amount, say {@Q% — Q«| < Yk, with v, adjusted to get 50% acceptances. The center-of-mass mode
(k = 0) is just the displacement move that we already described. These moves are much slower
than single-slice moves, since they take .

The second, much more radical, approach is to work directly with the normal- mode variables
by rewriting the path integrals as integrals over Qi instead of R;. This is called the method
of Fourier path integrals, [64]. In using the Feynman-Kacs formula, rather than discretizing the
random walk in M time steps, one instead discretizes in M normal modes. Either discretization is
valid, but the two truncations have different convergences. Once one limits the number of modes,
then the coordinate-space path is differentiable to all orders in imaginary-time, and thus one can
use higher-order integration formulas for the action, féﬁ dtV(R(t)), where R(t) is now defined by

M
R(t) = Ro+ Y _ Que™ /4, (150)
k=1
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Multilevel Monte Carlo is a general sampling method (Ceperley and Pollock, 1986, 1990) which
can efficiently make multislice, many-particle moves. It gains in efficiency because the coarsest
movements are sampled and accepted or rejected before the finer movements are even constructed.
Thus the number of moves/second is much higher, because time is not wasted on moves that will
eventually be rejected. Suppose the full configuration s is dynamically partitioned at the beginning
of a Monte Carlo step into { + 1 levels s = (sg,8;,...,8), where the coordinates sy are to be
unchanged by the move, s; are sampled in the first level, s; are sampled in the second level, etc.
The primed coordinates (si,...,s}) are the new trial positions in the sense of a Metropolis rejection
method; the unprimed ones are the corresponding old positions with sq = 3.

We now make an approximation to the action as a function of variables in that level and in
previous levels. This approximate action will help in deciding whether the sampling of the path
should continue beyond the current level. [We shall call 7y the level action; properly speaking,
the action is —In(nx). ] Now, we choose a sampling rule for s; contingent on the levels already
sampled. Tk(s)) can depend on s§, s}, ...,8,_;. Once the partitioning and the sampling rule T} are
chosen, the sampling proceeds past level & with probability

Tk(sk)vrk(s’)ark_l (5)
P Te(s)me(s)me—1 (s)

That is, we compare A; with a uniformly distributed random number in (0,1), and if 4; is larger
we go on to sample the next level. If Ay is smaller, we go back to the beginning and make a new
partitioning. This acceptance probability has been constructed so that it satisfies a form of detailed
balance for each level k:

Ap(s') = min |1 (151)

k(s
Te-1(8)

(s’
Tu(s) Ar(s) = %)y (5,) 44 (). (152)
Ti—1(8")

Having sampled R = Rg/y, one now bisects the two new intervals (0,/2) and (8/2,5), gen-
erating points Rg/4 and Ry5/4 with the same algorithm. One continues recursively, doubling the
number of sampled points at each level, stopping only when the “time” difference of the intervals
is 1.

This is a simpler, but more powerful, sampling method for free-particles than the normal-mode
method. It is simpler in that there are no Fourier transforms. It is more powerful because it
generalizes to fuily interacting paths and can be used in combination with the multilevel method
to accomplish early rejection.

4.5.1 The bisection method

Let us now combine the Lévy construction of the path with the multilevel Metropolis method.
Suppose a single-particle or many-particle path consisting of m = 2' — 1 time slices is “clipped out”
where [ is the level. The fixed end points are B; and R;,,,. The new points to be sampled will have
the coordinates: R;41,...,Ritm—1. The places that pose the greatest difficulty for finding a new
path are in the middle of the interval R;,,, 3, simply because the middle is the farthest from the
end points, which are known to have acceptable potential energies. The coordinates are partitioned
into levels as in the Lévy construction. By bisecting the interval rather than working from one end,
one discovers the blockages quickly. If an overlap is found, the construction of the paths comes to
a halt.

The bisection algorithm is recursive. First the midpoint is sampled. Then the same algorithm
is used to find the midpoints of the two remaining intervals, etc. The coordinates to be moved are
partitioned as
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e sy, = atom positions outside of time slices in consideration and atoms not being moved.
e s; = coordinates of atoms being moved at the middle time slice i + m/2.

e s, = coordinates of atoms being moved at i + m/4,i+3m/4.

..

¢ 3; = coordinates of atoms being moved at i 4+ 1,1+ 3,...,1+m— L.

