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Stress Tensor: molecular vs atomic formulation
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Ensemble method: NPT Equations of motion

In standard molecular dynamics simulation, we usually consider the time
evolution of a classical system composed of a fixed number NV of particles in
a periodicallv repeated volume V', whose shape and size is fixed. The state of
the system is completely determined by the 3N coordinates {7V} = {,,i =
I,...,N} and 3N momenta {p"} = {pi,t = 1...., N}, and its dynamics by
the hamiltonian 'H

N =
HE ) = Y S+ V) = KV + V) (1)
=1 77
where m, is the mass of the ¢*" particle and V(7V) is the potential energy.
In the absence of external perturbations, the total energy £ = H(7,p™) of
the system is conserved. Therefore, averaging over the time and making use
of the ergodic hypothesis, one can obtain macroscopic properties relative to
constant N, V, E conditions, i.e. corresponding to the microcanonical en-
semble of statistical mechanics. In particular, the temperature and pressure
of the simulation cannot be fixed but can only be estimated by making use
of the equipartition theorem

2 N op2
T = !
BN.P'CB <§ 2m,>t (2)
and the virial theorem
1 /¥ p2 - - V()
P=— — Fo B ) Fi=——%2— X
3V <§ me T >r o7, 3)

where (...}, stands for the average over the finite time trajectory generated
by numerical integration of the equations of motion. Therefore only after
the simulation is done can one know at what temperature and pressure it
has been carried out. When studying the phase behaviour of a system this
can be a major drawback of molecular dynamics with respect to the Monte
Carlo method, which, however, does not yield any dynamical information.
From statistical mechanics we know that te produce a new ensemble one
has simply to couple weakly the system of interest with a suitable reservoir.
The way this is achieved theoretically, however, is not applicable to molecular
dynamics simulation. The reservoir is usually a virtually infinite system with
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many more degrees of freedom than the system of interest, and the coupling
is done through surfaces, becoming infinitely small in the thermodynamic
Hmit. In simulation we really do not want to spend time integrating non-
interesting degrees of freedom, and periodic boundary conditions are usually
employed just to get rid of unwanted surfaces when studying bulk samples.

The key idea of Andersen’s 1980 paper [1] is that MD reservoirs can be
represented by only one or a few degrees of freedom, and the coupling can be
applied uniformly to all particles. This is done by inventing new equations
of motion for the extended system. composed of the system of interest plus
the required reservoirs. These equations are derived by a Lagrangian, or
in Hamilton’s canonical form, only in a wvirtual system of coordinates and
become non-canonical when expressed in term of the real variables of the
system of interest. The particular form of these equations is chosen in such a
way that the microcanonical equilibrium distribution produced by a constant-
energy trajectory of the extended system reduces to the desired distribution
when the coordinates and momenta of the system of interest are considered,
that is after integration over the extra reservoir variables.

The extended system lagrangian, introduced by Andersen, was designed
to produce a constant pressure, constant enthalpy simulation by adding one
extra variable, representing the MD cell volume, which is therefore free to
fluctuate, and the coupling is made through a dynamical equation of motion
for the cell volume variable. When the cell volume changes there is a uniform
spatial scaling of the particle positions.

In the same paper a constant-temperature method was also introduced.
This, however, was based on a different mechanism in which the coupling
between the heat reservoir and the system of interest is stochastic and is
implemented by randomly sampling particle velocities from a maxwellian
distribution. This method is of relevance when dealing with complex sys-
tems where there is a poor coupling between various degrees of freedom, for
example molecular internal vibrational and translational or rotational de-
grees of freedom, and it is probably the best method of achieving adequate
equilibrium sampling in these systems.

For constant temperature we shall focus our attention on the method first
proposed by Nosé [2], and later clarified by Hoover [3] and Nosé himself [4],
referring the interested reader to his latest review article for a more detailed
and fully comprehensive treatment of constant-temperature molecular dy-
namics methods [5]. Once again the reservoir is described by a single degree
of freedom, which however does not have a simple physical meaning [6], and
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the coupling contains a scaling term which applies uniformly to all particle
velocities and is in fact a scaling on simulation time. Hoover’s approach sim-
plifies matters as it does not require the use of virtual variables and scaling
concepts and also makes a direct link to constraint methods.

Finally the so-called Parrinello-Rahman method [7] deserve to be men-
tioned on its own. In this method the pressure reservoir is represented by a
set of nine variables which describe the complete geometry of the MD cell,
thus allowing fluctuations of both its volume and shape. This is essential in
the study of phase stability and phase transformations in solid systems.

Andersen’s demon

Rather than follow the original demonstration by Andersen for the NPH
ensemble we shall combine it with the Nosé derivation and consider directly
the case of the N PT ensemble. As a word of caution, it must be mentioned
that different lagrangians can be set up, all leading to the same equilibrium
distribution but with different definitions and dynamics for the reservoir
variables.

