UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

e
1'“—! 1 INTERNATIONAL ATOMIC ENERGY AGENCY {%}

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LC.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/994-3

SPRING COLLEGES IN
COMPUTATIONAL PHYSICS

19 May - 27 June 1997

BASIC NUMERICAL METHODS

C. REBBI
Boston University
Department of Physics
590 Commonwealth Ave.
Boston, Massachusetts 01125
U.S.A.

Preliminary notes from a course on Computational Physics -
copyright by Claudio Rebbi, 1995 - for distribution to participants only.

MaIN BUILDING STRADA COSTIERA. 11 TEL. 2240111 TELEFAX 224163 TELEX 460392 ADRIATICO GUEST HOUSE Via GRIGNANO, 9 TEL.224241 TELEFAX 224531 TELEX 460449
MICROPROCESSOR LAB. ViA BEIRUT. 31 TEL. 2229911 TELEFAX 2246m0 TELEX 460392 GALILEO GUEST HOUSE Via BEIRUT. 7 TeL.22a0311 TELEFAX 2240314 TELEX 460392

aadasa & A A& -

1. Basic Computational Tools

1.4. Numerical Integration

We would like to evaluate the integral of a function f(z) in the range =4 —z3. The
numerical algorithms make use of the values of the function, assumed either known
or calculable, at definite points in the interval of integration and can be generally
grouped into three classes, according to whether the points are equally spaced, regu-
larly spaced but not equidistant, or chosen at random. We will deal with the former
class of algorithms here, leaving the other two (Gaussian integration and generaliza-
tions, and Monte Carlo integration) to later chapters.

Let us assume then that we know f(z) for the set of equidistant values, z9 = q,
zy, T2, ... , &n = T, of the argument. Let § = (zn — zo)/n be the spacing between
points. The simplest method, known as the trepezotdal rule, consists in approximating
f(x) by a straight line between z; and z,4,. This gives

£ @)~ 1S @0) (st = 2) + £ (gi) (= =)] 5 (141)

which can be integrated to give,
i+l . 1
[@ e =Gl e+ f e (1.4.2)

Adding the contributions from all subintervals making up the interval of integra-
tion we get,

In 1 1
/ flz)dz = [§f($0)+ fl)+ f(z)+ -+ f(zpa) + -g*f(mn)l 5 . (1.4.3)
zo
How accurate is this result? To answer this question, expand f(z) about z,

f2)= @)+ f @)z =2) + 0 ((z - =)

and estimate f' from the same expression, to finally get

Fz)=fla)+ (x”l){ F2) 0 2y 4 0(62) (1.4.4)

which coincides with the linear interpolation formula we used before, but with the ad-
ditional information that the error is of order §2. We can therefore rewrite Eq. (1.4.2)
more correctly as

[1@ de= @+ fEale +0 () (1.4.5)

Adding the contributions from all the subintervals will result in the accumulation of
the N intervals of length é, so that, in general, the error in the trapezoidal rule will
be of order 62.

15

Numerical diFerentiation 9

An alternative formula for the trapezoidal rule can be derived when the function to

be integrated is known at the midpoints, z;+6/2, (: = 0,...,n—1) of the discretization
intervals. In this case, we can also write

f(z)=f (x,' + g) + f (x,- + -g—) (.r -z — g) +0(8%) . (1.4.6)

Integrating this equation over the interval [z;,z,4+1] we see that the second term,
proportional to f', vanishes by symmetry, so we are left with

[m f(z)dz = f (z,' + g) 5§+ 0(8) (1.4.7)

]

leading to

/x:nf(x)d:c= [f(“*g’)+f(xl+g)+---+f(xn-1+g)] 5+0(8) . (148)

Is it possible to obtain approximations with 4n accuracy higher than (O(§2)? There
are several ways of doing this. The simplest is'to Taylor expand f(z) to higher order,
and proceed as we did for the trapezoidal rule. Consider expanding f(z) about z; to
fourth order in é:

f(@)= flz)+f (z)(z —z)+ %f” (z:)(z — 1:,~)2 + %f'" (z:) (x —) +0 (64) , (1.4.9)

which integrates to,

] " (@) de = f(20)6 + %f’ (z:) 62 + éf” (z:) 6% + %f (z)61+ 0 (8°) . (1.4.10)

