

H4.SMR/994-8

SPRING COLLEGES IN COMPUTATIONAL PHYSICS

19 May - 27 June 1997

ELECTRONS IN SOLIDS - I

A. MOOKERJEE S.N. Bose National Centre for Basic Sciences Salt Lake, 700 091 Calcutta INDIA

ELECTRONS IN SOLIDS - I

Abhijit Mookerjee

S.N. Bose National Centre for Basic Sciences,

Salt lake City, Calcutta 700091, India.

International Centre for Theoretical Physics

Trieste. Italy

ELECTRONS IN SOLIDS - I

Definitions and Concepts

Lattice translation vectors: three mutually linearly independent vectors χ_i , i=1.2.3 essentially define the lattice structure.

Lattice points: The set of vectors $\{r_L = \sum n_i \setminus_i\}$ where $L = \{n_1, n_2, n_3\}$ with the n-s being integers, defines the lattice points.

Primitive lattice translation operators: The operators \mathbf{T}_i defined by $\mathbf{T}_i \psi(\underline{r}) = \psi(\underline{r} + \chi_i)$ are called the primitive lattice translation operators.

Unit Cell: An enclosed volume C which when translated by all possible lattice translations fully cover the entire lattice space, is called a unit cell. Unit cells with the minimum possible volume are called primitive unit cells. A primitive unit cell associated with a lattice point such that any point in it is nearer to to this point than any other lattice point is called a Wigner- Seitz cell

Reciprocal Lattice: If we define a set of lattice translation vectors from a given lattice translation vector of a lattice by:

$$\hat{\chi}_1 = 2\pi \frac{\chi_2 \times \chi_3}{[\chi_1 \chi_2 \chi_3]}$$

$$\hat{\chi}_2 = 2\pi \frac{\chi_3 \times \chi_1}{[\chi_1 \chi_2 \chi_3]}$$

$$\hat{\chi}_3 = 2\pi \frac{\chi_1 \times \chi_2}{[\chi_1 \chi_2 \chi_3]}$$

Then the set of vectors $\{\underline{G}_{M} = \sum m_{i} \hat{\chi}_{i}\}$ defines the reciprocal lattice.

$$\underline{G}_{M}.\underline{r}L = 2\pi N \text{ N is an integer}$$

and.

$$\exp\left(i \, \underline{G}_{M}.\underline{r}_{L}\right) = 1$$

Corollary: Any function $V(\underline{r})$ which has lattice periodicity, i.e. $V(\underline{r}) = V(\underline{r} + r_L)$ can be expanded as a Fourier series in terms of the reciprocal lattice vectors alone.

$$V(\underline{r}) = \sum_{G} V(\underline{G}) \exp(i\underline{G}.\underline{r})$$

Brilluoin Zone: is the Wigner-Seitz cell of the reciprocal lattice.

The Bloch Theorem

In a crystalline solid the potential has lattice periodicity:

$$\mathbf{T}_{\chi}V(\underline{r}) = V(\underline{r} + \chi) = V(\underline{r})$$

Since the kinetic energy is a periodic function (being a second derivative), the entire hamiltonian also has lattice periodicity.

$$\mathbf{T}_{\lambda}H(\underline{r})\psi(r) = H(\underline{r} + \chi)\psi(\underline{r} + \chi) = H(\underline{r})\mathbf{T}_{\lambda}\psi(\underline{r})$$

It follows from above that the Lattice translation operators and the hamiltonian commute.

$$[H \mathbf{T}_{y}] = 0$$

Therefore these operators must have common eigenfunctions. The wavefunction, which is an eigenfunction of the hamiltonian is also an eigenfunction of the lattice translation vectors.

$$\mathbf{T}_{\lambda}\psi(\underline{r}) = \lambda_{\lambda}\psi(\underline{r})$$

But.

$$\mathbf{T}_{\lambda} \; \mathbf{T}_{\lambda'} \; = \; \mathbf{T}_{\lambda + \lambda'} \; = \; \mathbf{T}_{\lambda'} \; \mathbf{T}_{\lambda}$$

This implies.

$$\lambda_{\chi} \lambda_{\chi'} = \lambda_{\chi + \chi'} = \lambda_{\chi'} \lambda_{\chi}$$

But we also have:

$$\int d^3 \underline{r} |\mathbf{T}_{\chi} \psi(\underline{r})|^2 = \int d^3 \underline{r} |\psi(\underline{r})|^2$$

So:

$$|\lambda_{\gamma}|^2 = 1$$

The functional form of λ_{χ} is now fully determined by the above :

$$\lambda_{\chi} = \exp(i \, \underline{k}.\underline{r})$$

In other words:

$$\psi(\underline{r} + \chi) = \exp(i \, \underline{k}.\underline{r}) \psi(\underline{r})$$

The above can also be expressed as follows :

$$\psi_{\underline{k}}(\underline{r}) = \exp(i\underline{k}.\underline{r})U_{\underline{k}}(\underline{r})$$

with

$$U_{\underline{k}}(\underline{r} + \chi) = U_{\underline{k}}(\underline{r})$$

This is the theorem of Bloch.