Virtual-variable representation

In the constant-pressure molecular dynamics method the volume V' of the MD
box is allowed to fluctuate in time. Andersen replaces the atomic coordinates
{Fi,2 = 1,..., N} with wirtual scaled coordinates {g;,,i = t,..., N} defined
in the following way.

. gio= VIBE, (4)
Each component of {g;,7 = 1,...,3N} is therefore a dimensionless number
between zero and one (taking care to consider always the image inside the

MD box).
Similarly Nosé introduces a scaled time 7 which is related to the real one
through the reservoir coordinate s in the following way

dr = sdt. (5)

This implies some caution is needed when considering relations between time
derivatives. In fact
. ~ 17143 . ~ -
ap _ (V) dn g A, RV

_ o\ . 6
dr sat T @ dr T3V & (6)
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We can now introduce the following Lagrangian for the extended system (8]

N
o 1 R - .
L = Z:;miQmSzP.'-p,—V({piQ"3,z:1,...,N})

=1 <

1 . 1 .
+552MQQ2 — Pe@ + 5 MsS? — ghgTin S (7)

in which the two new variables Q and S appear. If we interpret ¢} as the
volume V then the two terms on the first line are just the lagrangian of the
system of interest. The second line contains the new terms. First a kinetic
energy term, followed by a potential energy term for the motion of @ in
which two constants appear, the inertia factor Mg and the external pressure
P.... The third term is the kinetic term for the Nosé variable S, and the
fourth the corresponding potential energy term. The constants appearing
there are another inertia factor Ms and the temperature of the reservoir
with Boltzmann constant kg7, while ¢ is the number of degrees of freedom
which are in contact with the heat reservoir and, as shown later, it depends
on the system studied.

Let us recall Andersen’s physical interpretation of the @ terms. Imagine
that the fluid to be simulated can be compressed in a container whose volume
is changed by a piston. Thus Mg represents the mass of the piston whose
motion is described by the coordinate @, and Pex@ is the potential derived
from an external pressure Pey acting on the piston. The piston is a virtual
one and produces an isotropic expansion or contraction of the fluid. This
interpretation is not completely consistent as, writing down the expected
particle velocities

A e | I
fi= AT+ LRG0 ®)

one finds that the second term of this derivative does not appear in the kinetic
terms of the lagrangian.

Hamiltonian equations of motion

However eqn (7) gives a well-defined Lagrangian for the extended system in
terms of virtual coordinates. The next step is therefore to derive from it the
conjugate momenta. First the momenta conjugate to the particle coordinates

p: will be denoted 7; 5
7= % 52 (9)
ap;



The momentum conjugate to ¢} will be denoted Ilg

dJr o
Hp = — = My5*?
2= 55 Q5@

and the momentum conjugate to S will be denoted Il
aLr -
[Is = — = MsS.
$= 53 s

The hamiltonian of the extended system can now be written down

N . . .
H = Y g7+ Qg+ Sls—L
=1

N ﬁf'ﬁi — 1/3 . T
= Y g+ VUAQ i = 1 V)

=1
2

Q
T oML S

1%
kpT
+PextQ+2MS+gB ]nS

(10)

(12)

The equations of motion for the extended system in wvirtual variables can
now be derived in the canonical way from the hamiltonian. First the equa-
tions of motion for the atomic wvirtual coordinates and momenta in terms of

derivatives of the virtual time coordinate can be written

d; _ _37:[ — —Q”Bav({_,ﬁle}) _ Ql/?’ﬁ
dr ap: a(ﬂ:‘@l/s)
dg; OH o

dr 87 m§2QR
where f, is the total force on atom 12

F" _aV({Fh??‘Z -:FN})

’ or,

The equations of motion for ¢ and its conjugate momentum are

an _ (9?{ . ]. N ﬁ:i : ﬁ:l 1/3 =4 =
G = T9q " 3g & [siges * @A) P
dQ 9 _ Il

dr ~ Blly  MgS?

o

(15)



and the equations of motion for § and its conjugate momentum are

dils *%“i Fod o Mg gkeT
dr as m,S3Q3 T MgS3 S

=1
dSs JH s
— = - == 1
dT GHS Af[s ( 6)

Equations of motion in real space

These equations of motion could be solved numerically to produce a time tra-
jectory in the virfual phase space of the extended system. However this turns
out not to be the best choice as integrating with a constant time step At over
the virtual time implies producing a trajectory unevenly spaced in the rea!
time of the system of interest. It is therefore more rewarding to go back from
the coordinates and momenta in virtual space {ﬁN,fr’N,Q,Hq,S, [Is; 7} to
the coordinates and momenta in real space {7, 5", V, Py, s, P;;t} by means
of the following transform relations

A=AQTP  V=Q =

35
B =7/SQY Py =Tg/S P =1, GTd/s (7

The equations of motion become

s BV
Ty o= m‘_+r;3v
: . $ 1%
, = Fi—pi—-—piz
P p P3V
Voo B
Mg
1 N —2 - L
PV = T3 E'L""+F{'_‘= _Pext_PVl
3‘/:21 my 5
— Ps
5§ = SMS
N —~3 2
. jor PV
P, = =1 4+ — —gkgT 18
g[m']+MQ e (18)

where the dot stands for the time derivative with respect to t.



