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" Atomic Calculations and Pseudopotentials ”
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Background
The electronic states can be separated into:

o Core: highly localized; not affected by the chemical environment.
» Valence: extended; responsible for the chemical binding.
o Semicore: localized; slightly affected by the valence electrons;

contribute to the chemical binding.

Example: ZnS compound

Atomic energy levels (Ry)

state Zn S
1s -690.078 -175.595
2s -83.194 -15.414 1 cowe
2p -73.429 | Core -11.517.
3s -9.282 12697 Lalenc
3p -6.181 -0.529-
3d " -0____9_32]- Semicove
Sa\, .
Gm‘?fl 4s 0.532% yatenc

.86 ,-
TO eal. 4p -0.158

Frozen core approximation: the core states are not allowed
to relax - a common approximation in the pseudopotential and
all-electrons approaches. = VYevy qeest APProximatrion

AfF ~ o) €V .
The semicore electrons may be treated as valence states or
as part of the frozen core: depending on the required accuracy
and their degree of localization.
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Nature of the valence wavefunctions (y,): Show an oscillatory
behavior inside the core region, due to their orthogonalization

to the core states.

< ‘ ‘Sigewfd.dat’ —
-\ ‘Siaewfp.dat’ -
'Siaewfs.dat’

vy is very difficult to expand in terms of plane-wave (PW)
basis: huge numbers of PWs are required.

The actual shape of y, inside the core region has negligible
effects on the chemical binding between atoms, which is

govem by the overlapping tails of y..



Pseudopotential Theory (Hellman, 1935).

Within the pseudopotential theory the core electrons are
removed from the calculations and the orthogonalization of the
of the valence states to the core ones is replaced by a
“repulsive potential’.

The pseudopotential (which is usually +dependent) is the
effective potential seen the valence electrons. In case of the
atom, each of the Fcomponent should give the valence Fstate
as its first eigenstate (/=0 to 2 or 3).

Exampie:
core valence
True Siatom : (1s? 28 2p®) ( 3s* 3p*)
54 1%,
. 24.2°°
Pseudo- Siatom: ~---°"°"° 1s® 2p

The Si s-pseudopotential must give the Si 3s eigenvalue as its lowest
energy eigenvalue, and similarly for the other component.

Advantages of the pseudopotential approach:

e It allows us to do accurate calculations for the valence electrons
and the properties related to them, without the need to worry
about the core electrons.

o The pseudo-wavefunction are smooth (nodeless), and so they can
be expanded in terms a PW basis set.



PW basis set
Advantages

The mathematical formulation is particularly simple.
The basis sets are independent of the ionic positions.

Allow the use of FFT.
Convergence can be easily checked and improved.

Shortcomings:

® Very large numbers of PW are required in the solid state
calculations in case of sharply peaked , (such as the d-and p-
wavefunctions in transition metals and first raw elements,
respectively)

This has been largely solved by:

(1) Pseudopotential optimization..

(2) Using very efficient total energy minimization methods, such
as conjugate gradient method (Teter, Payne and Allan (89);
Qreish (95)).

e The PW basis sets are much less informative than the LCAO basis
sets. However, a projection procedure has been recently
introduced (Sanchez-Portal et al., J. Phys: Condens. Mat. (96)).

’é:, 3359



Formal Justification (Phillips and Kleinman, 1959)

Let y, and . be the true valence and core wavefunctions of a
certain Hamiltonian, H, or

HiIW¥>=¢ I¥>, ,withi=vorc.
Let ¢, be smooth valence wavefunctions (not orthogonalized to
the core states) Then,

=@, - z where o, = <\P J(p)

Now,

Hio,)= H |¥)+HY ¥
or

Hjo,)= & (19.,) Za vy )+ zacec|‘{’
So

[H+ Y € <€ )] 1lo.) = & o).

Therefore, one can find an exact pseudo-Hamiltonian

H®= SARA

for which |e,) is an eigenstate with an eigenvalue &..

Types of pseudopotentials

Model or empirical pseudopotentials: obtained through firting
of some calculated quantities to the corresponding experimental
data.

- non-transferable.

- Don’t produce good electronic change density distributions.
Ab-initio (parameter free) pseudopotentials: constructed from
first-principles atomic calculations -- highly accurate.