Now we need to define an action at the k** level. The optimal level action would be simply the
product of density matrices with the appropriate time argument. For the first level we get

T; (Ri+m/2) = P(R!': Ri+m/2)p(Ri+m/2: Ri+m)' (153)

We are free to choose any convenient approximation, since it only affects the convergence. One
can use the same approximations to the action at (m/2)7 that were developed earlier, but now
accuracy is less important than speed. t the final level, the exact action must be calculated but
rejections are less frequent at the final level because the sampling methods work better the smaller
the “time” difference, so the extra work is less likely to be wasted.

Once the level action has been chosen, we must choose the transition probability. But this is
exactly the problem that we already considered. The only difference is that the time step is some
multiple of 7 instead of 7. Rejections are due to the combined effect of using approximate sampling
functions and using approximate level actions.

4.5.2 The necessity of joint permutation-path moves

We now take up the problem of permutation-space sampling. Here the problem of ergodicity is
particularly acute. Path coordinates will eventually reach equilibrium if the calculation is suffi-
ciently long, since the paths can slowly diffuse through phase space. However, permutation space
is discrete, and it can easily occur that all the attempted permutation moves of a (finite) random
walk are rejected.

Now let us reapply the heat-bath and multilevel Metropolis methods to the joint sampling of
permutations and path moves. As we discussed with regard to bisection, a set of m — 1 time slices
are selected for the path move with end points R; and Rim- A local permutation move consists
of applying a cyclic exchange of n atoms to an existing path. What we now describe is how to
pick the permutation. Once the permutation is picked, the bisection algorithm is used to sample a
path corresponding to that permutation exactly as before. We can regard the permutation change
as the first level in the multilevel sampling method. The second level will be the midpoint of the
interval, R;,, /2, and so forth.

Since permutation space is discrete, we can directly use the optimal algorithm, the heat-bath
transition probability. The heat bath transition probability for a permutational change is T*(P) o
p(Ri,PRiyr) where P ranges over all cyclic permutations involving n atoms. The neighborhood
for pair permutations has N{N — 1)/2 elements, for three-body permutations N(N — 1)(N — 2}/3
elements, etc. If we make the end-point approximation for the density matrix, terms involving the
interaction will drop out since they are symmetric under particle interchange. Hence T™ depends
only on the free-particle kinetic action,

THP) = —exp Z(rJt TPiitm)/4nATT (154)
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where C is a normalization factor, Eq. (21), defined so that the probability of making some
permutation move is one. The A* in this expression is an effective mass to take into account off-
diagonal contributions that we dropped. This transition probability can be used in two different
ways. The cyclic permutation can either be explicitly sampled from a precomputed table or it can
be implicitly sampled with a walk through particle labels.

In the first method, a table of all transition probabilities within the neighborhood is constructed.
The table can be constructed rather rapidly, since it involves only particle distances between the
end points,

te; = exp{—(rk; = Fjiym)?/(4mA7)). (135)
The probability for trying a cyclic exchange of I atoms with labels {k;,..., ki} is
1
T (P) = C_Itkl’thkz’ks A PR (156)

It is best to put in the table only permutations that have a probability of being chosen greater
than some threshold. The total number of possible permutations grows rapidly with the size of
the maximum cyclic exchange being considered and the number of particles. But the number of
permutations with a probability greater than some threshold does not grow rapidly, since all of the
atoms need to be within a thermal wavelength of their exchanging partner. Those permutations
can be found quickly using a tree search. One then constructs a list of the likely permutations and
of the probability of choosing a given permutation. The permutation is sampled with the usual
method of sampling a discrete distribution. Having set up this permutation table, one amortizes
its computational cost by attempting many permutation moves before moving on to a new interval
of time slices.

An alternative way of sampling a permutation solves these two problems. One constructs the t;;
matrix as before, but then walks through the table at random, trying to make a cyclic permutation
of I atoms. The initial atom of the cyclic exchange, k,, is chosen randomly from the list of all the
atoms. The second atom, ks, is then selected with probability proportional to g, &, /hi,, where
he, = ¥ tk, &, and so forth. After all of the { labels are selected (and a check is done to make sure
they are all different), the trial permutation is accepted or rejected with probability:

LITUIRE LIS

: try by T bk
A=min |1, (157)

LI ey

L et thy k)

One gets a sum of terms in the numerator and denominator because a cyclic permutation can
be generated by starting at any one of the members of the cycle. If it is accepted, the bisection
algorithm to sample the path variables begins. Acceptances are rare. Essentially there is only 1
chance in N that the cycle will close on itself with a large value of the last link #g &, . But the
process of constructing each loop is very rapid so the overall efficiency is not bad.