Of course, the error in Eq. (1.4.10) will be of order 6° only if we are able to calculate
the derivatives on the right-hand side with a sufficient degree of accuracy. The
equation, as it stands, calls for an accuracy O{&%) in ', O(é%) in f" and O(§) in
f". However, we can get by without having to calculate f'(z;) and f"(z;) to this
degree of accuracy, indeed, without having to calculate them at all, if, rather than
using the expansion in Eq. (1.4.9) to calculate the integral from z; to z,4;, we use it
for calculating the integral in the larger interval from z;_; to z;4;. Because of the
symmetry, then, the terms which are linear and cubic in (z ~ z;) do not contribute
to the integral, and we are left with,

Ti+1 1
] f(2) do = 2f () 6+ 5" (2) 8+ O (&) (1.4.11)
Ti-1
with the only requirement that we must calculate f"(z;) with error of order 62 in
order to achieve a total local error of order §°. To proceed further, let us put aside
for a moment the problem of numerical integration to turn to that of the numerical
calculation of a derivative.

A ER 2B & B-ASAa 4 - &8 &8 &8 -

AR B

10

1. Basic Computational Tools

1.5. Numerical differentiation

Sometimes the derivatives of a given function can be calculated analytically and
their analytic expressions used directly in the context of a numerical calculation.
Often, however, this is either not possible or not practical; the function may be known
only through the values it takes at definite points, and no analytic expression may be
available, or the analytic form of the function may be complex enough that, even if
the derivatives can be calculated analytically, it is numerically too time-consuming
to calculate their values. But even if this is not the case, the explicit calculation of
the derivatives may simply be redundant. The result we obtained in Eq. (1.4.11} is a
case in point. A calculation of the left-hand side with error of order ° requires only
knowledge of f"(z;) with error of order §2 and nothing is gained in precision {because
of the other terms which are neglected on the right-hand side) from a more accurate
calculation of f”. As we shall soon see, f" can be calculated with error of order 4°
from the values of f at z;, z,_; and z,;;, which are, in any case, required to find
the approximate integral over the whole domain. Therefore, an explicit numerical
evaluation of f”(z;) would only be a waste of time.

The Taylor expansion formulain Eq. (1.4.9) constitutes the basis for the numerical
calculation of derivatives. By choosing for z the values of neighboring points zi41,
Ti-1, etc, where the function is assumed known, and truncating the expansion, one
can obtain one or more equations where the derivatives, f(¥)(z,), appear as unknowns.
The approximate value of the k'* derivative can then be computed in terms of the
values of the function which enter in the expansion.

Thus, for example, taking z = z;;, and truncating the expansion to O(%) we get

flzas1) = f (@) + f (i) (zig1 — 2:) + O (6%)
= f(z:) + f (z:) 6+ O (87)

Solving this for f' we recover the result already obtained in Eq. (1.4.4), namely,

(1.5.1)

Fl@) = f () - f 2] 3 + O 6).

This expression is known as the forward difference approximation to the first
derivative.
Similarly, by setting instead £ = z,_;, we can derive the equation

funzqu—fmqn§+owy (15.2)

This is known as the backward difference approximation to the first derivative.
Both the forward difference and the backward difference approximations have an error
of order 6.

One can obtain a more accurate expression for the first derivative by carrying
the Taylor series expansion to order 62 and combining the equations one gets setting
T =12y and z = T,1.

These give,

Flain) = f @)+ £ @6+ 51" (2) 8 + O (5) (1.5.3)

1.5

Numerical differentiation 11

and
fuwn:fua—f%mw+%f%mw?+owﬂ. (1.5.4)

Subtracting these two expressions, the terms with the unknown f”(z;) drop out

and we find,
Flaigr) = flzim1) = 2f (2:) 6+ O (63), (1.5.5)

or,

£ (20 = [f (@) ~ f (20i)] 55+ O (67). (1.5.6)

This is the central difference approximation to the derivative and is one order of
magnitude more accurate in § than either the forward or the backward approxima-
tions.