I'he Hamiltonian H in eqn (12) can also be transformed, but 1t must be
noticed that because the transformation is not canonical, the function

) . P‘{ ])‘2
. N N v s . 5
H =K )+ Ve ) + o + PV + IR +gkpT'lns (19)

obtained cannot be used to derive hamiltonian equations of motion for the
real coordinates and momenta {FN,ﬁN, V., Py, s, Py t}, while it still remains
a constant of motion for the time evolution defined by eqns (18).

Time and ensemble averages

Solving numerically eqns (18), one can produce a time trajectory for the
extended system and therefore calculate time averages as in the standard
molecular dynamics to estimate the macroscopic properties of the system
of interest. We must ask ourselves what kind of averages are we calcu-
lating with respect to statistical mechanics ensembles. We know that our
time trajectory corresponds, by invoking the ergodic hypothesis, to a micro-
canonical ensemble distribution for the extended system in the virtual phase
space. We are, however, interested in the properties of the system of interest
which can be quite generally expressed as ensemble averages of an observable
F Y, o™,V t) The corresponding observable G in the virtual space is defined
as

FEV PV Vi) = FQUWHN STIQTERY. S T =)
g(ﬁN1ﬁNaQaHQ151HS;7J' (20)

What can be readily calculated from the dynamical trajectory is a time
average of the form

of dt FEV (), 7Y (th Vi)

= 1 ‘7
(F) = lim g (21)
which then corresponds to an average over the virtual time 7
. o dr G, TN, Q Mg, S Tls; 7}/ S(r) {G/S), 22)
7y (tr)—oo fo'dr 1/5(7) (1/8). -

The above equation sets the equivalence between the dynamical averages in
the two pictures of virtual and real time. But we know that, if the motion of

~
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the system is ergodic, time averages over T are equivalent to microcanontcal
ensemble averages

(G/S) . (G/Shme
/5y S me

which can be made more explicit

(G/S)me _ {fdn [1/516(%—5)}"

{F ) Ensemble? (23)

deﬂ [g(ﬁN~ 'fFN’Q’ HQ»SaHS)/S)]J(H - E)
[dSt 6(H — E)

_Jdf2 G, 7V, Q, g, S, 1s)/S|8(H — E) 24)

- [dQ{1/S)0(H - E) ) (
Here we introduced a short notation for the integration variables d2 in the
virtual phase space. The transformation relating it to the real phase space
integration variables dI" is characterised by a jacobian which is readily cal-
culated

] N = /dﬁ”dv’r‘”deHQdeHS
= /dFNdﬁNdVdPVdsdP, s3N+‘=fdr SN (95)

What we have to do is now to find out to which ensemble the real time
average

fdQ [G(p", 7V, Q,1lg, 5,115}/ S16(H — E)
74 [1/S18(H — E)

corresponds, in the ergodic limit. To do this we have to transform the in-
tegrals in the above equations into integrals over the space {#N, 5V, V} and
perform the integral over the extra reservoir variables. Having already ex-
pressed the required jacobian we must make explicit the transformation of
the microcanonical delta function distribution §(H — E). We first observe
that

('7:>t = (-F)Ensemble? -

(26)

§(f(s)) = 8(s = s0)/f'(s0)  f'(s0) = gksT/s0. (27)
Here we should really have a sum over all possible zeroes of f, but in this
case we can state that there is only one zero at

so = exp{—(Hr — E)/gknT} (28)
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because the dependence on s is logarithmic. It is useful at this time to
introduce the function Hr

'H~—§:i+wf’“)+ P v (29)
N L 2Mg T M )

in terms of which the microcanonical delta function

SIH(FN . pN V. Py, s, Py) — E) (30}
can be reformulated in a compact way ’
1
exp{—(Hr — E)/gksT}é(s — s0). (31}
gksT

We can now write for the denominator in eqn (24)
dQ [1/S16(H — E) = [ d [s*V*] =2 - 2
[ 49 18151~ E) = [0 (V4] L (1/6)30 - s0) (32)

which after the integration over the variable s has been performed becomes

1 SN+ 1\ Hr— E
= gkgT g Y

Equivalently we can dispose of the numerator which becomes

fdQ (G/S16(H — E) =

1 IN+ I\ Hr—F
di dpV F — (34
gkeT f mdpdVdbydl, Fexp { ( g ) kg T } (34)

We can now fix the number of degrees of freedom g. By choosing g = 3N +1
we can finally write