AN



Construction of ab-initio pseudopotentials

The LDA based ab-initio pseudopotentials are usually
generated by imposing the following generai conditions
(Hamann, Schliter and Chiang, 1979):

1. @ (r)is nodeless, and it is identical to the true wavefunction
outside a suitably chosen core radius, r..
2. ¢"(r.)="Y¥Y"(r.); n=1 and 2.

s-wavefunction { Kerker)

‘Sipswis.dar’ —
‘Siaewfs.dar ------

C = 158

<

05

rfa.u.}

3. Ef” —G:E.

4. _[6 lro|?dr = Iglr‘Plzdr

[norm-conserving condition].
5. Other conditions to enhance the
smoothness of the pseudpotentials.



Several schemes have been proposed the generate ab-initio
pseudopotentials which satisfy the above conditions. The most
widely used are:

1- Hamann, Schiiter and Chiang (1979)
- Bachelet, Hamann and Schiiiter (1982).

- Vanderbilt (1985).
2- Kerker (1980).

Kerker scheme

—The smooth pseudo-wavefunction inside the core region is
given by -

F(r)=ro(r)= rl+|eou-‘+[3r‘+yr‘+6

=a, B and y can be determined analytically using conditions
(1) to (3); whereas, o is evaluated numerically from the
norm-conserving condition. (For more details see Kerker's
original paper).

= The screened pseudopotentials, V45", are given by
Viin=E+A2+2+ )+ 120 +6pr+2y , Where

A =dor? +3Br+2y
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lonic pseudopotentials

e The components of the ionic pseudopotentials are then
obtained by subtracting the screening potential due the
valence electrons, or

Vion(r) = VAT — W (0¥ (1) = V o (¥ (1))

e The ionic pseudopotential is usually given as

Vior(ry=V,.(N+ 3 ViR,
)

where _
# V.. is a local potential, usually one of V" (r).

# V5 = Vior(r) = Vo (r)  {known as semi-local potentials}

# P, is a projection operator.

# This form takes care of the higher energy states than the
ones considered.
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non-local pseudapotentials

Sivald.dar ——

: Sivedp.dar -
N “Sivnls.dar
i 1 L
I 15 2 25
rfau.)

semi-local Pseudopotentigls

1.5
rfa.u.)

e

‘Siprojd.darr —
‘Siprojp.dat® ----..
"Siprojs.dat’
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Self-consistent atomic calculations

e Using the LDA, the radial Sch. Eq. to solve is (a.u.)

i+

I_V:+Vrrj'+ - 1P, =¢,,F,, (n
where Vo=Vt Vor Vo,
in a logarithmic radial mesh.
¢ Self-consistent procedure:
Trial p
¥
Find Vv,
Y
Solve Eq. (1) using
finite deference Method
Y
Find v_[n™ |
Y
Mix potentials _
v, ™ =ay, ™k (1-0) v, [n"] <
¢ \

Solve Eq. (1) using the
predictor-corrector method

Check convergence

Y
Find v, [n™

3
rd

ygs
Accept the results



Transferability of the NC-PPs.

» The transferability of the generated PP can be checked by
comparing its scattering properties with that of the true ionic

" potential.

e it is well known (see L. I. Schiff, Quantum mechanics, p
121) that the radial-logarithmic derivative of the Fpartial
wave at r, is directly related to the scattering power of v/,.

* Now, it is worth showing that the NC condition ensures that
the scattering properties of the corresponding PP is correct
to first order in (£ - £,), where E, is the reference energy.

e To show this, let
=7 (1)
The Sch. Eg. can be rewritten in terms of x in the form

X () + x(r)? = [V(r) + m“) ~E} 2
Differentiating Eq. (2) w1th respect to E, one gets

ax’(r) dx{r)
_—+2 —_—=]. 3
E % (3)

Let %: f, then Eq. (3) becomes

%f(r) +2x(Nf(ry=—1. (4)
Now, by making use of the relation

g = £ 5) .
f(r)+2x(r)f(r) p() - 4 (P £, (5)
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which valid for any function f(r), multiplying by p(r° and
integrating between 0 and ,,, one arrives at
f(m:a’gg):—p(l)z !p(r)fdr. (6)
e A good test for the transferability of the generated PP is to
compare x for both the pseudo- and true wavefunctions
over the energy range of interest. |

Chou
-10
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Energy (Ry)

e As an altemative test, one can also compare the
eigenvalues of several valence configurations (different
from one from which the PP is generated) calculated using
the generated PP with that obtained by solving the all-
electrons Sch. Eq.



