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Chapt. 1: Semiclassical Collision Theory,
Gaussian Wavepacket Dynamics,

and Driven Oscillators

1 A Problem in Semiclassical Collision Theory

Imagine a collision between an atom and a molecule. The molecule has rotational and vibra-
tional degrees of freedom. In general the rotational and vibrational states of the molecule
will be altered as a result of the collision. Transitions between internal states of a molecule
induced by collisions with other atoms, molecules (or photons) are called “inelastic tran-
sitions”. The principles of quantum mechanics enable us to predict the probabilities of
“inelastic transitions”, and both the theoretical framework for understanding such processes
and a practical methodology for analyzing them are given in terms of wavepacket motion.

A wavepacket is simply a spatially localized wavefunction which evolves in time. To give a
specific illustration, take a simplified version of the atom/molecule collision. Let us consider
the collinear collision of a free atom with an atom bound by a spring to a wall. 'Rea.listically,
the bound atom could be an atom on the edge of a solid surface. Or we can think of this as
representing the vibrational motion of a diatomic molecule which is hit “end on” by a free
atom. The situation is summarized in Fig. 1. This prototypical inelastic collision problem
involves two degrees of freedom: the position of the bound atom (relative to its equilibrium
position) will be labelled by z, and the position of the free atom by y. Even for such a simple
scattering process, the quantum mechanical (S-matrix) theory is nontrivial. We shall defer
a full treatment to Chapt. 3.

Here we adopt a simple semiclassical model that focusses on the vibrational motion of the
bound atom. We thus consider a Hamiltonian with only one dynamical degree of freedom,
z. The influence of the free atom is represented by an appropriate time-dependent force
that drives inelastic (vibrational) transitions in the oscillator. One way to do this is to
replace the full interaction potential Vi :(z,y) by the effective potential Vi, (z, y(t)), where
y(t) is an imposed trajectory for the free atom. To find an appropriate trajectory we can
freeze the vibrating coordinate at its equilibrium position and solve Newton's Equation
for the “collision coordinate” evolution. For example, suppose the interaction potential is
Vint(z,y) = Aexp[—(y — z)/L], i.e., a simple repulsive interaction with strength A and
interaction distance L. Then,



Figure 1: Collinear collision of projectile and particle attached to spring.
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where the expression in brackets is obviously the Taylor expansion of e*/L. If the spring is
sufficiently stiff the range of x is restricted to values near z = 0, so the Taylor series can be
truncated after the first order term. Thus, operationally, we have

Vine(z, 1) = f(t)z (2)

with

F(t) = peuts ©)

Note that f(¢) is (minus) the force exerted by the projectile on the oscillator when the oscil-
lator is clamped at z = 0. In any case this function “forces” transitions between vibrational
states of the oscillator. Typically, the force function would be a pulse peaking at certain
(arbitrary) time and characterized by a certain strength and duration. A form which is easily
rationalized is:

2
— Y% —vd(t-10)2/17 4
7 = e (4)
Here m,, is the projectile mass, vy is its initial incident velocity and ¢, the (arbitrary) “instant”
of the collision. As is seen from the equation, the duration of the pulse is roughly L /v, and the
maximum force is m,vg/2L, i.e. the potential energy difference between the asymptotically



free state and the state of maximum interaction (smallest y value) divided by the distance
scale over which this change takes place.

Given preparation of the oscillator in vibrational eigenstate v, what is the probability after
the collision that it will be in vibrational eigenstate v'? For simplicity, let us assume that the
system is initially in v = 0 (unexcited), and notate the ground state Gaussian wavepacket of
the oscillator by (z,0). We wish to evolve this packet under the {time-dependent) potential
indicated above so that after time t it becomes 1(z,t). Then we can overlap ¥(z,t) with
the harmonic oscillator eigenstate v’ and compute the probability to be in state v’ at time ¢:

Py =|<[y@) > ? (5)

We expect that after the collision, P,r will attain a well defined asymptotic value. To calculate
these quantities we can utilize Gaussian Wavepacket Dynamics.

