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Chapt. 3: Multidimensional Gaussian
Wavepackets and Quantum
Theory of Inelastic Scattering

1 Multidimensional Gaussian Wavepacket Dynamics

The (thawed) Gaussian Wavepacket Dynamics (GWD) algorithm can be extended to treat
wavepacket dynamics in any number of Cartesian dimensions. As in the 1-d case, the algo-
rithm is exact for potentials which are at most quadratic in the coordinates, and approximate
for anharmonic potentials. The quality of the solution degrades with time for the latter class
of problems. Fortunately, many experimentally interesting properties reflect only short-time
dynamics. Processes in this class include cross sections for simple scattering and photodis-
sociation events, electronic absorption spectra, resonance Raman spectra, and others.

The steps are basically the same as in 1-d, except that vectors and matrices appear in
the multidimensional analog. Starting from an initially Gaussian wavepacket, the packet is
assumed to remain Gaussian for all times. A general N-dimensional Gaussian wavepacket

may be written in the form:
YL, t) = (-3;_z[(f_ff)'At‘(f"ft)+ﬁ:-(f—ft)+7t] 1)

Here, for an N-dimensional Hamiltonian, the vectors are obviously N-dimensional, and Ag
is an N x N symmetric matrix of complex valued parameters. These parameters, as well as
those in the real-valued vectors Ty, f:, and the complex valued scalar 7, evolve in time. To
obtain equations of motion for them, the potential energy is expanded through second order
in all coordinates around the instantaneous center of the wavepacket Ty, 1.e.

V@) = Vo+ V- (F- 8)+ (@ —F) Vo (F-1), (2)
Vo,Vi and V5 being the standard coefficients in a Taylor series expansion of V(Z, t) about z;.

Substitution of the r.h.s. of Eq. (2) and the Gaussian wavepacket in Eq. (1) leads directly
to the multidimensional equations of motion for thawed Gaussian wavepacket dynamics [1]:

.'i:t = m_l ' ﬁt (3)
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where m is an N x N diagonal matrix containing the masses associated with each cartesian
coordinate. These equations of motion have the same general structure as in the 1-d case.
Namely, 7,, p; obey Hamilton’s (Newton’s) equations, while auxiliary 1st order differential
equations prescribe the update of the spread matrix Ay and phase/norm parameter ;.

2 Quantum Scattering Theory with Internal Degrees of Freedom:
Inelastic Collisions

Consider the collinear oscillator-projectile problem introduced in Chapt. 1. For concreteness,
we shall take the oscillator to be of harmonic type. [The case of an anharmonic oscillator is

considered in Chapt. 4.] The relevant quantum Hamiltonian (known as the Secrest-Johnson
Hamiltonian) reads:

3 -1
H=-
2m,
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[A = 1 in this section.] We ask the fundamental question: Given m, incident with well
defined momentum k; (hence kinetic energy & = k?/2mn,), and m, in an eigenstate ¢; of
the uncoupled harmonic oscillator Hamiltonian (i.c., Eq. (7) with the y-kinetic energy and
the interaction potential removed)} corresponding to vibrational energy eigenvalue ¢;, what
is the probability that m, exits with kinetic energy &y = & + (€; — €f), leaving the oscillator
in ¢; corresponding to vibrational energy €7

Essentially, the desired transition probabilities are squares of coefficlents (“S-matrix ampli-
tudes”) in the eigenfunctions of the full two-dimensional scattering Hamiltonian (7). The
underlying theory is somewhat complicated, partly because the eigenstates corresponding
to a given total energy are degenerate, aud one must decide what linear combination of
eigenstates is appropriate (“scattering boundary conditions”). This “S-matrix theory” can
be translated into wavepacket propagation language, and the result is mathematically sim-
ple, conceptually natural, and computationally useful. Denoting the probability to make the
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transition described in the previous paragraph as |Sy(E)[?, where E is the total (conserved!)
energy in the system:

51+Ei:E=5I+EI,

then:
IS (E)l? . kt(E) choo d:ﬂ. fooo dy qbf(‘t)e_ikf(E)yw(m) Y, T) ? (8)
P T (B) %5, da [ dy di(@)e™ (e, y, =T)
Here T is a {long) time interval. The wavepacket begins at ¢t = —T as a factorized packet of
the form:

where Gy, (y) is a wavepacket moving towards the target. In principle the details of G, (y) are
rather arbitrary. In practice G is taken to be a Gaussian for simplicity. A more substantive
restriction is to choose the average momentum in the superposition of plane waves which
comprise the incident Gaussian to be in the range of energies at which the S-matrix is desired.
Again, in principle a single wavepacket can be used to extract the i’th column of the S-matrix
at all energies, but in practice accurate results will be obtained only in the energy region
where the incident projectile wavepacket is well represented.

