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ELECTRONS IN SOLIDS -1

Definitions and Concepts

Lattice translation vectors : three mutually linearly independent vec-
tors \;. i=1.2.3 essentially define the lattice structure.

Lattice points : The set of vectors {r;, = T n; \;} where L =
{n1. 090y} with the n-s being integers. defines the lattice points.

Primitive lattice translation operators : The operators T; defined
by Tie(r) = o(r 4+ ;) are called the primitive lattice translation
operators.

Unit Cell : An enclosed volume C which when translated by all possible
lattice translations fully cover the entire lattice space. 1s called a unit cell.
Unit cells with the minimum possible volume are called primitive unit
cells. A primitive unit cell associated with a lattice point such that any
point in it is nearer to to this point than any other lattice point is called
a Wigner- Seitz cell

Reciprocal Lattice : If we define a set of lattice translation vectors
from a eiven lattice translation vector ot a lattice by :
V2 X \3
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Then the set of vectors {Gyy = T my; v} defines the reciprocal lattice.

Gy .rl = 27 N Nis an integer

and.

exp(tGyorr) = 1

Corollary : Any function V(r) which has lattice periodicity. 1.e. V(r) =
\{r + ) can be expanded as a Fourter series in terms of the reciprocal
lattice vectors alone.,

Vie) = 2 VIGE) exp(uG.r)
G

Brilluoin Zone : is the Wigner-Seitz cell of the reciprocal lattice.

The Bloch Theorem



I a crvatalline solid the potential has latrice pertodicity .

Since the kinetic energy is a periodic function (heing a secowd derivative).
the entire hamiltonian also has lattice periodicity.
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Hir + vulr + ) = H)T vir)

It follows from above that the Lattice translation operators and the hamil-
foniall comnte,

Therefore these operators must have common eigenfunctions. The wave-
function. which is an cigenfunction of the hamiltonian is also an eigen-
function of the lattice translation vectors.

Toolr) = Aelr)

But.

T, Ty = T,y = Ty T,



This tnplies.
/\ A / = /\\+\f == A\J A\

But we also have

SU :

The functional form of A is now fully determined by the above :

A, = exp(thkr]

In other words :

L‘(L + \) = P,XI)(Z l'_’_)i(!—)

The above can also be expressed as follows :
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This is the theorem of Bloch.

NEARLY FREE ELECTRONS

The Bloch Theorem states that the wavefunction in a crystalline solid
looks like a free electron part modulated by a lattice periodic function.
Thus since both the potential V(r) and the wavefunction modulator U(r)
are lattice periodic we can write :

Vir) = Zl exp (G 1)
U{r) = ZB (G) exp (1G.1)
I

[f we pnt this into the Schadinger equation we obtain (i atomiic 1Hits
where i=1an=1 and energy is in rydbergs) :



This is the Schrédinger equation written in a plane wave basis.

Since the functions exp (uG.r) form an orthogonal set

> By {{E = Ey(k + G))dge - VIG - G} = 0

These sets of equations have a solution if

I
-

det |[[(E — Ey(k + G))oger — V(G — G|

This is the Secular Equation

Let us now consider the reciprocal space near the I point at G=0. Sup-
pose that rhe periodic potential is smiall.

B(}N]. B(EEG#O C):F
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From eqnation (1) keeping only terms of order € we get.

BUE = /2) + 3 BglE — (b + G /2)exp (1G.r)

(40
— S Blgexp(uG.r) = 0
(&3
From this we have :
E = Eyk) = AJ/Z
B, = (BoV(G))/(Ey(k) — Eylk+G))

(3)

In the above equation (1) if we go upto second order and from the double
. v .- 1 ll'

s in the last term choose the term in which G = G then we get the

sccotnd order correction to energy -

E = Ei](}") + Z h_(g)'Z
B o Ey(k) — Ey(k + G)

This trearnent breaks down when we have a degeneracy and Ey(h) =
Eo(h + (). This happens if :



2kG + [k

This ocenrs when & lies on a Brilluoin zone surface. Now we have.

By~1. Bg =1, Ey = (k + G)*/2

Again. going back to (1) and keeping terms of the order 1. we obtain :

By E—-Eyik)) + Bi(E=E)exp (1G).r) — BiVi=ByViexp G ) = 0

Again. using the orthogonality of the basis,

BoE—E)) =BV, = 0
-ByWVi+B(E—-E) = 0

These equations have a solution if ;

(E—E(J)(E—El) = |"'1|2

-——



At the Brillnoin zone boundary Eg=E, and we have the solutions :

E = Eyk)+ V[

The deeeneracy at the Brilluoin zone is lifted by the periodic potential.
There is a gap of the order of |17]? at the boundary.
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