2 (Thawed) Gaussian Wavepacket Dynamics in 1-d

We present here the equations of motion for Thawed Gaussian Wavepacket Dynamics (GWD)
in one spatial dimension [1]. We presume the particle is prepared in an initially Gaussian
state. We then assume that the system remains a Gaussian for all times, so that its wave-
function can be represented by:

Y(z,t) = exp {% [at(:c —z)? +pz — ) + %]} (6)

Here, by construction we have < v(t)|Z|y¢(t) >= =z, i.e. z; is the position-space center of
the wavepacket. Similarly, p; is the momentum expectation value of the wavepacket state,
< (Bl (t) >= p;. Of course, z; and p; are real-valued parameters. The complex-valued
parameter ¢ controls the width of the wavepacket, and the complex-valued parameter <,
determines the normalization and overall phase of the wavepacket.

In the Thawed Gaussian approximation, the potential function V(z,t) is expanded in a
quadratic Taylor series about the instantaneous center of the wavepacket:

V(z,t) 2 Vo + Vi — ;) + Va(z — 2.)%/2 )

where V; 5 are time-dependent coefficients given by V; = &V (z;,t)/dz? (i.e., the derivatives
are evaluated at z = z;). If V(x,t) is at most a quadratic function of the coordinates, then
the r.h.s. of Eq. (7) is simply an equivalent representation of V(z,t). Otherwise, if the
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potential is anharmonic, the r.h.s. is an approximation to V(z,t) which is valid so long
as the wavepacket is sufficiently narrow. An initially narrow wavepacket remains narrow
for heavy mass particles or small %, hence in the semiclassical limit GWD should become
accurate for arbitrarily long times. Assuming this limit is achieved (or that the potential has
no anharmonicities), we substitute Eqs. (6) and (7) into the time-dependent Schrédinger
Equation (TDSE) and derive equations of motion for the parameters in the Gaussian, namely

[1]:

Ee(t) = po/m (8)

pelt) = -V (9)

Gy = —20;/m — V3/2 (10)

Y = ihay/m +p/2m - V; | (11)

The first two equations are just Hamilton’s equations, i.e. in Thawed Gaussian Wavepacket
Dynamics the position-space and momentum-space centers of the wavepacket evolve accord-
ing to the laws of classical mechanics. The parameters ¢y and - also obey appropriate Ist
order differential equations (which use z;, p; as input.) Numerical integration of the entire
set of coupled 1st order differential equations is straightforward and fast. Extension to many
cartesian degrees of freedom is straightforward.

3 Analysis of Driven Oscillator Problem

Using the GWD technique we can analyze the driven harmonic oscillator problem introduced
in Section 1. The potential experienced by the oscillator is:

Viz,t) = %mwgf + f(t)z (12)

where m is the oscillator mass (the reader should substitute m — m, to connect to Fig. 1)
and w is its angular frequency (related to the spring force constant &k by w = \/I;/—n—:r,) The
relevant forcing function f(¢) for the collision-induced excitation problem of Section 1 is a
pulse whose characteristics reflect the speed and mass of the projectile and the length scale
of the interaction between the oscillator and the projectile atom.
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We note further that a harmonic oscillator system in v = 0 is represented by a Gaussian
wavepacket corresponding to 2o = 0, pp = 0, ap = imw/2 and v = =2 In(=2). The
evolution of the GWD parameters is as follows. First, a; = ay; in particular the wavepacket
does not spread or contract with time (such a wavepacket is called a “coherent state”).
Further, v = v + wt/2 + f; dt'[pZ /2m — V4(t")], i.e. the wavepacket develops a phase but
the normalization is time-independent. Finally, z; obeys Newton’s equation for a driven

harmonic oscillator (and of course p; = mi;), namely:

&+ Wiz = f(t)/m (13)

This differential equation can be explicitly integrated. If we are interested in asymptotic
transition probabilities, it turns out that the central quantity we have to calculate is E,
the final energy of the oscillator after the collision is over. From the solution to Eq. (13), it
follows directly that

Ba= | [ atfes (14)

By plugging the explicit solutions for z;, p;, o and < into the Gaussian wavepacket (z, t)
and then performing the overlap integrals with the standard harmonic oscillator functions as
indicated in Eq. (5), one finds a very simple expression for the probability that the collision
induces a transition from the ground state v = 0 to final state v', namely:

Py =€ TV /o'l (15)

where I is the dimensionless ratio I' = Ey/hw. The transition probabilities indicated in Eq.
(15) thus follow a Poisson distribution. Finally, we note that for the form of f(t) adopted
in Section 1 for the collinear atom-diatom collision, explicit evaluation of I" yields:

l'\ — W;nhﬁ)g e—w2L2/2v§ (16)

4 Collisions with an Anharmonic Oscillator

Now let us make the seemingly innocent change that the oscillator is bound in a Morse
potential,

V(z) = D(1 — e™9%)? (17)
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As is obvious from inspection, for small amplitude vibrations this potential behaves as a
harmonic oscillator with effective force constant ke;; = 2Da?. For larger amplitude mo-
tion, however, the particle senses enharmonic terms in the potential function. In classical
mechanics, its trajectory is not longer sinusoidal. The quantum mechanical behavior of
a wavepacket in a Morse potential can be rather exotic. In general, the shape does not
remain Gaussian (except at short times). Both classical and quantal descriptions of the
“kicked” Morse oscillator admit dissociation if enough energy is transferred to the oscillator
coordinate.

As hinted in the above paragraph, the Gaussian Wavepacket Dynamics algorithm can fail
badly for long-time motion in a Morse potential. For this reason we “bite the bullet” and
utilize a numerical grid algorithm to integrate the time-dependent Schrédinger Equation in
one spatial dimension. Details of the algorithm, which is a key tool in modern wavepacket
methodology, are deferred until the next chapter. Here we study some results for the driven
Morse oscillator. The large qualitative differences from the analogous harmonic oscillator
problem that can arise under certain conditions motivate the careful study of grid methods
below.

In Fig. 2 we show a wavepacket trajectory for m, = my, = A = 1, D = 12.5, a = 0.2,
vo = 18, and L = 27. The energy of excitation is high enough and the potential energy
anharmonic enough that the wavepacket movie does not look anything like the dynamics of
a coherent Gaussian wavepacket attained for the corresponding harmonic oscillator problem.
The deviation from the harmonic oscillator model is even greater at very high collision
energies - the oscillator system can dissociate.

To finish the analysis we show in Fig. 3 the analogous results for a harmonic oscillator well
characterized by the effective frequency at the bottom of the Morse well studied in Fig. 2
above (namely, wes; = 1/kess/ms). Of course, the linearly driven harmonic oscillator remains
in a Gaussian coherent state {does not spread). The particle is noticably more excited than
the corresponding Morse oscillator for the same driving pulse.
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Figure 2: Probability density |¢(z, t)|? vs = for driven Morse oscillator described in text. In top panel results
are shown for times ¢t = 0,1.5,3.0,4.5 using solid, dot-dashed, dashed, and long dashed lines, respectively.
In bottom panel results are shown for times ¢ = 6.0,7.5,9.0,10.5 using solid, dot-dashed, dashed, and long
dashed lines, respectively.
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Figure 3: Probability density |[¢(z,t)}* vs = for driven harmonic oscillator described in text. In top panel
results are shown for times ¢t = 0, 1.5, 3.0,4.5 using solid, dot-dashed, dashed, and long dashed lines, respec-
tively. In bottom panel results are shown for times ¢ = 6.0,7.5, 9.0, 10.5 using solid, dot-dashed, dashed, and
long dashed lines, respectively.



Chapt. 2: Numerical Grid Wavepacket Integrators

1 Grid Wavepacket Algorithms: SOD and Split Operator Meth-
ods

It is easy to convert the time-dependent Schrédinger Eq. (TDSE} into a finite difference
equation which can be integrated on a computer [1]. If we discretize the wavepacket on a
grid of evenly spaced position space points and use simple finite difference representations
of the derivatives which appear in the TDSE, we arrive immediately at the update rule:

Byt + 9~ (0] = s [y (6 = 250) + 91 O]+ V;OHE ()

Here v(z;,t) is denoted by v;(t), and analogously for V(z;,1); € is the time step, and 4 the
spatial grid spacing. Now, given the packet at time ¢ everywhere on the grid, the value of ¢
at time ¢t + € can be computed.