There are two other practical details worth mentioning here. First, there is a useful property
of the exact solution, namely “unitarity”, which should be monitored in computational work.
The unitarity condition is simply ¥, |5 (£)[* = 1, where the sum is over all open channels
at energy E (an “open” channel being a final vibrational state which is accessible at that
energy).

A second practical detail is that it is best to choose the incident translational wavepacket
Gin(y) in such a way that the packet narrows or “focusses” as it enters the collision region.
It is always desirable to have narrow wavepackets in the interaction region. Even for exact
grid codes, this keeps the packet well contained in the center of the grid and the collision
event crisply defined.

Note that a single wavepacket contains a lot of S-matrix information. The entire i’th column
of the S-matrix can be extracted over a range of energies (depending on the construction of
Gin (y)

A 2-d grid integrator of the type introduced in Chapt. 2 above can be used to extract exact
S-matrix elements for the Secrest-Johnson potential. These results can be compared to those

E : E- 3



obtained via Gaussian Wavepacket Dynamics, as shown in Fig. 1. The comparison is quite
favorable, even at relatively low collision energies where the applicability of the assumptions
of GWD is more suspect.
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Figure 1: Probabilities for O — f transition at encrgies £ = 8,10 are shown for the Secrest-Johnson
Hamiltonian with parameters h = m; = 1om, = 2/3, k=1, 4 = 10, a = 0.3. At each energy exact results
[1, 2] are compared to results extracted from a GWD trajectory. The agreement is very good.
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Chapt. 4: The Time-Dependent Hartree

Approximation and Configuration Interaction

1 The Time-Dependent Hartree Approximation

A useful approximate technique for propagating wavepackets is the Time-Dependent Hartree
(TDH) method. In this scheme the wavepacket is approximated as a factorized packet, one
for each degree of freedom. For concreteness, let us consider a system with two degrees of
freedom z and y. The Hamiltonian is taken to be of the form:

H=hg+hy + Viulz,y) (1)

with A, a “single-particle” Hamiltonian that depends on variable z. Typically it has the
structure by = T: + v.(x), where T, is the appropriate 1-d kinetic energy operator and
v:(z) is a “single-particle” potential function that depends only on position x. ﬁy is defined
analogously. Vi is the interaction potential that couples the motion of the two degrees of
freedom. In the TDH approximation the system wavepacket ¥(z,y,t) is replaced by:

G,y t) = SO, (0, )by (y, 1) (2)

Here S(t) is a real phase factor given by

S(t) = [ do [ dyloale, Py, )P Vindl, )

which has been extracted to simplify the equations of motion for ¢, presented in the next
paragraph. [In this chapter A = 1 and all spatial integrals run from —oco to +oo unless
otherwise noted.]

The TDH equations of motion are derived by appealing the Dirac-Frenkel-McLachlan vari-
ational principle [1]. One finds that the packet ¢ {x,t) obeys a 1-d TDSE with an effective
time dependent potential that reflects its coupling to the y-coordinate. Specifically:

106, (z.1)/0t = VE‘“ n [ Ay, (v, )V 2, 1) | e, t) (3)

and analogously for ¢,(y,t). The interpretation of the effective driving potential on each
coordinate is simple and physically appealing. For example, the x-coordinate “feels” a poten-
tial which is the average of the full interaction potential over the instantaneous probability
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distribution of the y-particle. This is the “best” way that one can attempt to describe the
dynamics using a single-particle factorization ansatz. It is often termed a “mean field” or

“self-consistent field” approximation.