/dFNdﬁNdVdPVdP, exp{— ( (33)

[N dpNdVAPyd Py, Fexp{—Hr/kaT}
fd?:"wdﬁNd\/'dedPs CXp{-'HT/kBT}
which can be further simplified observing that the observable F does not

depend on the momenta Py, P,. After integration over these variables the
constant temperature - constant pressure N PT ensemble average is obtained

(Fiver =
JARV ANV F(7 5 V) exp {—[K(Y) + V) + PrwcV}/ kT
JdiN ANV exp {—[K(FY) + V(”V) + PoeV]/ ks T}

(-}_>Ensemble? = (3"—))

(36)



Therefore we arrive at the conclusion that the time averages computed over
the dynamical trajectory obtained by integrating eqns (18) numerically are
equivalent, if the motion is ergodic, to the NPT ensemble averages

{(F)o & (Finer- (37)

Nosé-Hoover thermostat

In 1985 Hoover [3] reformulated Nosé equations for NVT simulations in a
way which is considered simpler and easier for making further generalizations,
as it avoids the need for introducing virtual variables. The Hoover procedure
follows the demonstration used for the constraint methods [9]. Consider the
distribution function o(7, 5", ...) defined in the extended phase space I =
{#N pV,...}, where we leave undefined the extra variables for the moment.
A generalised Liouville equation expresses the conservation of probability in
this phase space, 5 5
Q .
The change of ¢ along a phase space trajectory is given by the total time
derivative
de g d

= 0, (38)

- a e (39)
When combined one obtains

dp a .

o= — 4

AT (ar F) (40)

which in the case of hamiltonian dynamics equals zero and expresses Liou-
ville’s theorem. As we already said the equations of motion in real variables
for the extended systems cannot be derived directly from a hamiltonian, and
therefore we have to use eqn (40) to find the evolution of the distribution
function g. So the idea is to write down a set of equations of motion and
then find out what they predict for the time dependence of the distribution
function g, by putting them in eqn (40).

Rather then simply repeating the demonstration for the case considered
in section we shall write the equations for constant temperature - constant
pressure simulation with a varying box shape, following the generalisation
of the Andersen method due to Parrinello and Rahman(7]. In this case the
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volume variable is replaced by the 3 x 3 matrix variable H, shorthand for the
three lattice vectors (4. b, ¢) which describe the shape and volume of the MD
box and, as a consequence, the periodic boundary conditions in a Bravais
lattice notation.

It has been pointed out [10] that only six of these nine variables have an
interesting meaning, when the three degrees of freedom describing the over-
all rotation of the MDD} box are extracted out. The situation is very simple
in atomic cases where one can show that the equations of motion conserve
symmetric matrices R. This is no longer true for the case of molecular sys-
tems, when intramolecular distances are kept fixed and the coupling is via
the molecular centres of mass. In order to avoid overall rotation of the MD
box, which, especially for solids, would simply confuse the analysis of the
trajectories of the system, two options have been used both of which reduce
the number of extra variables to six. In one case [10] the matrix ks kept
symmetric by disregarding the asymmetric contributions in the equations of
motion, and in the other one [11] the variables are reduced to six by fixing
the MD box orientation with respect to a laboratory frame, and specifically
by choosing @ parallel to the r-axis and b to lie in the zy plane. This choice

results in an upper triangular matrix h. Also it is possible to make other
choices {for example only allowing fluctuations of the box which maintain
a parallelepiped shape, which makes 3 degrees of freedom and the matrix
is diagonal), therefore we shall generally leave undefined the number of de-
grees of freedom of the box, and will indicate them by g,. When using the
Parrinello-Rahman technique, special care must be taken in the application
of periodic boundary conditions as will be clarified later on.

Let’s start by writing down the new equations of motions for the set of

variables I' = {J:'N,ﬁNaBa ?)MC}




[z]ry T M, [Ph]w

where, following Hoover. the role of the Nosé coordinate s and the momentum
P, is played by the singie coordinate { which is related to them by

dlns & P,

= = - = . 42
c dit S JMS ( )

The equations of motion do not depend on the variable s explicitly, but s
appears when we consider the constant of the motion H

H=Hr+gksTIns (43)
where Hr has been defined as
N =2 2
ik * MSC
e » L 4
Hr =3 g+ VG +r§ 2M Ph] + Podeth+ 2 (40)

To demonstrate that H is indeed a conserved quantity let’s first see what
this requires for the time dependence of Hr

dH dHr d
PrE i PR dt(

This can be readily verified

dHr No{. OHr . OHr 3 [;. ] OHr
—_— = A A P -

dt Z {P‘ 6;5', o aT_". } + Zl k ry a [I*Bh]
Yy

gkgT lns) = —gksT¢. (45)

i=1 Ty=
3. [e dHr OHT
+ 3 [, sE e
VLG
Ty
~ —gksTC(. (46)
The equation for the probability distribution can now be calculated
do o
dt (ar F)

ap: F] ai‘3h ok a¢

= — + =t =
{[Z op. o, ab,  ah 9 }
1 (BN +gn)dHr .