4.6 Calculating Properties

Once the action is chosen and sampling is accomplished, we are ready to calculate expectation
values. It is straightforward to calculate scalar operators, such as the density, the potential energy,
and the pair-correlation function; they are simply averages over the paths. Use can be made of the
symmetry in imaginary time, since all time slices are equivalent. Thus the average density is

plr) = = 3 (6(r — i) (158)
i,
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We shall use (...} to indicate an average over the paths and over links ¢.

The internal energy is one of the main properties that one wants to get out of a simulation.
There are a variety of ways of estimating the energy, but surprisingly, the problem of finding the
best estimator has not yet been resolved. Let us for the moment split the energy into a calculation
of the potential energy and the kinetic energy K. The potential energy is easy to calculate, since it
is diagonal in configuration space, although we shall discuss an alternative estimator in terms of a
free-energy derivative. The simplest way to think of the kinetic energy is in terms of the stretching
of the polymers, or equivalently, the single-particle imaginary-time “diffusion.” We define the
diffusion distance as

D) = ((ri(t) - r:(0))?) . (159)

Then Kp is the diffusion estimate of the kinetic energy. The kinetic energy is the initial slowing
down of the dynamics of the paths, due to the interaction and due to the periodic boundary
conditions on the paths in imaginary time. The use of this equation is not convenient for calculating
the kinetic energy, because it is hard to estimate the second derivative at zero time, since even the
first derivative is fluctuating.

The thermodynamic estimator of the energy is obtained by differentiating the partition function
with respect to the inverse temperature,

1dZ
Er = ~Fa (160)

Interpreting the ratio as an average over imaginary-time paths, applying the derivative to link 1
alone, and writing in terms of the action, we get

_ 3N (R, - Ri_l)z au’
Er = <§_ et T ] (161)

At sufficiently small 7, U reduces to 7V. In the high-temperature limit, the first two terms are the
kinetic energy and the last is the potential energy. For larger 7, the last term also contain a kinetic
contribution.

The error behaves very poorly at small 7; they grow as 7=!. The first two terms are of order
-1 but since kinetic energy is independent of T, there is a cancellation between these terms. As 7
becomes small we are trying to find a small difference between the constant first term and an almost
equally large but fluctuating second term. This is exactly the same problem that we mentioned with
the diffusion estimator. The problem is independent of the temperature but depends on the time
step. If the additional variance caused by autocorrelation is ignored, the error will be proportional
to 7711 - 27K/3) = =1 (1 — 1/M), where the second expression uses the classical expression for
the kinetic energy and M is the number of time slices. If one goes to the classical limit by fixing
M and letting 7 get small, the absolute error of the kinetic energy will grow. In the classical limit,
the kinetic energy approaches 3kgT /2. Hence using this estimator, it is very difficult to estimate
quantum corrections to the kinetic energy in the classical limit.

It is possible to eliminate the troublesome kinetic-energy terms, which cause the large variance
at small 7, by integrating by parts over the path variables [65]. One ends up with an estimator
similar to the virial expression for the pressure. The virial energy estimator is

3N 1
By = (57, g Rovi — R Rirs = )
1. dU?
lpia U 162
2 it dr > e
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where F; is a generalization of the classical force,
. 1 , .
F' = _;Vz_(Us—l + Ua), (163)

and A; is the deviation of a particle’s position from its average position,

1 L1
A; = 5T Y. (Ri— Riyj). (164)
j=—L+1

The parameter L, with (1 < L < M}, is the window size for averaging. If it is chosen to be
unity then by inspection the virial estimator reduces to the thermodynamic estimator. Its maximum
value is L = M this is the conventional choice. If there are no exchanges or windings, the second
term will drop out, since R;ypr = R;. The virial estimator is very effective at computing quantum
corrections to a nearly classical system, since the first term does not fluctuate and is the classical
kinetic energy, the second term vanishes, and the last term is approximately the classical potential
energy.

4.7 Comparison with other Quantum Monte Carlo Methods

In this section we make some brief comparisons with other Quantum Monte Carlo methods.