There are many nice features of TDH quantum dvnainics. It represents a tremendous re-
duction of computational effort as the dimensionality of the system grows in comparison to
an exact solution using grid methods. The scaling of effort (both c¢pu and storage) grows
essentially linearly with spatial dimension in the TDH case, while it grows exponentially for
exact grid-propagation algorithms. Since the full wavepacket factors into 1-d pieces in the
TDH approximation, integrals needed to “project out” measurable quantitities (transition
probabilities, scattering and spectroscopic cross sections. ete.) are immediately tractable for
large-dimensional systems. The approximation conserves both norm and, for time indepen-
dent systems, average energy (H); maintaining these properties is beneficial to both stability
and accuracy. Physically, the procedure is particularly appealing in an event like a collision,
where Vi, -+ 0 at long times, so the TDH solution hecowmes asymptotically stable (does not
degrade after the collision is over). In general, if the interaction between degrees of freedom
is confined to a short time period, the use of TDH is naturally suggested.

In the wake of this enthusiasm, we should not lose sight of the fact that TDH is an ap-
proximation. From the discussion above we can summarize the approximation as “neglect,
of direct correlation” (direct correlation is essentially the degree to which the full system
wavefunction cannot be factorized a la TDH). Nevertheless, TDH has been widely successful
for studying short-time (subpicosecond) dynamics in many-dimensional quantum systems.

To give a simple example which illustrates the utility of TDH, consider again the collinear
scattering model of Chapt. 3, but with a Morse rather than a harmonic oscillator. This
gives problems for GWD, not so much due to difficulties treating the collision itself, but due
to breakdown of GWD in aun isolated Morse potential. The approximation must be able to
account for this motion for some time (typically several vibrational periods) before and after
the collsion. As we saw in Chapter 1. GWD cannot always do this successfully (depending
on anharmonicity of the Morse well. initial conditions, degree of excitation imparted by
collision, etc.). The TDH approximation, however, is exact before and after the collision, so
its only inaccuracies are those accumulated during the collision event. We might expect it to
be successful in extracting S-matrix clements for this problem. Indeed, a numerical example
illustrating the utility of TDH dynamics for the collinear atom-Morse collision system is
shown in Fig. 1. The Hamiltonian is the same as the Secrest-Johnson Hamiltonian except

that the harmonic oscillator potential is replaced hy the Morse potential D(1 — e=9%)2.
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Figure 1: Probabilities for 0 — f transition in a Morse oscillator after collision with an atom at total
energies E = 14, 18,22 are shown in panels (a). (b), (¢), respectively. System parameters are i = m; = 1,
D=20,a=0158 m, = 2/3, a = 0.3, Vo = 1 (see Ref. 2] for full details). TDH results are marked with
squares, exact numerical results via circles. Results for the equivalent harmonic oscillator system (based on
the curvature at the bottom of the Morse well) are shown via triangles.

2 Beyond TDH: Configuration Interaction

It is natural to consider the possibility that TDH can be used as a zeroth order approximation
whose inadequacies can be corrected with additional effort. Configuration Interaction Is one
such strategy. It has a well-known analog in the quantum theory of molecular electronic
structure, where the Hartree-Fock approximation plays the role that TDH plays in the

quantum dynamics of atomic/molecular nuclei.

The first step is to “build” an orthogonal basis of wavefunctions upon the chosen initial
state. In our applications to 2-d scattering problems, we have considered states of the form
$:(2)Gin(y), where G, is a (moving) Gaussian wavepacket and ¢;(z) a vibrational eigenstate



of an appropriate 1-d potential well. So, the initial single-particle basis functions in the x
coordinate are simply the eigenfunctions of the isolated oscillator Hamiltonian. Let us denote

the j’th member of this set as ¥/,

For the y-coordinate, we can easily construct excited states that are orthogonal to the Gaus-
sian packet G. Note that |Gy, —T)[? = NZexp[—2lma_r(y — y_1)?], where Ny is a nor-
malization constant so that this function has unit area. Thus. the set of Hermite-Gaussian
functions

. ] ¥
vy ) = T e2Ima ot (y —y-r)lGly, =T) )

where Hy is the k'th Hermite polynomial, provides such a complete, orthonormal set.