47
[ dt (47)

= o(3N +gn)( = —
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and this corresponds, by choosing g = 3V + g, to an equilibrium solution

for ¢ of canonical form
| Hr }
¢ X exp {*m . (48)

Numerical considerations

A numerical problem arises specifically in the Parrinello-Rahman method.
In this case the MD box has no longer a cubic shape and the algorithm to
compute the minimum image in the presence of periodic boundary conditions
has to be modified. The easiest possibility is to use virtual coordinates g;. In
this space, in fact, the MD box is again a cube of unit size. Given a particle
k, one has that each component £ of the distance JEE) computed as follows
with any other particle j

Jgf) - (ﬁf) — F_)ﬁ‘{)) _ N[NT(ﬁf) _ ﬁg{)) (49)
is, in absolute value, less than 0.5, that is the vector JS_E) selects the image of
the particle j which is within the MD box centered at the position of particle
k. This is sufficient to identify the minimum image with cubic periodic
boundary conditions, but for the general triclinic case |aT§-E}| can happen not
to be the minimum distance between particle k£ and particle j and its images.
The situation is clearly rendered in Fig. I where also it is shown that a more

Figure 1: Minimum image convention in general triclinic periodic boundaries
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general periodic boundary condition and minimum image convention could
be used to solve this problem. However rather than getting involved in
such a complexity it can be immediately seen that eqn (49) still defines the
minimum image for vectors (EE,E) which, in reel space, are inside the largest

sphere inscribable in the triclinic box, that is for distances ia?f;“} less than half
the minimum of the three distances between the faces of the triclinic box.
These can be easily computed dividing the volume of the box by the area of
the faces, or more simply as the inverse of the reciprocal lattice vectors.

A few words of caution are to be devoted to the evaluation of the pressure
tensor, particularly in molecular systems. The molecular expressions cannot
be evaluated as such when periodic boundary conditions are applied to the
system. The force F; on atom j is the sum of several other pair contribu-
tions F, and eventually of many-body terms, which are computed with the
minimum image convention. This implies that the identity of the atomic po-
sitions r; to be used in the evaluation of the virial sum changes from pair to
pair. It is well known, although not well documented, that in the simple case
of pair-only interactions this problem can be readily overcome. The virial
sumn over the atomic index j can be transformed into a sum over pairs

SorF; =3 (r - r)Fy (50)

ik

where now the interaction forces F,; and distances (r; —r;) are consistently
referred to the same minimum image pair. When dealing with molecules
the situation becomes, of course, more complex. First there are two possi-
ble ways of implementing the minimum image convention. One way is to
consider molecules as ‘indivisible’ and therefore search for minimum images
molecule by molecule, usually with reference to the molecular center of mass.
The other possibility is to continue to consider each interaction site individ-
ually and proceed as for atomic systems. In the former case the molecular
virial can be calculated as in eqn (50), replacing atomic quantities with the
corresponding molecular ones.

However, even if the difference between the two approaches is usually
small, being restricted to interactions close to the cut-off distance, there are
cases in which it is more sensible to use the latter approach. Large molecules
with internal degrees of freedom, where the center of mass changes with
time its relative position to constituent atoms, and systems with long-range
forces are examples of these. In such a case special attention has to be paid
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when evaluating the pressure tensor. For simplicity let us consider only the
interaction term for one component, say rz, of the molecular pressure tensor

N
C=)"a.F; (51)
a=1

for the case of pair interactions only. When the sum over pairs ts made
explicit one has

n

N N n N n
ZIZIQF}Z = ZZ‘I‘Q Z ZFE;-!}]B

a=11=1 a;ﬁi?:lj:l

N n
= Z Z; :a_;ﬁ Z Z 513,‘3 ( 52 )

#0=1 a,dra=11g=1

T.T.‘!

]

where use has been made of the equality

F2oo=—F%. . (53)

tayd — Eete

Equation (52) can be reorganized after adding and subtracting terms (2, —
Z5p)

=

. 8>a=11t)=1

and finally we obtain

N
T = Z Z —xak nxj,d Z Z Tin — Z Z Ftix;u (53)
a,fra=11)=1 a=}i=1 J;éa—l =1

It is now possible to distinguish two terms which can be evaluated in a non-
ambiguous way in the presence of periodic boundary conditions. The first
term is simply the atomic term, where however only intermolecular interac-
tions do appear, and the second term represents the correction needed to
obtain the molecular property. It has to be stressed that in this representa-
tion intramolecular interactions, arising either from constraint forces or from
potential terms, do not need to be considered explicitly for the calculation of
the pressure, as their contribution to the total force on the molecule vanishes.
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MD simulation of rare events: Calculation of
rate constants