One of the advantages of the VMC method is that it is simple both to understand and to
program. The calculations are perhaps an order of magnitude faster than for PIMC. States that are
a ground-state of a given symmetry, such as Fermions, phonons, rotons and vortices can be treated
by making an appropriate trial function. With VMC one can tell energetically how important a
given correlation is by systematically adding terms to the trial function. One ends up with an
explicit trial function which helps in understanding the quantum system.

But VMC is hardly a black box. To get reliable results one must very carefully optimize trial
functions and systematically add more complicated effects. There is nothing internal to the method
that tells you when to stop introducing more correlations. This variational bias (i.e., the amount
of energy missed by a given class of trial functions) depends on the phase; it is smaller in the solid
than in the liquid. Thus variational calculations of the liquid-solid transition will put the transition
density too low,

In PIMC, the entire path is held in the computer memory and one jiggles the path with the
Metropolis Monte Carlo method: the random walk is an artificial process used to sample path
space. The walk continues for an indefinite number of steps to reduce the statistical errors. The
number of slices on the path is held fixed. Changing 8 involves a new run.

In GFMC, the implementation is entirely different from that of variational path integrals. In
GFMC, the evolution in imaginary time is also the evolution of the Markov process; the dynamics
of the random walk is given by the density matrix. The evolution in imaginary time continues
indefinitely until a steady state is reached, simultaneously reaching convergence in 8 and reducing
the statistical errors.

In GFMC (without importance sampling), the probability of sampling R’ contingent on R is
proportional to < R’|e”"®|R >. The normalization (the integral over R') is not unity and depends
on R. Hence the the number of sampled points R’, or their weight, must depend on E. For systems
of many atoms, one has to use branching in order to interpret the projection as a random walk.
The state space of the stochastic process is an ensemble of configurations {R;}. A step consists of
a diffusion for each member of the ensemble and a branching step, in which some configurations
are deleted and some are duplicated.
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Of course the major advantage of PIMC is the ability to calculate properties at temperatures
greater than zero. This could be a disadvantage for calculating purely zero-temperature properties,
but it is generally an advantage in comparing with experimental data. In a bulk superfluid, there
are very few excited states; so that below 1 K, *He is essentially in the ground-state, so in practice
even the restriction to nonzero temperature is not always important. One of the main advantages
of PIMC is that order parameters, such as the superfluid density and the tunneling frequency in
solid 3He, are more simply expressed in terms of path-integrals. In GFMC it is much less obvious
how Bose symmetry is expressed. In a superfluid system, the GFMC walks diffuse through phase
space, they are not trapped.

It would seem that, because of the zero-variance principle, the GFMC method would be more
efficient at computing the ground-state energy. However, in practice GFMC and PIMC give similar
error bars on the energy for similar amounts of computer time. Other properties, such as the pair
distribution function, are more difficult to estimate with GFMC, since the simulation calculates
averages with the “mixed” estimator, the product of the ground-state wave function and the trial
wave function. Removal of the effect of the trial function is biased and adds to the difficulty of the
method. It is difficult for GFMC to break away from the long-range order of a trial function. PIMC
does not have this difficulty, giving exact thermal averages. For an efficient GFMC calculation one
needs to have a good trial function. Usually a preliminary step is a good variational Monte Carlo
optimization, at least at the pair-product level. Once a good trial function has been found, then the
machinery of GFMC takes over. But this first step can take a lot of graduate student time. PIMC
is much more of a “black box.” One puts in the action, allows the code to run for a long time,
and measures the observables, It is much more likely in PIMC that the paths by themselves will
make the transition to a new, unexpected state. To balance this, PIMC has more problems with
ergodicity. We have seen the difficulty with constructing moves that change the winding number
and permutation cycles. Those issues do not arise in GFMC, where the dynamics is fixed by the
density matrix and the trial function. Since the random walks need not close, they can move
through phase space more easily. Another problem with GFMC is its efficiency as the number
of atoms gets large. Two problems arise. First the branching factor grows exponentially with
the number of atoms. To keep the branching fixed requires the time step to go as N~!/2, which
increases the computational effort. Second, members of the ensemble get more correlated with each
other. To keep the algorithm unbiased, the size of the ensemble must grow with N. These scaling
difficulties with GFMC have not been investigated in detail, and it is not known how serious they
are. They do not arise in PIMC; classical statistical mechanics assures us that nothing strange
happens as we add more polymers. Correlation times can be longer, but they can be reduced with
classical sampling techniques.

For all of these reasons, PIMC is a better “black box” than VMC, or GFMC.