In practice, wavepacket solutions of the TDSE oscillate rapidly in space and time, and the
simple prescription just given is often unstable. To surmount these problems the following

more sophisticated procedures are used.

First, all spatial derivatives are done by Fast Fourier Transform (FFT), rather than finite
differencing. In particular, the current wavepacket 1) is fed into the FFT, which returns
coefficients a; in a Fourier series approximation to t):

kma:

'I,D(IL', t) — Z ake21rik:c/L (2)

k=—kmeox

This approximation to ¢ can be differentiated analytically, e.g.

82 .T.,t kmaz ik
T2 o 35 —(ank/Lyayemirt 3)
k=—kmaez

To evaluate this approximation to 8%)/8z? at all grid points, just feed the new Fourier
coefficients, —(27k/L)?, (backwards) through the FFT. A summary of the prescription for
computing 8™y/9z" is thus:

(i) “FFT from real space to k space”
(i) “multiply by (ik)" in k space”
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(iii) “FFT back from k space to real space”

Now for the time derivative. Perhaps the simplest successful scheme is “Second Order
Differencing” (SOD) [1]. To derive it, we note the formally exact solution Yz, t+€) =
exp(—iHe/h)i(z,t), and consider evolution forwards and backwards by a small time e:

W@yt +€) = laj, ) + (—ie/R) Hp(z, 1) + %(—z’e/h)zﬁzw(.@j, ) (4)

oyt — €) = Y1) + (ie/R) Bz, t) + %(ie/h)zﬁzw(xj,t) (5)

Subtracting the second equation from the first, we obtain the SOD scheme:

(x5t + €) — Y(zs,t — €) = (—2ie/h) Hy(z;, 1) (6)

Note that H (z;,t) can be accurately evaluated at all z; by the methods discussed above.
The advantage of the second order form Eq. (6) is that it is accurate through O(e?), while
the first order form Eq. (1) is only accurate through order e. SOD is a bit more involved
since not only must the current wavepacket be stored but also the packet from the previous
time step. (To start the algorithm, use the 1st order form for the first time step.)

Another elegant scheme is the “Split Operator Method” [2]. Denote the Hamiltonian as
H =T +V, with T the kinetic energy and V the potential (assumed to be a function of z
and t). Although [T, f/] # 0, for short times € the “split operator” approximation:

exp(—ieH /) = exp(—icV /2h) exp(—ieT /h) exp(—ieV /2h) (7)

is acceptable. In fact, it can be shown by direct expansion of the exponentials that the
first error in the approximation is at O(e®). The Split Operator scheme takes full advantage
of the FFT: First we operate on y:(z,t) with exp(—ieV/ /2k). This is multiplicative in real
space, i.e. ¥; — exp{—icV;/2R)1;. Now we operate on the new ¢ with exp{—ieT'/k). This
operation is multiplicative in k space, so we use the FFT to transform to k space, multiply
there, then FF'T back to real space. Finally, we operate on the output of the Kinetic Energy
propagation with exp(—ieV/ /2k) to obtain ¢(z,t + €).

Basic properties of the exact solution include: If the Hamiltonian is Hermitian (the potential
is real), norm is conserved. If the Hamiltonian is Hermitian and time-independent, then
< 9 (t)|H™|%(t) > is constant. In practice it is not hard to compute the first moment of £
after each time step, hence norm and energy conservation can be monitored easily.



2 Examples of 1-d Grid Propagation

2.1 Tunneling through a Barrier

A good system for demonstrating the utility of numerical grid wavepacket propagation is
tunneling through a barrier. In elementary textbooks this process is usually analyzed from
a time-independent perspective. While such an analysis does indeed yield correct predic-
tions for transmission and reflection probabilities, it cannot address the full range of issues
associated with the dynamics of a wavepacket incident on a barrier. Time-dependent grid
integrators provide considerable insight, as well as quantitative answers for measurable prop-
erties like scattering cross sections. [Fortunately, they are the same answers as obtained via
time-independent analysis!]