One’s first impulse might be to propagate each of the initial basis functions ¥ (z,y) =
w;j)(m)wgk)(y) in time under the TDH approximation, then form a travelling basis set

lp(lla Y, t) — Z (I,Jk(t)ﬂ)_,.k(l/, Uv t) s
ik

where the a;;(t) are superposition functions that are determined by substituting the (in
principle, complete) expansion for W(x, ,#) into the full 2-d Schrodinger equation. In-
deed, one then finds a set of 1st order linearly coupled evolution equations for the @(t) =

(ago(t), a10(t), ap1(1)...) which has the form:

iS(Hd(t) = H(t)at) (5)

Here, if there are NV total basis functions, then S{t) and H(t} are N x N matrices. H refiects
the difference between effective TDH and exact Hamiltonian operators {(sandwhiched between
TDH basis functions; cf. below). S is a time-dependent matrix of overlaps between TDH
hasis functions. A problem with this strategy is that the overlap matrix is time-dependent,
and, worse, columns can become lnearly dependent on each other, which renders inversion
of 8 unstable. The origin of the lincar dependency problem is the independent propagation
of each TDH basis function. These functions do not remain orthogonal, as is clear from the

preceding remarks.

One solution is to propagate «ll members of the initial basis set using the same effective
seperable potential. The latter is chosen by propagating one initial product basis function in
i

the set under TDH, then using this time-dependent separable potential Viyp(x, y, 1) to guide

all the members of the 2-d basis. This ensures that all members remain orthonormal for all
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times. The evolution equations for the Configuration Interaction (CI) coefficients then take
the simple form:

id(t) = H(t)a(t) (6}

with

H o (8) =< e (8) |V (2, y) = Vegplay, ) (t) >, (7)

V{z,y) being the full 2-d potential (sum of all single particle potential plus interaction
potential terms). This set of equations is simple and stable to integrate. In the large NV
limit, it generates an exact solution of the TDSE for the full 2-d problem.

This CI scheme has been used successfully in a number of applications to molecular scattering
and spectroscopy. Note that if the interaction potential is only nonzero during a finite time
interval, the basis coefficients @(t) will achieve stable steady state values after the interaction
between degrees of freedom is over.

Fig. 2 presents results from an application to 2-d atom-Morse oscillator inelastic scattering
which illustrates the principles outlined above.
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Figure 2: Probabilities for i — f transition in a Morse oscillator after collision with an atom at total cuergy
E = 22 are shown for ¢ = 0,1,2 in panels (a), (b), (¢}, respectively. System parameters are b = m; = 1,
D =20,a=0158m, =2/3, 0 =03, ¥y = 1 (see Ref. [3] for full details). TDH results are marked with
circles. TDCI results are shown for two basis sets using squares (M=3) and triangles (M=8), the value of M

indicating the basis size (M = number of basis functions in cach degree of freedom; again, sce Ref. {3} for
full details).
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Chapt. 5: Curve Crossing

1 Curve-Crossing in Quantum Dynamics

A wide variety of quantum dynamical phenomena in molecules involve motion on nonadia-
batically coupled potential surfaces. The coupling occurs by several mechanisms including
spin-orbit coupling (which leads to “intersystem crossing”) and break-down of the Born-
Oppenheimer approximation (which leads to “internal conversion”). In such situations,
there are nuclear wavepackets associated with several potential surfaces, and a packet start-
ing on one surface, corresponding to preparation in a particular nuclear configuration and
a particular electronic state (e.g., singlet vs triplet in the case of intersystem crossing), can
leak partially or totally onto another potential surface.

A prototypical representative Hamiltonian for such problems is

H=|1><1|h+[2>< 2lhy + §(]1 >< 2|+ 2 >< 1)) (1)

Here |1,2 > are (structureless} electronic states, h1 are nuclear coordinate Hamiltonians
corresponding to single potential energy surfaces and ¢ is the nonradiative or “nonadiabatic”
coupling operator. The nuclear coordinate Hamiltonians have the form fzj =T+ Vj, where
T is the kinetic energy operator and l;’j the potential surface corresponding to electronic
state 5 = 1,2 (which is a known function of the nuclear coordinate configuration). The
dimensionality of the nuclear coordinate space and the choice of coordinate system (cartesian,
curvilinear...) are arbitrary. The nuclear coordinate operator g is taken to be an arbitrary
function of nuclear coordinates. The corresponding wavepacket states associated with the
Hamiltonian in Eq. (1) are

1D(t) >= i (z, )1 > +¢o(z, )]2 > (2)

Here ¢ 5{r,t) are the nuclear coordinate wavepackets associated with electronic states 1, 2.
We note that they depend on nuclear coordinate configuration (which will be multidimen-
sional in general) and time. The time-dependent Schrédinger Equation which governs the
dynamics of two coupled wavepackets is (with i = 1)

@%iwm >= H|U(t) > (3)



For clarity, it is worthwhile to express the content of Eqs. (1)-(3)} in an explicit matrix/vector

S Ao ] g ] e
[%ﬁz(-’f-,t)} [g(:f:) Ry }{qﬁz(m,t)} (4)

The elements of the Hamiltonian matrix on the r.hes. of Eq. {4) are all operators on nuclear

form:

coordinates.