5 Fermion Path Integrals

This section is an abridged version of a longer article[66].

The straightforward application of PIMC to Fermi systems means that odd permutations sub-
tract from the integrand. This is the “fermion sign problem” which we have discussed earlier.
Path integral methods as rigorous and successful as those for boson systems are not yet known for
fermion systems in spite of the activities of many scientists throughout the last four decades.

Now let us consider how particle statistics are expressed in path integrals. For systems of
identical particles, the states can be classified into symmetric and antisymmetric states. The
fermion density matrix is defined by restricting the sum to be only over antisymmetric states.
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(Similarly for other symmetries such as momentum or spin.) We shall denote the statistics of the

particles by subscripts: pg will denote the fermion density matrix, pg the boson density matrix, pp

the boltzmannon (distinguishable particle} density matrix, and p any of the above density matrices.
Note that for any density matrix the diagonal part is always positive:

p(R,R;B) > 0 (165)

so that Z7'p(R, R; ) is a proper probability distribution. It is the diagonal part which we need
for many observables, so that probabilistic ways of calculating those observables are, in principle,

possible,
Let P be one of the N! permutations of particle labels. (For the moment we ignore the spin
and consider spinless fermions.) Then each of the fermion eigenstates has the following property:

#(PR) = (-1)7 $(R). (166)
The density matrix has the following symmetries:

p(R,R58) = p(R,R;p)
pr(B,R58) = (~1)Ppp(PR, R';8) (167)
pr(R,R8) = (-1)Fpr(R, PR ).

One can use the permutation (or relabeling) operator to construct the path integral expression
for the boson or fermion density matrix in terms of the Boltzmann density matrix:

ppir(R, R B) = 35 L ()P pp (PR, RS ). (168)
P

More generally, one uses some projection operator to select a desired set of states from the distin-
guishable particle density matrix which contains all states. In this lecture, except for how paths
close, particles are generally considered to be distinguishable. This is in contrast to the second-
quantized philosophy, where one always works with an antisymmetric basis.

An alternative definition of the density matrix is by its evolution in imaginary time, the Bloch
equation:

dp(R,R';t
- PBIY _ yyp(m, m (169)
which obeys the boundary condition at t =0 fqr boltzmannon statistics:
pp(R, R 0) = §(R - R') (170)
or for Bose or Fermi statistics:
1
po/r(R,R50) = 5 g(ﬂﬂ’a(m - R). (171)

The high temperature boundary condition is an (anti)symmetrized delta function.

In the direct fermion method one sums over permutations just as for bosonic systems. QOdd
permutations then contribute with a negative weight. The direct method has a major problem
because of the cancellation of positive and negative permutations. This was first noted by Feynman
and Hibbs (1965).

50



The efficiency is simply the number of even permutations minus number of odd permutations.
In fact, we can show that the efficiency is equal to:

2
¢= 2] = exol-20(Fr - Fy)] (172)
B
where Zp and Zg refer to partition function and Fr and Fg to the total free energies for Fermi
and Bose statistics respectively. Of course the free energies are proportional to the number of
particles. The direct fermion method, while exact, becomes exceedingly inefficient as 8 and N
increase, precisely when the physics becomes interesting.

We now introduce the restricted path integral method; the analog of the fixed-node ground state
method. This is based on the restricted path identity: that the nodes of the exact density matrix
determine the rule by which one can take only paths with the same sign. For the diagonal density
matrix we can arrange things so that we only get positive contributions.

pr(Rs, Raif) = [ dRopr(Ro, Ri0) § dR.e~ SR (173)
Ro—+Ra€T(Ra)

where the subscript means that we restrict the path integration to paths starting at Ry, ending
at Ry and are node-avoiding (those for which pr(R¢, Rijt) # 0 forall 0 < ¢ < B.) The weight of
the walk is pf(Ro, Rs;0). It is clear that the contribution of all the paths for a single element of
the density matrix will be of the same sign; positive if pr(Ro, Bs;0) > 0, negative otherwise. In
particular, on the diagonal all contributions must be positive. Important in this argument is that
the random walk is a continuous process (the trajectory is continuous) so we can say definitively
that if sign of the density matrix changed, it had to have crossed the node at some point.