First we have to define appropriate initial conditions for the wavefunction, and then solve the
TDSE. We want to represent a free particle with prescribed initial momentum, incident (say,
from the left) on a barrier. Intuitively, the nearest quantum analog to a classical particle is
a localized wavepacket. Indeed, the notion of “scattering” implies that an event must take

place: there must be a “before” state and an “after” state. To guarantee this we need to
launch a localized wavepacket at the barrier at some time in the distant past.

Thus, consider an initial, normalized wavepacket of Gaussian form:

W(z,0) = [2n L2 Y exp [—(:c +x:0)?/4L% + z'pg:r:/h] :

This wavepacket is localized about £ = —z and has a width &~ L. An objection to identifying
this state with an incident particle of momentum p, (or kinetic energy E = p§/2m, m
being the particle mass) is that it contains a distribution of momenta, or equivalently, it
is not “monoenergetic”. This objection can be met by increasing L until the momentum
distribution becomes narrow. (It is easy to calculate that < (p—po)? >= h?/L%.) By choosing
1o sufficiently large (starting the particle far enough from the barrier), the necessary pre-
collision localization can still be maintained.

Given the initial wavepacket just specified, the TDSE can be numerically integrated using
the grid-methodology outlined in Sect. 1. Let us look at some movies of the scattering of
a wavepacket from a square mound barrier, i.e., a potential which has the value V; in the
region —a/2 < r < /2 and is zero elsewhere.

For m = h = 1 the trajectory of a wavepacket representing a particle with £ = 6 and a square
mound with V5 = 10, a = 0.6 is shown in Fig. 1. The remarkable result is that although
most of the wavepacket reflects (and, except for transient effects associated with the jarring
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collision, retains its initially Gaussian shape), a part of the packet is transmitted through
the barrier (again, recovering a Gaussian shape after it leaves the barrier region). For these

particular collision conditions, 13% of the incident probability distribution permeates the
barrier.
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Figure 1: Wavepacket tunneling through a square mound barrier. Each panel shows probability density vs
position at the indicated time. Position of barrier is shown in the first panel (¢ = 0). System parameters
(see text) are E/Vp =6/10,a =0.6, h=m = 1.

To confirm the accuracy of these wavepacket results, it is instructive to compare to the
formulae for transmission and reflection obtained by standard time-independent analysis. It
turns out that for E < V; the transmission probability |T'|? is given by the formula:

sinh®(ka) ! o
BNV - V) ®

IT> = {1+



with k = \/ 2m(Vy — E)/h. Thus, transmission increases monotonically with E for E < V.
For a = 0.6, and E/Vy = 0.6, Eq. 8 gives |[T|> = 0.12, in reasonable agreement with the
wavepacket movies shown above.

2.2 Absorbing Boundary Conditions for Grid Wavepacket Codes

A number of interesting quantum dynamics problems, such as the decay of a metastable
state by tunneling through a confining barrier, have the feature that probability amplitude
“dribbles” slowly out of the region of space where the system is (nearly) trapped. When the
“dribble” hits the edge of the simulation box, it gets artificially reflected back into the box.
This is undesirable. The simplest cure for this problem is to use a bigger box. However,
there are always limits to computer storage, speed and user patience. Fortunately, the details
of the dribble are usually not important. If we carefully “damp them out”, this distortion
of the actual quantum evolution of the system will have no effect on the behavior of the
wavepacket in the important regions of space (for example, in the example of metastable
decay, the region in and around the confining well). By applying “absorbing boundary
conditions” we can eliminate the pieces of the wavepacket which have tunneled out of the
well, are far away from it, and in the future will only go farther away still. .

Here we discuss one simple strategy for “damping” outgoing wavepacket components which
we do not need to follow explicitly, but wish to prevent from artificially reflecting back into
the center of the grid after hitting the grid boundaries. In the one dimensional example
of metastable decay with leakage through, say, the right-hand barrier, we choose a value
of z, denoted z4 which is far to the right of the well region, but not all the way to the
right-hand grid boundary. We then multiply the evolving wavepacket after each time step
by the switching function

s(z) = [1 + e“(m_“)]_l (9)

This function switches smoothly from the value s = 1 to s = 0 as z increases through z,.
The width of the switching region is roughly a~!. For sufficiently small a the switching will
take place gradually enough that no artificial reflection of ocutgoing pieces of the wavepacket
back into the center of the grid will occur. It should be checked that important quantities
associated with the wavepacket dynamics in the center of the grid do not change as the box
size and x4 are increased, and the value of a is reduced.