If we add Eqgs. (1.5.4) and (1.5.5) instead of subtracting them, then the terms with
f' drop out and we are left with an equation for.f"(z;). Indeed, also the terms 0(8%)
cancel if we add the equations, because they come from the term §f"(z;)(z — z;)°
which has opposite signs for £ = z,;4; and ¢ = z;_;. Thus we find

f (i) + f(zica) = 2f (i) + £ (z:) 62+ O (&) | (1.5.7)

which then leads to,

7 (23) = [f (@en1) + f (20-1) = 2f (20)] 35 + O (8) (1.5.8)

which is a useful and accurate approximation to f".

Proceeding along similar lines and making use of the values f(z) takes on various
neighboring points one can obtain nurmerical approximation formulas for the higher
derivatives and also formulas which are accurate to higher orders in §. We will
not write down any of these expressions. It is a straightforward exercise to derive
them, generalizing the formulas we have derived so far, and they can also be found
in many books specifically devoted to numerical methods. Insofar as the first and
second derivatives are concerned, the formulas in Eqs. (1.5.6) and (1.5.8) provide
approximations which are adequate for most applications.

In an actual computer calculation, the error in the evaluation of a derivative will
not only depend on the terms neglected in the Taylor expansion, but also on the
magnitude of the roundoff errors. The presence of roundoff errors is a crucial factor
in any numerical calculation. If it were not for these, one could obtain arbitrarily
accurate values for the derivative with the sophisticated formulas by simply taking 6
small enough.

The roundoff errors affect the mantissa of the floating—point numbers in the com-
puter, thus they typically represent relative errors in the values of f(z). Let such
errors be of order ¢. For the standard representation of single-precision numbers,
with an 8-bit exponent, 1 sign bit and a 23-bit mantissa, € =~ 10~7. Then, if we
consider, for instance, the central difference formula for f', we can expect a roundoff
error of order |f(z,)|e in the difference f(z;4+1) — f(zi-1). The total error will then
be

Af = |flz +clfle . (1.5.9)

12

1. Basic Computational Tools

1.6.

with ¢ some constant.

On the right-hand side we have assumed that the coefficient of the O(62) term,
which is proportional to the third derivative, f", has the same order of magnitude
as f. Minimizing the A f' with respect to &, we find a relative error,

—— =z C€l (1.5.10)

Thus, we cannot do better than 10_131. or roughly 10~3, for the relative error in
the numerical calculation of f' by the central difference formula, if we calculate in
single precision. Moreover, the minimum occurs at § =~ e%, that is, § ~ 10~2 to 1073,
Trying to achieve a higher accuracy by taking 6 too small will only worsen the result.

These are essential notions for the practitioner of computational physics, compa-
rable in value to a good knowledge of the laboratory apparatus for an experimentalist.
It is extremely useful and instructive to verify the above considerations by experiment-
ing with the computer. You will soon develop a strong feeling for the possibilities
and limitations of the computational methods that characterizes the accomplished

computational scientist by writing a few lines of code to test the performance of the
various algorithms as you go through this book.

Simpson’s formula

We now return to Eq. (1.4.11) and to the problem of developing a more accurate

scheme for numerical integration. Inserting into that equation the expression found
in Eq. (1.5.8) for f”(zi) one gets,

f:“‘ f(z) de=2f(zi)6 + %[f (ziv1) + f (2i-1) — 2f (z)] 6 + O (6°)
A (1.6.1)

= [/)+ 31)+ 3)] 5+ 0(8)

This can now be extended to a formula for the integral over a finite domain,
provided only that this region is divided into an even number of subintervals. Doing
this one obtains an expression for the integral known as Stmpson’s rule:

[T @ = 3@+ i+ 2 + 2+t
= (1.6.2)
+%f(32n--2) + %f(IZn—]) + %f(mzn) §+0 (8%

with 6 = (79, — 20)/2n and 7/ = 2 + 46 .
Simpson’s rule provides a very useful and accurate formula for approximate nu-
merical integration. The alternation of coefficients with different magnitudes may

1.6 Simpson’s formula 13

appear strange at first sight, but there is nothing magical about it. Indeed, it is
possible to derive an equally accurate formula where one is not restricted to an even
number of subintervals and all the interior coefficients are equal to 1, but with more
elaborate end point corrections. The derivation of this result is left as an exercise.
As we have seen, the premises for all such formulas are found in a careful treatment
of the expansion of the function in the neighborhood of the integration points. Once
these are well understood, the workings of all integration formulas become clear.

. ».. the possible treatments of end—point
singularities (integrable singularities, of course) for finite values of the variable of inte-
gration. There could be an integrable singularity, such as 1/,/z for z = 0, making the
integrand infinite at one of the points used in the numerical integration formulas: this
of course renders their straightforward application impossible. But even if the nature of
the singularity, for instance an integrand behaving like /T for z = 0, were not such as .
to lead to infinities in the integration formulas, one should still use caution. Indeed, the
derivation of the formulas and the estimate of the error are all based on the assumption
that a sufficient number of derivatives of the integrand exist and are bounded. If this
condition is not fulfilied, as in the case of \/z, the error can be much worst than one would
estimate for a normal integrand. Then again one shguld remedy to the situation either by
changing variable of integration so as to produce a non-singular integrand (setting z = y?,
for instance, gives dz/\/T = 2dy and \/zdz = 2y dy, both regular at y = 0), or by sep-
arating the integral into two parts, one without any singularity, which will be dealt with
numerically, and one containing the singularity, which will be treated analytically after the
integrand has been simplified by some suitable expansion.

It is actually of some interest to see how a formula like Simpson’s formula fails to
give an accurate result in presence of a singularity. To look at this, let us consider the
integral from 0 to 1 of the very simple expression /z. Let us divide the interval into 2N
subintervals of width § = 1/2N and consider the approximation provided by Simpson’s
formula for the interval between z = 2né and = = (2n + 2)6. This is '

6 a
Alppros = § [V 2né + 4\/(2!’1 + 1) 6+ \/(2?‘! +2) 5]
1.7.1)
3 (
= %— [V2n+4\/2n+1+\/2n+2]
This is to be contrasted with the exact expression
Alegaet = %53 [(2n +2)% - (2n)%] . (1.7.2)

Expanding for large n we see that in the difference, Alsppros — Alezact, many terms
cancel, leaving
bk V2 [7 89 (1
- s |t T2 t O\ (17.3)
The cancellations are of course to be expected, since 1/n is of order § and thus the
right-hand side of Eq. (1.7.3) confirms that the error within the subinterval is of order &5.
Let us assume that we integrate /z not from 0 to 1 but from some cutoff value z. to

1. This means that we are adding the contributions from 2n, = z./6 to 2N and the errors
in Eq. (1.7.3) add up to a global error

2 1 6
Iappro:: - Ic:act = _ﬁ%agnc_g + O (ﬂc_g) = —mé‘xc_g (1 + o (E)) (17.4)

= a4 - A A A -

1.7 End-point considerations 17

We see therefore that, so long as we integrate from a finite value of z on up, Simpson’s
formula produces a result accurate to order 6%, as expected. But if we let the lower limit
z. approach small values of the order of ¢ itself (in particular if we try to use the formula
for the whole range 0 to 1), the approximation deteriorates and the error becomes of order

7. And the situation would be even worse with an integrable singularity, like 1/4/z, in
which case the error would be of order §%.