The problem we now face is that the unknown density matrix appears both on the left-hand
side and on the right-hand side of Eq. (173) since it is used to define the criterion of node-avoiding
paths. To apply the formula directly, we would somehow have to self-consistently determine the
density matrix. In practice what we need to do is make an ansatz, which we call pr, for the nodes
of the density matrix needed for the restriction. The trial density matrix is used to define trial
nodal cells: Tr(R,). Using a trial nodes we generate a better approximation to the density matrix
using Eq. (173) with the trial restriction:

br(Rg, Ra; f) = / dRopr(Ro, Re; 0) f dRye 51, (174)
Ro—)RﬁETT(R-)

Hence, p7(R', R; B) is a solution to the Bloch equation inside the trial nodal cells, and it obeys the
correct initial conditions. It is not an exact solution to the Bloch equation (unless the nodes of pr
are correct) because it has possible gradient discontinuities at the trial nodal surfaces.

We call R, the reference point and it plays a very special role in restricted path integrals since
it is the value of the density matrix with respect to the reference point that restricts the paths.
Averages such as the density can only be taken at the reference point. By a “time-independent” or
“ground-state” restriction is meant that the restriction does not depend on the reference point. This
is achieved by using an antisymmetric trial wavefunction ¥r(R) and requiring that Ur(R,) # 0
throughout the path. This is identical to the ground state fixed-node method (diffusion or Green’s
Function Monte Carlo). The algorithm is considerably simpler than using time-dependent nodes
and time-slice symmetry is restored. However, calculations with ground-state nodes on liquid *He
gave a poorer description of the properties of the liquid at non-zero temperature[67].

To get a feeling for restricted paths let us consider the problem of molecular hydrogen. We will
work in the Born-Oppenheimer approximation so the two protons in a single hydrogen molecule
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are represented by two spin 1/2 particles interacting with an attractive potential. The total spin
(S) and total orbital angular momentum (L) are good quantum numbers. The spin 0 state is called
para-hydrogen, and must have an even value of L to keep the molecular wavefunction antisymmetric
in spin and coordinates. The spin 1 states are called ortho-hydrogen and they must have odd values
of L. Often the hydrogen cannot easily change its spin state, so that para- and ortho-hydrogen can
be considered as separate chemical species, for a time at least. They can change their angular
momentum values with collisions with other molecules but not easily their spin. A third possibility
of statistics is if the two nuclei are different particles, e. ¢. a proton and a deuteron, in which case
they obey distinguishable particle or Boltzmann statistics.

Let us suppose that the particles are massive enough that the relative coordinate is almost fixed
at a given radius o = 0.75 A. Hence the relative coordinate r = ry — ry is almost fixed on the
surface of a sphere.

Now consider what we need to do to calculate the partition function for the three types of
statistics. Distinguishable particles are the simplest: allow all paths returning to the starting point
(type A in the figure). For ortho- and para-hydrogen, we can use parity to project out the correct
states. This generates paths of type B which end up at the opposite pole in relative coordinates.
For para-hydrogen the direct method would be to sum over all paths of types A and B. Ortho-
hydrogen would be to sum over paths of type A but subtract the contribution from paths of type
B.

In the case of ortho-hydrogen it is easy to calculate the exact nodes of the density matrix. In
relative coordinates any wavefunction has the angular factor ¥j,(f). Then in the sum over the
quantum states for different m, using the addition formula for spherical harmonics we obtain a
factor Py(i - #.). Since all the odd Legendre polynomials vanish when their arguments vanish the
ortho-density matrix vanishes when r - r. = 0. In general, additional nodes would be possible, but
the hydrogen molecule has only this one planar node. Paths of type C are node-crossing as opposed
to the node-avoiding path A.

To summarize, we add the following classes of path for the different statistics of the hydrogen
molecule:

1. Distinguishable hydrogen: A4+C

[SV]

. Para-hydrogen: A+B+C
3. Ortho-hydrogen (direct method): A-B4+C
4. QOrtho-hydrogen (restricted method): A only (r¢-r, > 0)

The reason that restricted path integrals give the same value is that paths of type B and C
can be paired together and canceled off against each other. This is because the flux of paths is the
gradient, of the density matrix at the node and since the gradient is continuous across the node,
the positive paths crossing at a given nodal point will precisely cancel against the negative paths.

Hence the restricted paths are limited to be in a half-space. Note that there is no definite
location of this half-space. Its position depends on the reference point, even at zero temperature.
This is because the ground state of S=1 is three-fold degenerate. Isotropy is restored by averaging
over the reference point position.