An activated process is a transition between stable states, i.e. states where
the system spends the overwhelming majority of its time, separated by a
region of low probability and can be viewed as the crossing of a free energy
barrier. When the free energy barrier is much higher than kgT the crossing
is an infrequent event often of short duration which cannot be simulated
using conventional techniques. If the activated process can be described by
a phenomenological rate equation, then the associated rate constants can be
calculated within the reactive-flux correlation function formalism(l, 2].
Classically transitions between stable states in a many-body dynamical
system can be often described by a suitable function of the configuration
space called the reaction coordinate or progress variable, denoted by &(r),
where r represents the set of coordinates of all the degrees of freedom of the
system. The progress variable £ can be thought of as a collective variable
whose values describe the state of advancement of the reaction when going
from one stable state to the other. The probability density to find the system
in any point of the configuration space such that £(r) equals a prescribed
value £ is : r
P(e =€) ={b(E(x) - €)) = Ce WD (1)
where < ... > is the canonical ensemble average, 3 = ﬁ and the last
equality is a definition of the potential of mean force W (£} associated with
the reaction coordinate. W (&) -- W (£;) expresses the reversible work needed
to take the system from some reference value £, of the variable £ to £. The
constant ' is determined by the normalization condition on P(£). If £ is
a local maximum for W(£) we can identify the hyper-surface £(r) = €' as
the transition region and P(£') is one of the important quantities we wish
to calculate. Of course special methods have to be used to determine the
probability of a highly improbable value of £. They include special sampling
schemes; for example, umbrella sampling[3], to compute mean force potential
differences W(£') — W(€) or the mean force on £ , F(£) = —24). The rate
constant in turn can be computed, knowing this probability, as the product
of the P(£') and the average fraction of trajectories which, starting at the
transition point £', end in the product region. The classical treatment of
chemical reactions we have just described was first introduced by Keck[4,
5] and Anderson[6] to treat gas phase chemical reactions and later applied
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by Bennett[7, 8] and Chandler(l] to the treatment of condensed-phase rate
processes.

Reactive Flux Correlation Formulas

We begin this section by recalling the autocorrelation function expressions
for the rate constant of a reaction. These expressions were first derived
by Yamamoto[9] in 1960 and have continued to fascinate researchers in the
area as is evidenced by the number of times they have been re-derived and
reinterpreted in the literature(2, 10, 11, 12, 13].

In order to give a statistical mechanical definition of the rate of the reac-
tion

A=0B, (2)

we must first introduce a microscopic definition of the chemical species A and
B. This is achieved by using the progress variable ¢ and defining the states
corresponding to species A4 as those such that £ < ¢! while the complementary
range defines species B. The dividing surface between the two species, { = ',
identifies the rarest value of £ which must be crossed when trasforming A to
B (or vice versa). The microscopic variable

t
aa() =o€ e ={; £S5 3
characterizes microscopically the species A (ngq =< f14 >, as usual) while
na(€) = —68(¢" - ) (4)

is the microscopic expression for its flux.

If a phenomenological law is valid, one can write down a rate equation
for the reaction and identify the forward and reverse rate coefficient, k; and
k. respectively.

By applying the fluctuation-dissipation theorem one finds that the rate
coefficient, say k;, can be computed in microscopic terms from the plateau
value of the quantity k(t) defined by [9, 14]

L ha©halet)) > v
naJfo

—;;1; < £5(€ — EN0(ET — E(t)) > - (5)

ky(t)

il
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The limit t — 0, of Eq. (5) plays a special role in the theory since it gives
the transition state theory value for the rate constant[14]

kPT=_3-<Wmew—fH>:i;<w@ww—9)>, (6)

g
where the last equality follows by time reversal invariance and k}"ST 1s the
reference value for most elementary treatments of the rate constant.
Finally, using the transition state theory expression, we may write the
time dependent rate constant k;(¢) in terms of the time dependent transmis-

sion coefficient x(f) as
kpit) = kT k(1) , (7)

which measures deviations due to dynamical effects associated with re-crossings
of the species dividing surface.

Alternatively we can separate the static and dynamic contributions to
the rate constant by multiplying and dividing the right hand side of Eq. (5)
by (6(¢£ — £!})). We then obtain

(€5(6 — eNB(E(L) — €M)
(0(6—¢&))

The last term on the right hand side is the probability density to find the
system at the transition state while the ratio in the square brackets is a

conditional average, namely the average of the product £6(£(t) — &) given
that ¢ = £

11
ny np

(8(¢ - €M) (8)

ky(t) = ( )

Blue Moon Ensemble

By simulation it is difficult to determine properties that depend on rare
events. In the particular case of rare but fast events it is possible to circum-
vent the difficulty. For example to estimate the transition rate a computa-
tionally efficient way is to choose initial states localized at the hyper-surface
that separates the stable regions. With such states one can compute the
conditional average indicated in square brackets in Eq. {8). In addition one
has to compute the equilibrium probability density for the system to be at
the transition state.