The Separable (Kleinman-Bylander) form

» Kleinman and Bylander [PRL 48, 1425 (82)] have shown
that the semi-local potential can be transformed to a truly

non-local form. In this case, the ionic pseudopotential is
given as

Vo=V, + Y EXYn®,.0 605,01 Y,.0,.0),

where, g* = ! and
(pViVilvip)

Cin=Vi npm. (8)
« To see the advantage of using the KB form, we note that

(e‘q.ri Ylm) V:'(Ym'e‘”{') o J‘Jr (gr) V:l J, (q?)rzdrf), © W) .

(see Ihm, Zunger and Cohen, J. Phys. C 12, 4409 (79)),
Whereas,

(e Xee™) o [idat nridr [ @ (rtdrP®,p,
which depends separately on gand g

e Thus, the KB form reduces the no. of integrals needed to be
performed for each value of /, from N(N+1)/2 to just N. This
particularly important in case of molecular dynamics
simulations where the ionic configuration is frequently
undated.

e The KB form also allows for the use of FFT, which leads
also to a great reduction in the computational efforts needed
in the electronic structure calculations of solids.
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Ghost states

e When using the KB form one has to be very careful about
his choice of Vi, such that E** is never too large.

e If £ is too large, ghost (unphysical) states may develop
below the true valence states, which ruins the solid state
calculations.

-~ Q-

{(seeapi0y) ABJsu]
T \
2
"

A ghost state test
Let g~ and E~' be the two lowest eigenvalues obtained

from the self-consistent atomic potential without the non-local
parts. Gonze, Stumpf and Scheffler [RB 44, 8503 (91)] have

shown that _
1. if £;<0, a ghost state exists below E; if and only if E“°< E.

2. if E,>0, a ghost state exists below E; if and only if g“'< Ei.



Generalized separable PPs.

Vanderbilt [PRB 41, 7892 (90)] and Blochl [PRB 41, 5414 (90)]
have shown that:

e The KB form of the PP can be directly obtained from the
atomic calculations, without the help of ', by noting that
5y =(E-T-V,|p) (9)
e The transferability of the separable PP can be highly
improved by constructing Vv.,./) from two or more
reference energies.

=Concentrating at one value of /, the pseudo-wavefunctions
obtained at- considered reference energies should satisfy
the generalized NC condition Q; = 0, where

0, - wf e ofa - (10)

—>The generalized separable PP can be constructed as
follows

1. Find the matrix B, =(p|{ ), and invert it

2.Define a new set of wavefunctions as
B)-Sac )

3. Then,

V=3 BIBXB)

=One can also easily show that
(T +V.+V"p)=E|p), forallvalues of E, considered.

= For further discussion about the generalized separable PP,

see
1. Morrison, Bylander and Kleinman, PRB 47, 6728 (93).
2. Chou, PRB 45, 9837 (92).
3. Kresse and Hafner, J. Phys.: Condens. Matter 6, 8245

(94).
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Pseudopotential Optimization

 The optimized pseudopotentials are the ones which lead to
valence wavefunctions which converge rapidly in reciprocal
space. This particularly important for transition metals and
first row elements.
e Several schemes has been introduced to generate such
optimized PP:
1. The Rappe, Rabe, Kaxiras and Joannopoulos (RRKJ)
approach [PRB 41, 1227 (90)].
2. The Ultrasoft pseudopotentials of Vanderbilt [PRB 41,
7892 (90)]
3. The Troullier and Martins approach [PRB 43, 1993
(91)].
e The first two approaches [which produce smoother PP's
than the third one] will be discussed in some details below.