Now, let us discuss the nodal surfaces of non-interacting fermions. Let v.(r) be a single-particle
external potential. The distinguishable particle density matrix is then a product of solutions of the
single-particle Bloch equation:

. dg(!.‘,t) —

o [—AV? + ve(r)]g(r,1) (175)
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with the boundary condition:
g(r,r,;0) = 6(r - r.). (176)

Then using the antisymmetric projection operator and the definition of a determinant, we find for
the spinless case:

1
pr(R,Rat) = -Kr—!det[g(r,-,rj,*;t]. (177)

In the case where the external potential is zero (or a constant), the single-particle density matrix
is a Gaussian.
(r— l‘*)zl

4rt (178)

g(r,r.t) o exp [—

The action for restricted fermions, which we write as SF(R:, Ri—r;7;t,, R.), is more complicated
and depends on more variables than the distinguishable action Sp because of the lack of time
symmetry in the paths. It is a function of R, and { in addition to its usual dependence on R;, Ri4r
and 7. The primitive-nodal action makes the approximation of checking the restriction only at the
M sampled points on the path. We only check to see whether py(R;, R.;t;) < 0for 0 <7 < M.
In the primitive approximation the error decreases as 71/2, This dependence is easy to understand.
The energy of a box of size a is A(r/a)?. Using the primitive approximation effectively increases
the size of the box by an amount proportional to the thermal deBroglie wavelength of a time step:
(A7)1/2. Hence, the energy is decreased by a relative amount (A7)!/?/a.

Luckily, one can do considerably better, so that fewer time slices are needed to accurately
represent the path. The action picks up a contribution from the nodes because walks can wander
back and forth across the nodes even though they happen to be on the correct side at the sampled
points, RB; and R;,,. Improved fixed-node sampling methods have been developed for the ground
state simulations by Anderson (1376)[26). The exact nodal action for a particle in a box is easy to
calculate. In the case of a particle confined only to the half-space z > 0, one can solve the Bloch
equation by the method of images. The total density matrix is the difference: p(z,z’) — p(z, —z")
since the difference satisfies the Bloch equation and the boundary condition at ¢t = 0 and z = 0.
Using the form for the free particle action the nodal action is:

dtdt-!-'r
AT )

Un{(z¢, @epr) = — In[l — ezp(— (179)
where d; is the distance of z; to the node at time ¢ and d,,, is the distance of z;,, from the node
at time £+ 7. Hence the action diverges logarithmically near the node and is significantly repulsive
in a region on the order of VAT,

The remaining non-trivial problem is how to estimate the distance d to the node. In the many-
body time-dependent case we define the distance to the node as d; = min(|R,, — R;|) where R,
varies over all points with pp(R,, R.;t) = 0. To get an estimate, we can use the Newton-Raphson
method: given a function (hopefully smooth) f{R) which vanishes when pr(R) does, an estimate
of the nodal distance is:

1f(R)|
d(R) =~ ———. (180)
B Vi)
This is good as long as the contribution of higher order derivatives of f is not large within a thermal

wavelength.
Let us consider how to calculate the momentum distribution with restricted paths. The momen-
tum distribution is the Fourier transform of an off-diagonal element of the density matrix. Consider
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the ideal fermi-gas momentum distribution (for spinless fermions).

3 or
- { YOP o <t -
n(r) = (—k—j—rﬁ[sin(kpr) — kpreos(kpr)] (182)

where the Fermi wavevector for spinless fermion is related to the density by kp = (67r2p)1/ 3. Note
that the single particle density matrix is proportional to the spherical Bessel function j,(z), and
slowly decays to zero at large . It has zeroes at kpr = 4.493,7.725,.... These zeroes mark
the places where the even and odd permutations cancel out. Since n(r) is often negative, even
with restricted paths we must have negative weights entering. The momentum distribution has a
discontinuity at the Fermi wavevector kr. As a consequence the single particle density matrix must
decay at large distance as 7~ 2. We can get such long-range behavior only if there are macroscopic
exchanges. Hence the existence of any kind of non-analytic behavior (we mean a discontinuity
in mj or in any of its derivatives) implies that the restricted paths have important macroscopic
permutation cycles.

I acknowledge financial support from NSF-DMR94-224-96 and ONR-N00014-92J-1520. Matthew
Jones was helpful in texing some of the notes. Publications from the University of Illinois Quantum
Monte Carlo group are available at hitp://www.ncsa.utuc.edu/Apps/CMP/cmp-homepage. html
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