NEARLY FREE ELECTRONS

The Bloch Theorem states that the wavefunction in a crystalline solid looks like a free electron part modulated by a lattice periodic function. Thus since both the potential $V(\underline{r})$ and the wavefunction modulator $U(\underline{r})$ are lattice periodic we can write:

$$V(\underline{r}) = \sum_{\underline{G}'} V(\underline{G}') \exp(i\underline{G}'.\underline{r})$$

$$U(\underline{r}) = \sum_{G} B(\underline{G}) \exp(i\underline{G}.\underline{r})$$

If we put this into the Schödinger equation we obtain (in atomic units where $h=1.\mathrm{m}=1$ and energy is in rydbergs):

$$\sum_{\underline{G}} B_{\underline{G}} \left\{ E - (\underline{k} + \underline{G})^2 / 2 \right\} \exp\left(i\underline{G}.\underline{r}\right)$$

$$- \sum_{\underline{G}} \sum_{\underline{G'}} B_{\underline{G}} V(\underline{k'}) \exp\left(i(\underline{G} + \underline{G'}).\underline{r}\right) = 0$$
(1)

This is the Schrödinger equation written in a plane wave basis.

Since the functions $\exp(i\underline{G}.\underline{r})$ form an orthogonal set :

$$\sum_{\underline{G'}} B_{\underline{G'}} \left\{ (E - E_0(\underline{k} + \underline{G})) \, \delta_{\underline{GG'}} + V(\underline{G} - \underline{G'}) \right\} = 0$$

These sets of equations have a solution if

$$\det ||(E - E_0(\underline{k} + \underline{G}))\delta_{GG'} - V(\underline{G} - \underline{G}')|| = 0$$

This is the Secular Equation

Let us now consider the reciprocal space near the Γ point at \underline{G} =0. Suppose that the periodic potential is small.

$$B_0 \simeq 1$$
. $B_{\underline{G}} \simeq \epsilon \ \underline{G} \neq 0$, $V(\underline{G}) = \epsilon$

From equation (1) keeping only terms of order ϵ we get :

$$B_0(E - k^2/2) + \sum_{\underline{G} \neq 0} B_{\underline{G}}(E - (\underline{k} + \underline{G})^2/2) \exp(i\underline{G}.\underline{r}) - \sum_{\underline{G}} B_0 V_{\underline{G}} \exp(i\underline{G}.\underline{r}) = 0$$

From this we have:

$$E = E_0(k) = k^2/2$$

$$B_G = (B_0V(\underline{G}))/(E_0(\underline{k}) - E_0(\underline{k} + \underline{G}))$$

(3)

In the above equation (1) if we go upto second order and from the double sum in the last term choose the term in which $\underline{G} = \underline{G}'$ then we get the second order correction to energy:

$$E = E_0(\underline{k}) + \sum_{\underline{G}} \frac{|V(\underline{G})|^2}{E_0(\underline{k}) - E_0(\underline{k} + \underline{G})}$$

This treatment breaks down when we have a degeneracy and $E_0(\underline{k}) = E_0(\underline{k} + \underline{G})$. This happens if:

$$2 \underline{k}.\underline{G} + |\underline{k}|^2$$

This occurs when \underline{k} lies on a Brilluoin zone surface. Now we have,

$$B_0 \simeq 1$$
, $B_{\underline{G}_1} \simeq 1$, $E_1 = (\underline{k} + \underline{G}_1)^2/2$

Again, going back to (1) and keeping terms of the order 1, we obtain:

$$B_0(E - E_0(k)) + B_1(E - E_1) \exp(i\underline{G}_1.\underline{r}) - B_1V_1 - B_0V_1 \exp(i\underline{G}_1.\underline{r}) = 0$$

Again, using the orthogonality of the basis,

$$B_0(E - E_0) - B_1 V_1 = 0$$

-B_0 V_1 + B_1(E - E_1) = 0

These equations have a solution if:

$$(E - E_0)(E - E_1) = |V_1|^2$$

At the Brilluoin zone boundary $E_0{=}E_1$ and we have the solutions :

$$E = E_0(\underline{k}) \pm |V_1|^2$$

The degeneracy at the Brilluoin zone is lifted by the periodic potential. There is a gap of the order of $|V_1|^2$ at the boundary.