The RRKJ approach

e This approach is based on two observations:

1. The convergence in momentum space of the atomic
wavefunctions is transferable to that of the
corresponding solids.

2. For large energy cutoffs, the convergence of the total
energy is similar to that of the kinetic energy
contribution.

e Thus, by improving the convergence properties of the
kinetic energy of the atomic wavefunctions an improved
convergence of total energy of the solids can be achieved.



o« The RRKJ scheme:

1. Expand the already obtained pseudo-wavefunctions in
the core region in terms of spherical Bessel functions

p!(r} = Z()”j‘;(q'r ),y
where nis the no. of Bessel functionsl used.
/7
_pr

2. The values of g; are obtained from J .1 .
Jqrd ptr)

3. Choose a wavevector cutoff, q..
4. Determine the wvalues of ¢, by minimizing

A EOCloq) =~ d'r p0¥ p.n-[* & ag’| p o)
0 0 !

e The Lin, Qteish, Payne and Heine [PRB 47, 4174 (93)]
implementation of the RRKJ scheme:

n=4;q=qa

o Kresse and Hafner [J.Phys.:Condens. Matter 6, 8245 (95)]
have argued that using only three Bessel functions leads
even to smoother PP’s than the ones generated using
LQPH scheme. However, the transferability of these PP’s is
found to be rather bad, but it can be improved by using two
reference energies.
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FIG. 2. Kerker pseudopotential (dashed line), opumized
pseudopotential with # =4 and g, =q, (dash-dotted line), and
optimized pseudopotential with # = 10 and g, =g, (dotted line)
generated for the Zn 3d cigenstate. The core radius is 2.00
bohr.
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FIG. |. Kerker pseudo-wave-function (dashed line), opti-
mized pseudo-wave-function with n =4 and q. = ¢, (dash-dotted
line), and optimized pseudo-wave-function with 2 =10 and
9. =q. {dotted line) in Fourier space for the Zn 3d eigenstat
with a core radius of 2.00 bohr. :
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FIG. 3. All-electron wave function (solid line), Kerker
pseudo-wave-function (dashed line), and optimized pseudo-
wave-function (dash-dotted line} in real space for the Zn 3d
eigenstate. The core radius is 2.00 bohr.

E (Ry)

FIG. 4. The logarithmic derivatives of the ali-electron radial
wave function {solid line}, Kerker {dashed line), and optimized
(dash-dotted line} Kleinman-Bylander pseudo-wave-functions
for 3d eigenstate of Zn with a core radius of 2.00 bohr. The
atomic eigenvalue is —0.912941 Ry.

PREB 47, 41U (O93)



Uitrasoft Vanderbilt Pseudopotentials

e Vanderbilt have shown that the generalized NC condition
can be relaxed, which leads to ultrasoft (US)-PP’s.

Cu Laasonew eral.

PRE U3, loi4z
= ' (ras)

ry

0 2 4 6
r(an.)

F1G. 1. All-electron (solid) and peeudo (dashed) radial
wave functions of the 3d orbital of Cu. A cutoff radius of 2
a.u. has been used.

¢ In order to ensure the transferability of the US-PP’s one has
to adopt a generalized eigenvalue formalism

(T +v.’0¢:+V:’lS—E S) |P1)=0r
where, S is a Hermitian overlap matrix

s =120/ )B]
e The US—PP"s are, then, given as
V=X, +EQ)B KB,
and the cfjlange density

n (r)=;fklpk(r)lz +§,J_f*<p* BJ)(Bi]p*>QU )

Here, f, is the occupation number of state k.
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e The US-PP’s require very small energy cutoffs (~ 20 Ry)

even in the most difficult cases, such as Cu and C.
However, the charge density augmentation process is quite
involved and requires the use of two FFT grids one for the
smooth part and one for the augmentation density. Thus, it
is not a trivial matter to choose between the RRKJ and the
US-PP approaches (which depends on several factors), but
the US-PP approach is surely more efficient for systems
with large unit cells. On the other hand, the RRKJ requires
no changes in the existing codes.