Assuming that the activated process is described by the reaction coordi-
nate £(r), where r = (ry,ra,...,Tn) represents the 3N Cartesian coordinates



of the system composed of N particles with masses m; (z = 1,..., N) and,
for simplicity, without internal structure, we want to compute ensemble av-
erages of static or time dependent dynamical variables containing a delta
function that localizes the system initially at a prescribed (rare) value of
£(r) = €. The generalization to the case of molecules is straightforward
unless constraints are used to freeze some of the intramolecular degrees of
freedom(15].

The presence of the delta function is suggestive of the ensemble which de-
scribes our system when the reaction coordinate is constrained to the value
prescribed by the delta function. To see the analogy let us derive the statisti-
cal mechanics in Cartesian coordinates of a system subjected to a holonomic
constraint. Usually when there are constraints one introduces a set of gen-
eralized coordinates q and conjugate momenta p? such that r = r(q). In
general it is not possible to invert this relation since there are more r coor-
dinates than q coordinates. However by including the expression(s) for the
constraint(s) one has extra generalized coordinate(s) and one recovers the
one-to-one correspondence r = r{q, constraint expression(s)).

The statistical mechanics is easily formulated in terms of the generalized
coordinates q. However it may be useful to have the equivalent formulation
of the statistical mechanics in terms of the original Cartesian coordinates.
We now derive this expression for our N-particle system subjected to the
holonomic constraint o(r) = &(r) — ¢ = 0. The dynamics of the system is
described in Cartesian coordinates by the Lagrangian

N
Lr,p)=K(r)-V(r)= Z %m,-i‘? -Vir), (9)

to which we add the constraint o = 0. The corresponding equations of motion
are the Lagrange equations of first kind[16]. The set of 3V — 1 generalized
coordinates g plus ¢ can be taken as a new set of equivalent 3N coordinates
denoted collectively by u. We have

r=riqa)=r(u), (10)

or :
u=ufrj. (11)
In the new variables the Lagrangian is given by

!

C(u,b) = %ﬁTMu ~V'(u), (12)



where u’

15 the transpose of vector u and M is the metric matrix with
elements given by

N

: dr, dr
M, = E m— (13)

Ju,  du,

The Lagrangian of the constrained motion is easily obtained by putting o =
a =1 te.
Llq,q) =L (qo=0490=0). (14)

To derive the statistical mechanical ensemble we need the Hamiltonman de-
scription of the dynamical system. The Hamiltonian in u coordinates is given

hy

p 1 ‘.
H(u,p) = 5p*" M7 'p" + V (u), (15)
where o
L
Y= — = Mu 16

and the inverse of the metric matrix M~! can be written explicitly as

N
1 Ju, Ou
(M), =Y e S (17)
“ = T al‘.‘ (91‘,'
To obtain the constrained motion we have to compute the Hamiltonian at
o =0 and p° satisfying the constraints ¢ = ¢ = 0. Since

&= (M‘lp“)sN =Ep'+ Zp° (18)
where E and Z are suitable submatrices of M~*, the condition & = 0 vields
p° = —Z 'Ep? where " means that the matrices have to be evaluated at
o = 0. Now we have for the constrained Hamiltonian

He(q.p) = H (q.0=0,p%,p" = -Z7'Ep?) . (19)

Notice that Eq. (18) implies that
p’+ Z7'Ep' = Z 5. (20}

Calling pe (q, p?) the probability density corresponding to any possible en-
semble for the constrained dynarnical system, we have

p-{a,p?) dadp? = p (u,p*)é(c)8(p° + Z 'Ep”)dudp”
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= p(r,p")d(a)8(Z 7 d)drdp
= pelr,p)drdp’ . (21)

where in the second line of Eq. {21) we have used the fact that the variable
transformation (u.p*) « (r.p") is a canonical. volume conserving, transfor-
mation, since it is a point transformation[17].

For our purposes it is convenient to rewrite this probability as

pe (r,p") = pp (r) P (P7Ir) (22)

where the configurational probability density, p; (r}, is obtained by perform-
ing the integration over momenta of the full probability density and the con-
ditional probability density of the momenta given the configuration, p; (p"ir),
is obtained by taking the ratio indicated in Eq. (22). To be more definite let
us restrict our considerations to the canonical ensemble. Then the configu-
rational probability density is given by

; (r) dr = Q7'|Z| exp[—BV (r)] §()dr | (23)

where ., the normalization factor, is the partition function of the con-
strained system and the conditional probability density of the momenta given
the configuration 1s

ot (p7ir) dp” = |Z| Zexp|—3K]|8(Z 7 6)dpT , (24)
where K is the kinetic energy and Z is defined by

N1 8o Oo
Zw;aa—nb_r: (25)

The physical meaning of the quantity Z has been discussed by several authors[18,
19, 20, 21] and has its origin in the restriction imposed in the momentum
space by the validity of the constraint o = 0 at all times which, in turn,
requires that the generalized velocity & vanishes at all times.

