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1 Cohesion and Bonding

1.1 Model of Atoms in a Solid

The atoms in a solid are divided into Ion Cores which consists of the nuclei to-

gether with the strongly bound Core Electrons and the Valence Electrons.

This latter provides the bonding glue.

- Na : (182,252,2}36) + (381)
- 8i: (1s%,252,25) + (35%3p)

- A (157,252,299 + (3s?,3p°)

1.2 The Born Oppenheimer Approximation

The full hamiltonian of the model of our system is given by :



H = S (P2M) + X (p/2m) + TV(Bi~ Rn)

1

+ %: (62/1"2-3-) + % V(r; — Ry)

As in many time evolution problems, the two constituents : the ion cores and the
electrons have very different time scales associates with their motion : 7,5 >>
7.1. In such cases we can always dissociate the two motions. We can assume that
while the fast constituent evolves, the slower constituents are frozen in time.
The motion of the slower constituent is then modified by the contribution of

the fast moving part. This is the Adiabatic Approximation .

We assume that the full wave function can be broken up as follows :

\D({Rn}a{ri}) = (I)({Rn}) ¢'{Rn}({rz})



Assuming that the 1ons are frozen in time during the motion of the electrons :

{gp?/zm) + () + DV i - Rn>} by (ri])
= B{RNéem, ()

If we now neglect the derivatives of the electronic wave functions with respect

to the ion coordinates, we get :
{S(®2m) + vii + E(RD}S = Fo

Thus the motion of the ions is modified from the free ionic motion by the motion

of the electronic glue which surrounds it. The net potential is :

V({Rn}) - V}I'l_Eelec
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The ion-ion potential is repulsive. The electronic contribution, for some value
of {R,} must be attractive and just balancing the Coulomb repulsion between

ions. This {R%} is the equilibrium distribution of the ions in the solid.

Note Under specific circumstances the Born-Oppenheimer approximation may
break down. A classic example is the case of almost localized electrons (sluggish
electrons) in dirty alloys. Here the localization of the electrons in regions of the
solid mean that the time scale associated with the electron being in the vicinity
of a moving ion-core is of the same order as the time scale associated with the
motion of the ion-core itself. Here the BO approximation breaks down. The
direct, ‘consequence of this is that at very low temperatures we get a resistance

minima (very like a Kondo minimum) but not of magnetic origin.



Conditions to be fulfilled for bonding in a solid

1. lons must be kept apart to minimize effects of their mutual Coulomb re-

pulsion.

)

. For the same reason the electrons should be kept apart. This automatically

leads to exchange-correlation holes in the charge cloud of valence electrons.

3. Valence electrons should come together with ions to provide the attractive

interaction.

4. In doing all this, if we localize electrons in space, we must do it in such a
way that the kinetic energy does not increase. This would mean an effective
repulsion.

If electrons are localized in a range Az then by the uncertainty principle Ap > (h/Ax) which implics

AE > (W7/2mAz) eg. if Az = 1078%m then AE > 3eV

The stability of the atom is then a subtle combination of all four conditions.
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1.3 Van der Waals Interaction

The charge distribution in a inert gas atom is not rigidly spherical. During
its evolution instantaneously the gas may have regions of greater density. This
would mean that the atom has an instantaneous dipole associated with it. This
dipole produces an electric field : E = (2p;/R?®) & . If another atom sits in this
field and if o is the electronic polarizability of its electron cloud, then this field
induces a dipole in it ps = (2ap;/R*)é . The consequent potential is always

attractive :

If we take two charged oscillators :

Hy = (p}/2m) + (p3/2m) + (Bz1/2) + (Bz3/2)



e? e? e2 2

H = — - -
! R+R—|—$1—l’2 R+$1 R—x

If the distances x; and x9 are much smaller than R then,

We can diagonalize the hamiltonian by changing to symmetric and antisym-

metric combinations of the variables :

wyge = wo[L (2/BRY) — (¢*/(20°R")]

th 262 ?
Note that this is a quantum effect, in the sense that as A — 0, E— 0.

This is an attractive effective interaction
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As we bring the ion cores together with their own charge clouds following them,
because of the conditions 1,2 and 4 mentioned before, the repulsion increases.
Eventually it overtakes the attractive force. This very short ranged repulsion
coming from various sources is usually modeled by a R~!% type energy. The

model energy is then :

R )

If the lattice points are given in terms of the nearest neighbour distance R by

an = Rpm-,-l, then

This energy can now be minimised with respect to R to obtain the equilibrium

lattice distance and the cohesive energy : which is the energy at this minimum.



1.4 Bonding by the Electron Glue

The Ionic, Covalent and Metallic Bondings come under this common title.
The main ingredient of this bonding is the valence electron charge cloud. How
that charge cloud is distributed provides the different kind of bonding. In ionic
bonding the charge clouds are dense near one type of atom and rare near others.
This produces local charge excesses over and above the neutral background and
the Coulomb attraction of these pseudo-charges binds the solid together. In
covalent bonding the charge cloud is concentrated near the centre between two
atoms, providing them with an indirect attraction to each other through it. In
metallic bonding the charge cloud is reasonably distributed evenly and binds

the atoms together in this uniform glue.

Example : Let us take a diatomic solid and build up the wavefunction of the

valence elecrions as a linear combination of the atomic orbitals. The electron-
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electron interaction may either be explicitly considered or an effective one-

electron potential formed from, say, the LDA.,

¥ = D e

If we consider the minimization of the functional

F({a}) = E(¥Y) - (Y[H|Y)

with respect to the variables {cx} we get :

SIE($lém) = rlHlgm)lcm = 0

The above equations have a solution provided :
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det [Eskm - Hkm] = 0

This 1s the Secular Equation and its solutions will give is both the spectrum

as well as the charge density of the valence cloud.

1. if c; = cy the charge distribution is symmetric and builds up at the centre

between the two atoms and we have a covalent bonding.

(3

if c1 # cy the charge distribution is asymmetric. There is more charge
towards one of the atoms. This is Charge Transfer Note that the concept
of charge transfer in a solid is a difficult one, as it is not possible to assign
charges to ions uniquely. Such asymmetry leads to ionicity and ionic

bonding.

In ionic solids the electronic contribution to the energy is dominated by the
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Madelung Energy arising out of the Coulomb energy of attraction between

these domains of excess negative and positive charges.

13
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REQUIRED TO CALCULATE

We would preferably like to carry out first principles calculations (based, for

example, on the local density functional approach) of the following quantity :

The second part is the electronic contribution which consists of several parts :

The single energy band part Vg = Ticoee £i

Hartree Part Vg (p(r)) which is obtained from a Poisson equation from the
charge density produced in the band structure calculation : pr) = T, . |5,

and V21 = —p(r)
An Exchange-Correlation part, using a suitable LDA form.

A Madelung part coming from ionic charge distributions.
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This energy is calculated as a function of lattice separation R. The repulsive

part the should come automatically.
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