These arguments allow us also to compare the accuracies of the two procedures de-
scribed above, namely of changing the variable of integration versus using Simpson’s for-
mula only from some z. on, approximating the integrand by an expression that can be
handled analytically for £ < z.. We have to think, of course, that while the integrand
behaves like \/z for = = 0, its form is given by a more complex expression, that we can ex-
pand as \/Z(ag+a1z+---) up to an error of order \/z z™. Integrating up to z., the terms

we neglected in the expansion of the integrand will produce an error of order gim+3/2),

Combining this with the result obtained in Eq. (1.7.4) we see that the total error will be
of order . :

ez 4 gl (1.7.5)
where ¢ and ¢’ are some constants.

This is minimized by z. =~ § i with a resulting error of order 6%-1-42.

If we change the variable of integration so as to eliminate the end point singularity, we
expect an error of order 6%, so we would conclude that changing variable of integration is
more accurate that partitioning off the singularity and approximating the integrand in its
neighborhood. Of course, one must also be guided by common sense in the implementation
of numerical techniques, and for many applications the accuracy obtained with either
method and a sufficiently small § may be accurate enough. The important thing is to
develop a sound understanding of how the numerical methods work so as to be able to adapt
them to exceptional situations with critical sense, rather than using the various formulas
as black boxes, which most of the times will work, but on occasions, and unbeknownst to
the unsuspecting user, can produce catastrophic results.

Again, as we mentioned at the end of section 4, it is a useful and amusing exercise
to verify running a numerical experiment that the actual behavior of the error follow
the analytical expectations. We encourage you to calculate a simple integral that can be
evaluated exactly and has an end point singularity by the two methods described above.
You should use an expansion in the neighborhood of the singularity which produces an error
of the same sign as the one introduced by Simpson’s formula in the rest of the integration
range and determine by a trial method the value of z. that minimizes the error (the two
errors must be of the same sign, of course, otherwise there will always be a value of z.
that will produce an artificially accurate result). You can then verify that the optimal
cutoff value and the resulting error scale with delta as expected. The diskette of programs
includes a code that “experiments” with the integrand \/z + z2).

32 1. Basic Computational Tools

1.10. Other elementary numerical methods

In this last section of an already too long chapter we shall discuss three further
topics of basic use in computational physics. We start by exploring classical methods
for finding zeroes of a function of one variable. This topic is also applicable to the
problem of finding extrema of such functions by locating the zeroes of their derivatives.

The simplest method, is based on a search-and-partition algorithm. Imagine we
are interested in finding zeroes of a function, f(z) in a finite interval [zg,z,]. We
subdivide this interval into n subintervals, and determine a subinterval, say [z;, zi+1],
where f(z) changes sign, that is, where

f(=zi) fziy1) £0. (1.10.1)

If z,, lies in the center of this subinterval, at least one of the following will hold:
f=) f(xm) < 01

or
Sfzm) f(zis1) 0.

In general only one of these conditions will be satisfied, but both could be true if F
vanishes at one of the end points of the subinterval and changes sign in the subinterval
defined by = and the other end point, or if f just happens to vanish at z,,. Of
course, one could test to see whether f vanishes at one of the end points, or whether
f(zi) f(miy1) < O separately, but this is really not necessary, since the algorithm
always produces at least one zero of f. Depending on which of the conditions above
holds, we then refine the corresponding subinterval, and repeat the procedure.

Since the width of the subinterval where f changes sign decreases by a factor
of 2™ In m iterations, with a sufficiently large m we can locate an arbitrarily small
subinterval where f changes sign and, therefore, if f is continuous, a zero of f with es-
sentially arbitrary precision ~within the limits of numerical accuracy of the computer,
of course.

Although this simple algorithm is very robust, its rate of convergence is imprac-
tical. However, once a sufficiently small neighborhood of a zero of f has been found
and if f is continuous with continuous derivatives, as is usual in most applications,
there are far more efficient algorithms to find the root. We will discuss two of the
most popular of these algorithms.