Real-space implementation of the separable

PP for first-principles electronic structure
calculations.

e Can the non-local potential energy contribution, E*, be

calculated also in real space?
E" due to atom /, band n at a k-point in the first BZ, k, in

real space is given by
E:‘irk = Z, (Tn.klvr(r—ti’r’ _Tr‘)l\Pu)

-Y S E°Z.Z., where
Z.= [C0r-10Yn®,..0, )¥.dr - (10)

\r [
Such process would require an O(mMP) operations, where
m, M and P are no. of atoms per unit cell, no. of bands and
no. of operations involved in calculating Zm{(EQ. 10)-This"to
be compared with O(mMN), where N, here, is the no.of
PWs included.



e Calculating E", using Eq. (10) is possible in principle, but it
is not obvious in practice since W, ) are only known at
the real-space FFT grid points.

e Now, Let
Un=Qun 258 ~T0 1@ 1 0, )¥.n(8) - (11)
be the value of 7 _, but caiculated only from the FFT grid
points, #.
e Eg. (11) can transformed to
Un=2 20T +G +OWG), (12)

where, r is the reciprocal lattice vectors of the g-grid
points;
4n g

@)= L Y ®,.0)e% .
A’ 4 mc.'lql Y q)qe

Here, € q )zfr’C_,,(r Yj\qrdr -

» By comparing Egs. 11 and 12 one can make the foliowing
two important observations.
1. Errors are expected if the summation over " has to be

performed {i.e., g |} does not converge to zero for g

of about 4G, Where Gmax is the cutoff imposed on
the PW expansion of the wavefunctions}.

2. [/, does not depend on the vaiue of M!q‘) for Gmax<
g< 1y , where n is about 3Gmax.

e King-Smith, Payne and Lin [PRB 44, 13063, (91)] have
exploited these two points, and proposed the following
scheme for caiculating z,. using Eq. 11.

1. Choose a suitable value for Gmax.
2. Introduce a new function y qq» Which is equal tof dq|)

for 0 < g < Gmax, and zero otherwise.
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3. Select a cutoff radius in real-space, R,, to be about 1.5
to 2re. o
4. Variationally find y o4 for Gmax < q <1 by minimizing

R,
= firyrdr.
 Then 4 (, is used instead of { (» is Eq. 11 to calculate

Z!nr * ‘ I
. <
L g A°
2‘ = b .
. ‘, 0 I T ! T
q = .24 ﬁ
MmAX ' - ]
. - s —05F ]
n 7.2 A = | ‘
G ]
Kl L3z ]
X sl :
' (b) }
_2{', P NP
o 5 10 15 20 25
= P el _..:-.'.‘..‘-"...;'.'... i T q (A_l)
o e Bffi_',’_"?‘l‘il space  Real space
lEncrg_v {eV) . —-10.6855197 —~10.6855139
Forces (eV/A) aloun o, |
x 1.290 944 1.290 895 Kng S mith
: 1.290 942 1.290 892 et al
F&r s ‘ 1.290944 1.290 894 .
orces (eV/A) atom no. 2 PRB q—'—’ ’ I3063
x
b = 1.290992 —1.291 024
r = 1.290 990 —1.291022 Ctadi)
z

S S —1.29099| ~1.291 024




Non-linear exchange-correlation core
corrections (NLCC)

e The unscreening process in the construction of the ionic
PP’s may involve some errors which reduces the
transferability of these PP’s. This is due to the fact that the
exchange-correlation potential is not linear in terms of the
charge density n(r).

o If there is an overlap between n'(r) and n°(r), then
ch(nv-I-nc)# ch(nv)'f' ch(nc) .
This leads to a dependence of the ionic PP on n"(r).

e To overcome this difficulty, Louie, Froyen and Cohen [PRB
26, 1738 (82)] have suggested the following scheme

= The following equation instead of the previously proposed

one. 1
Vi =V(-V,- V' +n),
Moreover, n°(r) has to be added to n"(r) for the calculations
of the XC energy or potential.
— Since n°(r) does not converge rapidly in reciprocal space it
can be replaced by
asinBry/r ¥ TR
n) Bow ¥ 25
The parameters A and B are to be determined from the
gradient of n° at the cutoff radius A,

parmal -

— The NLCC is found to give highly improved in many cases:
Example: the structural properties of ZnS.
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on both sides of the equilibrium volume has been al'owed.
In Table I we show our calculated results for d, bulk
modulus (B, ), and the pressure derivative of B, for both
compounds, obtained by fitting the calculated total ener-
gies to Murnaghan's equation of state. The cxperimental
data® and other similarly calculated values™? (ic.
treating the semicore d clectrons as valence states) are
also shown. It is evident from Table I that the agreement
between our results and i~ other theoretical ones is ex-
tremely good, and both are in excellent agreement with
experiment. The calculated values of d and B, for the
lwo compounds are within 1% and 10% of the corre-
sponding experimental values, respectively. Such errors
are of the same order as those in the corresponding LDA
results, for II1-V and §roup—IV materials.