The probability densities we have been discussing up to now, more partic-
ularly the configurational probability density in Eq. (23), has to be compared
with the configurational probability of the unconstrained system

o (r)dr = Q exp[-AV(r)|dr, (26)



or. even hetter, with the probability density to be at r and at £ = £

¥

pr{r)8(&(r) — € )dr = Q"exp - BV(r)] 8(&(r) — £ )dr . (27)

At this stage we can take the essential step. Recall that. to improve
statistics, we wish to express the conditional average of any configurational
property of our system in terms of the -constrained ensemble introduced
above. Indeed. while by definition the value £ we want to sample is rare
in the original ensemble. only configurations with { = £ are sampled in the
£-constrained ensemble. By simple inspection of Eq. (23} and Eq. (27) one
finds that

< Or)s(E(r) =€) > _ <|2]720(r) >¢ (28)

< H(&(r) =€) > < |Z[7 >,
where the observable O(r) is some function of the configuration space, <
. > denotes the usual canonical average and < ... >, denotes an av-

erage over the constrained ensemble with = €. Eq. (28) represents the
fundamental result of the Biue Moon approach since it permits one to es-
timate the conditional average on the left hand side of this equation. This
result was implicit in the work of Bennett(7] and Chandler(1] who did not
use constraints but equivalent localizing procedures. To be useful Eq. (28)
should be complemented with a numerically-workable procedure to com-
pute Pe(¢) =< §(& - £} >. To this end let us proceed as follows. Call

W) = ——é—ln&é.il, where C is a normalization constant, the reversible

work needed to bring the system from a given reference state to { = ¢, The
associated thermodynamic force

. dW (£

FIE) = =g (29)

can be expressed as the conditional average of a suitable observable. Then,
using Eq. (28) and a thermodynamic integration of F(&') over £ we can
obtain the desired probability.

To derive the explicit form of the thermodynamic force let us perform the
derivative indicated in Eq. (29) with the help of a change of variables which

introduces the Jacobian of the transformation, |J|. The result 1s

g f deeVo(e ~€)
B Jdre?VHE—€)

7

F(g) =



< (ZinlJ| - 3%) de—-¢) >

3 ) <8~ ¢€) >
< FS(E-€) >

= . 30
<HE-E) > (30)

1
7 3¢
parent force acting on the system due to the use of generalized (non-inertial})

coordinates, while the second term corresponds to the standard component
of the force along the generalized coordinate £ arising from the potential V.
The above result expresses the thermodynamic force as a conditional aver-
age; therefore it can be computed numerically by using the Blue Moon result,
Eq. (28). To obtain this result we have proceeded as follows: Consider the
numerator on the rhs of the first line of Eq. (30) and apply the transfor-
mation from the Cartesian coordinates r to the variables u. Performing the
derivative and transforming back to the original coordinates one finds

=gl dre"‘*"é(g )
=/ dqd&? (€~ &5 1|J| sl

where F is composed of two terms, the first term L 2(n|J| represents the ap-

[ dade |- e - f)] eV

[ arla17ae - €5z [|J| -5v](31)

which gives the desired result.

There are two nasty quantities to be computed in Eq. (30), the Jacobian
and the partial derivative with respect to £. Ruiz and Frenkel[22] have shown
how to simplify this calculation by using as generalized coordinates u a set
of orthogonal variables, i.e. a set such that

Vi - Vi, = |Vuo|*8ay (32)

where V is the 3N dimensional vector given by the partial derivative with
respect to the Cartesian coordinates of all particles r. Moreover, the coor-
dinates q can be chosen so that {Vg,l = 1, a = 1,3N — 1. Under these
conditions it is easy to show that |J| = |V£|™! and that

8

The constrained ensemble we have obtained can be generalized to give

the biased configurational sample we already know and the correct distri-
bution of momenta. This new Blue Moon ensemble can be easily obtained

8



by multiplying the £-constrained configurational probability density by the
correct (Maxwellian) conditional probability of the momenta.

pam(r.p") = pr(r)p?(p’|r) . {34)

This ensemble provides a natural method for the computation of time cor-
refation functions. What is required is to take an average over a Blue Moon
ensemble of initial conditions of trajectories obtained by following the com-
plete time evolution of the system after retease of the constraint § (see Fig. 1).
Hence given two arbitrary observables O'(r,p") and O"(r,p") we may write

<0’ (r,p7)0" (e(6) T {))S(E(rY=E)>
fé(é(r)—g’b
<|Z1=120 (rpT)O (x(t),p (1)

}>_§l
= <|Zf“1f2>€' » (35)

This general approach may now be directly applied to the calculation of the
rate constant of a chemical reaction.
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