2 Grid Algorithms for Wavepacket Propagation on Two or More

Surfaces

Exact grid propagation methods can easily be adapted to treat curve-crossing problems that
involve two or more potential surface. Effort scales linearly with the number of coupled

surfaces for a fixed spatial dimensionality.

We shall describe the modifications needed to adapt the the SOD method to treat the two-
surface case. (The generalization to 3 or more surfaces should then be readily apparent. The

Split-Operator method can also be adapted in a straightforward way.)

The SOD analysis proceeds as in the single surface case {(subtract (W{t—¢) > from |¥(t+€) >).
Specializing to the case of one spatial dimension for simplicity of presentation, we find the
following update equation for ¢,{(x, t):

i 612yt +€) = (s, b — )] = hudi(,,t) + g(x;)dalz, 1) (5)
where the operation 7o, (2, t) = (T + I"})r,bl(;rj,t) ts carried out exactly as in the single
surface case treated in Chapt. 2. An analogous update equation holds for ¢. It is clear
from Eq. 5 and the corresponding equation for updating ¢, that in general (unless g(x) =
0) amplitude on surface 1 will be transferred to surface 2 and vice-versa. Experimental
measurements on both collision induced and spectroscopic properties are sensitive to the

details of this dynamics in molecular systems that feature nonadiabatic coupling.

To give a simple illustration, we show results of calculations of dissociation cross sections in
a one degree of freedom model of molecular photodissociation. For conereteness, imagine a
diatomic molecule which has two nonadiabiaticaily coupled, and repulsive, excited states, as
depicted in Fig. 1. Photoexcitation from a lower-lying ground electronic state then results

in dissociation into atomic fragments. Neglecting rotation, the internuclear coordinate is z.
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Figure 1: Potential energy functions and initial probability density (associated with preparation on a lower-
lying ground state potential) for direct diatomic dissociation on nonadiabatically coupled excited state
potential surfaces. z is the relative coordinate in the diatomic system. The nonadiabatic coupling function

is not shown. See Ref. [1] for further details.

Photodissociation is a “half-collision” analog of a molecular scattering process. Instead of
starting asymptotically far from the target, moving in for the collision, then moving away
from it, in photodissociation the wolecule is instantaneously placed in the “collision” or
interaction region by photoexcitation. It then proceeds to fall apart (analogous to the second
half of a collision event). Although we shall not derive these results, it is reasonable that the
following procedure should be used to calculate photodissociation cross sections. Namely,
propagate the initially excited wavepacket out of the interaction region into the asymptotic
region (corresponding to fragmentation). Then, by appropriate projection onto asymptotic
eigenstates (analogous to the numerator in Eq. (8) of Chapt. 3) partial fragment cross
sections can be calculated. The wavevector of the plane waves utilized for the asymptotic
projection in the photodissociation coordinate is related to the incident frequency of the
photexcitation laser in a straightforward way (essentially, “cnergy conservation”; see Ref.

] L i |!;3 - :lg - i



[1] for details).

In the case of two coupled potential surfaces, asvmptotic projections are done on both
surfaces to determine the probability that products emerge on either surface at a given
photoexcitation frequency. For a 1-d photodissocation process such as featured here, there
are no internal coordinates like the » vibrational coordinate studied at length above and
hence no further partitioning of fragments by final internal states. A typical result for
photodissociation cross sections for the diatom photodissocation model considered here is
shown in Fig. 2. Exact results for this problem were obtained by a 1-d wave packet grid

integration algorithm.
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Figure 2: Cross section for photodissociation onto potential surface 1,2 vs laser excitation energy are shown
in left, right panels, respectively, for the molecular system schematized in Fig. 1. Dashed line was obtained

using (exact) wavepacket grid integrator, solid line by an approximate Gaussian Wave Packet /Path Integral
method. See Ref. [1] for full details,
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