Engel and Needs’® have shown that the structural
properties of ZnS can be significantly improved by in-
cluding the nonlirear core corrections. The errors in their
calculated d and B, were, respectively, about 4% and
37%, compared with 13% and 88% when the above
corrections were not included. Our results shows that
there is a clear further improvement over the results of
Ref. 36, due to the relaxation of the semicore d electrons,
which, in turn, indicates the important role of the latter
on the calculated structural properties and bonding in
II-V1 compounds.

In Fig. 1, we show threc-dimensional plcrs of ths
valence charge density, p, of ZnS in the plane of the
bonds chain, and its decompolitionilwp, {calculated
from Lhewavefuncﬁonsof!hehmudtbetheenp-
permost valence bands), and p, (calculated from the wave
functions of the occupied d bands) comtributions. Both
Py ®0d p; are properly symmetrized. The remarkable
features to note are (i) the p, is mot spherically symmetric
around the positions of the Zn ions, and that there is a

TABLE IL. Energy levels (eV) at high-symmetry k points for
ZnS, compared with the results of Martins, Troullier, and Wei
(Ref. 34}, calculated uvsing a pscudopotential plane-wave (PP-
PW) and linearized augmented pianc-wave (LAPW) methods,
and with the available experimental data.

Eigen- Present Ref. 34 Experiment

values work PP-PW LAPW Ref. 33
r, —13.21 —13.07 =11 —13.50

T (d) —6.65 —6.63 -~6.55 ~—10.00

Ma(d) —-6.17 —6.16 -6.09 ~ =10.00
s 0.00 0.00 0.00 0.00
r, 1.79 1.84 1.81 .80
M 6.21 6.15 6.19 8.35
1, —-1192 —-11.m —-11.84 —12.00
Xy —4.T7 —4.74 ~~4.70 ~5.50
X, -2.32 —-229 —2.24 —2.50
X 319 2.19 Lis
X, 390 387 3.87 490
L, -12.24 —12.10 - 12.16 —12.40
L, —-547 —543 —~5.38 —35.50
L, —-0.92 =0.90 —0.88 - 1.40
L, 130 .08 105

__{'__k 6.78 6.75 6.76

(d)

FIG. 1. Three-dimensional plots of the total charge density,
p. of ZnS (a) and its decomposition into sp, 2., (b)Y and d, p, (c}
and (d) contributions. All plotted functions are in units of
electron/unit cell. Note the change in scale.
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0.0 A
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v (A-):

<%t 22 &2 ( ,qqs) FIG. 1. The calculated EOS's of the ZB, the RS, the 8-Sn, and
? R g - 7/ the cinnabar structures of ZnS, using the relaxed d electrons
(dashed curves) and the NLCC (solid curves) approaches. The
EOS’s in the case of the NLCC calculations are rigidly shifted such
that the equilibtium total energy, ET . and the equilibrium volume
of the ZB structure match the corresponding values of the same
structure obtained using the relaxed d electrons approach. Solid
circle: £,y of the cinnabar structure calculated using the relaxed d
clectrons approach at a=3.8 A and its optimal values of cla, u,
and v (which are, in this case, 2.28, 0.46, and 0.49, respectively).
The zero energy is taken to be equal to ES of the ZB structure.

TABLF. I. Structural parameters of the ZB, the RS, the $-Sn
and the cinnabar structures of ZnS. ‘

Structural
parameter ZB RS B-Sn Cinnabar
a 5.409.° 528032 5022495 4.769° 3.761°
Relaxa) d-eledeon 5065215 4738
o ag (A) 53941 5413°¢ 5.094°
MLce o NR. PP 47152 5.4104) exet.
9 5.186"
:r.oua caw d-clackrons 83.2,2 8337} 1044°*  9382867° 92°
. Whaw wLec. B (GPa) 75°769¢759° 107.6°
at tn B Bl 821 1458 106" 103.6°83.1°
WA, SR PP 100.1
4432392%4° 420241° 442496° 31
B} 49947°42" 4°10° 4.05 '
0.5683,2  2.3363°
(c/a), 0.5608°
up 0.455°
Vo

0.48°
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