The Newton-Raphson method uses information contained both in f(z), as well

« asin its first derivative, f'(z) by approximating f(z) near z, as by

fz) = f(za) +(z —za) f' (zn) . (1.10.2)

The first derivative may be known analitically, or may be computed numerically.
The iterative approach to the root is generated by taking as iterates of z the successive
approximations to f(zs+1) = 0 from Eq. (1.10.2), that is,

ALY (1.10.3)

xﬂ+1 = xﬂ f' (I) -
n

1.10

Other elementary numerical methods 33

If f is sufficiently linear near the root, this method converges very rapidly, but it is
easy to run into trouble with this method if the starting point is not in the basin
of attraction of the root. If the initial point is good, though, the convergence ott t.he
method is extremely fast. To see this, consider a case where the root is at the origin,
and expand

f(z) =ax+§x2+(9(.r3)

for small z. Applying the Newton-Raphson algorithm, Eq. (1.10.2), we find,

_ B

which is well approximated by
Bzl
Tatl = 2a

for sufficiently small z,. This recursion is easily solved by defining yn = 8zn/(2),

giving, Yntl = y;zar that iS,
2a { Bzg z
xn = — r—
8 \ 2a
which is fast indeed!

An alternative to the Newton—Raphson method, of comparable popula.r.ity, is the
so—called Secant method. The method uses previous values of the function at an
iterate, f(zn—1) to interpolate f(z) near the root,

flz)= =22 f(za1) + t-‘1’-'-%,%;:“) . (1.10.4)

‘rﬂ—l - xﬂ zn - .'L'n_
The next iterate, .4, Is found by talking f(z) = 0 in Eq. (1.10.4), which leads to,

Ip — In-1

SR ey TP R

(1.10.5)

Another problem which often comes up is determining where a given z falls reala-
tive to a discretization of the interval [xo, z,), 2o, Z1,...,Zn. We actually had to solve
this problem when we constructed the the histogram defining the density of states.

If the z; are uniformly spaced, the solution is trivially found. Let z;m = 2o + mé.
Defining y = (z — z0)/8, the original sequence, zp,z1,...,Ts goes over into yy =
O,n =1,...,yn = n, and

k = int(y) = int (I ;IO) (1.10.6)

labels the interval, [z;, z;+] where z falls.

34

1. Basic Computational Tools

It is very easy to generalize the method to the case where the z; are not uniformly
spaced, but are spaced according to some simple functional relation. As an example,
consider the z; spaced in geometric progression,

Lo Iy =rrp ... Ip=r"zg (r>0),

then the variables yq, . .. ,Yn defined by y; = In z; are uniform!ly spaced, and we can
proceed as in the simplest case.

For an arbitrary discretization of the search interval, finding the subinterval where
a given r falls requires multiple comparisons. If n is not small, though, the intervals
should not be scanned sequentially, which would require O(n) tests, but rather by a
sequence of bisections, which only require O(ln; n) comparisons.

To see this, look at the following algorithm. Assuming that we have tested that
z lies in the interval [z, ,], proceed as follows

m = int(n/2)
x > x(m) ?

yes: consider the sequence X,; Xp41 ... Xp
no: consider the sequence Xy x| ... X

and repeat this procedure until the whole sequence collapses to a single interval.
Here’s a simple Fortran implementation of the above algorithm: Assume we’ve
dimensioned the array of end points, x(0:n),

ml 0

m2 n

DO WHILE (m2 .GT. mil+1l)
m = (ml+m2)/2
IF(z .GT. x(m)). THEN

mi =nm !
ELSE
m2 = m
ENDIF
END DO

As a variant of the above algorithm, if several intervals corresponding to a se-
quence of variables, (1) < z(9) < 203 < | must be located, after (1) has been
placed between z; and zi4;, we may test whether () < z,., first, then test for
(2} < Tir2,) < Titd, z(2) < Ti+s, and so on, in progressively larger steps until
some bounding z;47m is found. The last interval encountered before the bound is
then searched using the simple search algorithm illustrated above. This variant, as
opposed to considering the entire interval again for (3, will be more efficient if there
is a reasonable expectation that the sequence of z(*) is not too sparse