3 Grid Wavepacket Dynamics in Several Cartesian Dimensions

Extension of the 1-d grid algorithms considered above to propagate wavepackets in two or
more cartesian dimensions is quite straightforward in principle. The major problem is that
the computational effort required scales roughly geometrically with spatial dimensionality of
the system, so we simply run out of storage space and cpu time after 3-4 spatial dimensions.
Nevertheless, exact grid integrators in 2-4 spatial coordinates are extremely useful. Even in
2-d, one can begin to study effects of coupling between dynamical degrees of freedom, at a

level of detail, reliability and flexibility which did not exist before grid methods came of age
in the 1980’s.

An important point to note is that for a multidimensional system, if the potential is separable
and the initial wavepacket factors into a product (one factor for each degree of freedom),
then the problem of propagating the wavepacket separates into a collection of uncoupled 1-d
problems. To be more specific, consider a system with two dynamical degrees of freedom
z and y. Further, let us assume that the kinetic energy has the usual form for cartesian

coordinates, T' = T, + Ty, with T, = E—f:g—;, and analogously for Ty.

Then, if V{z,y) = Vi(z) + V,(y), and if ¥(z,y,t = 0) = ¢, (z),(y), it follows that
Yz, y,t) = Yo (z, t)¢y (v, t), where v,(x,t) satisfies the 1-d TDSE

ihdps(z,t) /0t = [Tr + Va(z)] vhu(z, 1) (10)

subject to the initial condition v, (z, 0) = ¥, (z).

In general, V(z,y) is not separable, and the solution of a coupled 2-d TDSE must be com-
puted. This can be done on a two dimensional spatial grid.

All of the basic strategies, e.g. SOD and Split Operator methods, discussed in the 1-d
case work for the multidimensional as well. Operators involving the position of the degrees
of freedom [like V(z,y)] act on the wavefunction via local multiplication, as in 1-d. The
most difficult part is again the operation of momentum operators (e.g., the kinetic energy
operator) on the wavefunction. Fortunately, these operators are still “local in k space”. That
is, if we approximate t{z, y,t) as a Fourier series (with periodicity reflecting the box length
L, in each direction):

kmaa: kma:

Yz, y,th= . Gk,x, exp(2wik,z/L;) exp(2mikyz/Ly) (11)

kz =—kma:c ky =_kmaz

derivative operations on this form are easy, e.g.:



amz'f'my x, Y, t kmaoz kmaz _ ) ]
axm:’g(ymfj ) = Y > 8k, exp(2mik,z/L,) exp(2mikyz/Ly) (12)

ky=—kmaz ky =—Kkmaz

with

Gk, , = (2iky/Lg)™ (2miky /L) ™ o, g, (13)

The evaluation of derivatives by this strategy is greatly aided by the existence of two (and
higher!) dimensional FFT routines. The procedure is the same as in 1-d, namely for a 2-d
problem, (i) feed the coordinate space grid to the 2-d FFT routine, (ii) modify the output
Fourier coeffs. as indicated in Eq. (13) (for the operator ™=*™ /d™=§™), (iii) FFT back
to coordinate space.

Grid-integration routines are the “bread and butter” of quantum dynamicists studying small
systems. Unfortunately, the systems have to be very small. Computational effort (both cpu
and storage) grows geometrically with dimension. If it takes 100 grid points to span the
relevant region of a 1-d configuration space, then it will take 100? to span a 2-d configuration
space, 100° for 3-d, etc. Depending on the computer resources and perserverance of the
researcher, 3-4 spatial degrees of freedom is the upper limit for exact wavepacket calculations
using general purpose grid-integrators.

Hence, approximate methods are still widely utilized. One of these, the multidimensional
generalization of Gaussian Wavepacket Dynamics, is discussed next.
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