The last topic we will examine in this chapter is one we’ve also encountered briefly
in our calculation of the density of states, namely, the problem of finding the unique

1.10 Other elementary numerical methods 35

polynomial, P,_1(z), of degree n—1 which takes the values, f(z,}, f(z2),..., f(za) at
the points z1,z3,...,2z,. The classic formula for this polynomial is due to Lagrange,
and bears his name. It is given by,

oy (E=m)(e=ms) o (r —2)

(1 — z2) (27 — 23) -+ (2] — Zn) flz1)
(z—z1)(z —23) (2 — zn)
(zz — 1) (z2 — 23) - (22 — Za) fz2) (1.10.7)

..+
(z—z1)(z—22)- - (z — Tn_1)
(zn — 1) (Tn — 23) - - (Ta — Tn-1)

f(za)

This expression, requiring O(n?) operations can be used to calculate P(z) given z.
A more elegant, and slightly more economical algorithm accomplishes the same task
by iteration. .

Imagine that two polynomials, Q(z), and R(z), of degree n — 2 interpo-
late f(z) through the points, zj,...,z,—1 with @(z)}, and through the points
22,...,2n with P(z). Then

_ (z—~z4) - (z —z)) .
P(s) = ok Qla) + o2 R(2) (1.108)

The proof of this statement is trivial. To see this, evaluate P(z) at z; and z,; there
it coincides with the corresponding values taken by @ and R respectively, but, by
assumption,) and R interpolate f at these points. At the rest of the z;,

(zi — Tn) Vo lzimm) oo
P(z) = _(Il —rn)Q(I‘)+—(I,. — xl)R(i)
(zi — zn) (zi — x1) (1.10.9)
pl P FAC) R e 2 @)
= f (i),

where the second equality follows from the fact that @ and R both interpolate f(z).
Since P is of order n — 1, it coincides with the (unique) interpolating polynomial.

This gives origin to the following iterative procedure.

(i) Build a table of 0~degree polynomials taking the correct values at z; ... T, that
is, f(z1) ... f(za)

(i1) Call these constant polynomials P() P,

(111) From neighboring pairs of these po]ynom:als construct n—1 polynomials of degree
1 interpolating f at the pairs of neighboring points. That is, construct

p = (2=2) poy (E=2) po (1.10.10)

h (zy — xy) 1 (x, — Iy)

for every pair {¢,7} up to P,(:_)l_,,

36

1. Basic Computationel Tools

The procedure is continued by combining pairs of the n — 1 polynomials of degree
1 into n — 2 polynomials of degree 2, Pl('zr_,)g Pz(:?A P,.(l2_)g.n,¥1'n by linear interpolation.
The recursion obviously ends after n — 1 steps, where the resulting polynomial,

Py coincides with P(z).

The number of operations involved in this construction is still O(n?), but is smaller
than that required for the naive evaluation. Furthermore, as an added advantage,
one can keep track of the corrections between the interpolations of lower and higher

degree.
The recursive procedure also allows one to calculate efficiently the coefficients of

the interpolating polynomial, in case one wants these quantities instead (or as well as)
the actual value P(z). Having these coefficients, the calculation of P(z) for a different
value of z requires only O(n) operations, as we will see shortly. A word of caution
which we will repeat often (not more often than necessary, though) is in order here:
Consider the problem of interpolating a set of 20 numbers whose values are of order
one for z taking values between 1 and 20. The interpolating polynomial will either
require cancellations between very large numbers, or have very small coefficients, or
both. In all such cases one has to be very careful and not trust results blindly, since
they are likely to be fraught with round—off errors.
Our final comment here concerns the efficient evaluation of a polynomial,

co+ c1z + c22% + -+ + cpz®.

The straightforward code

P = C(0)

DO I=1,n
P =P + C(I)*x**]

END DO

is very inefficient, involving O(n?) operations . The correct way of evaluating a
polynormial is by recursion,

P =C(m

DO I=1,n
P = Pxx + C(I-1)
END DO

which requires only O(n) operations.

