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I. Introduction

In the last several years there has been a revolution in
string theory.

1. All five string theories (4 11D Sugr.) are aspects of
one underiying theory.
M'#\'&)j
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2. String theories contain Dirichlet p-branes.

D-bra_nes are dynamical objects, with low-energy physics
described by supersymmetric gauge theory.

Philosophy of these lectures:

Describe D-brane physics using Super-Yang-Mills as the
starting point.

Motivation:

(1) SYM describes much interesting D-brane physics,
without needing complicated stringy technology.

(2) M(atrix) conjectures say that SYM is everything.

Heuristic discussion: D-branes from string theory

In string theory, D-branes define open string backgrounds.

String ends live on D-branes.

Strings produce D-brane dynamics.



String spectra (from world-sheet a la GSW)

Consider open and closed strings

-

Bosonic fields X# and fermionic fields 3.
Ciosed string Is like two copies of open string (left/right)

Boundary conditions give different fermion sectors
Open: NS/R, Closed: NS-NS/R-R/NS-R/R-NS

There is a tachyon, removed by GSO projection.

Left/right GSO projection same (different) — 118 (11A).

Massless fields characterized by SO(8) rep.:
Open string: 8y — Ay (NS), 85 — ¥y (R).

NS-NS R-R

3
Closed: IIA | g, ¢, B*Y Agl),Agu} ]
1B | ¢, 0.8 | A®, 4D, A

where A(®) is seif-dual.

D-branes couple to R-R fields, [, ,, AP+ (Polchinski).
Type IIA: p = 0,2,4,6,8; type IlIB: p=-1,1,3,5,7,9

In a D-brane background

R’A-c IK

open string vector field A¥ decomposes into:
e p+ l-dimensional U(1) gauge field A”
e 9 — p transverse coordinates X

D-brane action for massless string fields is (Leigh)

S = -Tpfdf’+1g detY2(G 4 B+ 2ma’F) + ferm. 4+ CS

Tp 1 1

Tp=—'

g~ gve! (2mva')P

For weak field in flat space, gives U(1) SYM

S ~ /df’“e(-FaﬁF‘*ﬁ — (DaX®)? —~ ferm.)



Strings stretching between D-branes have mass ~ length.

[
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. o ..
Fields A!.j become massless as branes ¢,j approach.

N Parallel D-branes acquire U{N) gauge theory upon
coincidence. (Witten)

Low-energy action is 10D SYM action

S~ /dlof — Tr Fu F¥ 4+ Tr TH Dy

reduced to p + 1 dimensions

This is the starting point for most of the material in
these lectures.

II. D-branes and Super-Yang-Mills

Starting point

Low-energy physics of N coincident Dirichlet p-branes is
described by (p+1)-dimensional Super-Yang-Mills, given
by dimensional reduction of A =1 SYM in 10D.

10D Super-Yang-Mills
Ten dimensional U(N) Super-Yang-Mills has an action

§ = /dlof (—%Tr Fp,uF'uu -+ %Tr "er#Du'd))

The field strength
Is the curvature of a U/(N) gauge field A,.

Ay and ¥ both live in the adjoint of w(N) and carry a
(suppressed) adjoint index.

The covariant derivative D, of ¢ is
Dy = 8u¥ — igy M Au, ¥

¥ is a Majorana-Weyl spinor of SO(1,9), acted on by
32 x 32 I matrices.

The action is invariant under the supersymmetry
bA, = €l Y
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10D SYM has 8 bosonic degrees of freedom
and 8 fermionic degrees of freedom.

There are 16 supercharges.

10D SYM is a well-defined classical fleld theory but is
anomalous and problematic quantum mechanically.

After dimensional reduction, theory is better behaved.
Convention: absorb gy s in A so action is
S = _-—-i / d30¢ (=Tr Fu F* + 2iTr PreDyuy)
49y m
and covariant derivative is

Dp, = Bp "'IA“

Dimensional reduction

Dimensionally reduce to p + 1 dimensions by making
fields independent of 9 — p coordinates.

Fields in p+ 1 dimensions:

(p 4+ 1)-dimensional gauge field Aa

9 — p adjoint fields X* (transverse positions)
associated fermions

Action:

S ~ fdp+1ETr (= FogF®? - (Do XH)? + (X, X7]? 4 ferm.)

9

Classical vacua:
F, fermions vanish
Xt constant and [X*, X7} =0

When X' commute, simultaneously diagonalizable.

Ty 0 0
xi= 0 x‘z e
0
e 0 0

:u:';c are coordinates of kth D-brane.

Configuration space is
(R9-P)F
Sk

oo -

8
2-.

Permutation symmetry is residual Weyl symmetry.

10



Example: 3-branes
Dimensional reduction of A =1 10D SYM to 4D

Ay — 6 transverse scalars X%, 4D connection A4,

Gives N =4 SYM in 4D.

In é\fcz 1 language, this theory has chiral superfields
¢, B,

with superpotential

W = Tr ¢[B,C].

Superfields have six real bosonic components, corre-
sponding to transverse X fields.

¢=X"+iX°> B=X®+iX7,C = X8 4+ix?®
potential is

ST1B? = e (18,17 + s, BIP + 10, C11)

Tr(D%)? = 2Te (e, $N1Z + 118, B2 + [[C,CN?)

gives

V ==y [X?, x7)?

1]
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Example: 0-branes

Dimensionally reduced SYM becomes N = 16 SUSY
matrix quantum mechanics.

In units with 2xa’ = 1, in gauge Ag =0

L= 51. XX+ S0 Tr (X9, X¥2 +207(0 + ra[x2,6])
g a<b

There are nine adjoint scalar matrices X¢.

Superpartners are 16-component spinors 0

Transform under SO(9) Clifford algebra.

Classical static solutions have [X?, Xt = 0.
Diagonal elements are O-brane positions.
Classical configuration space
(RN
SN

Off-diagonal elements give noncommutative geometry

12



III. D-branes and Duality

O-branes in flat space described by super QM
T-dualit
y 0-branes on R%/I where [ is discrete:
Compactify on a circle of radius R, giving R? x st Consider R® with |I'| copies, impose symmetry.
Example: ALE spaces (Douglas/Moore)

Study O-branes on S by looking at covering space R.

T @k"“"n

\ PR
., 4Tk :
L‘ t 2‘& 3 L x-u,q X“.d X ’u
Ls2wR | '
D . S % ¥ it
' 4% e ks o 03 iz 58
I1A e o

T-duality maps — « —, R~ —.
Sl 1

R Index copies by n € Z since S! = R/Z.
_branes first understood from T-duality in string theor . )
O y 9 y U(oco) Quantum mechanics with constraints.

r fixed b.c., T-duality maps Neumann « Dirichlet. ) )
For fi y map Fields X2, .;; write as N x N matrices X3,
Thus, T-duality maps _
Translation invariance says
p — branes « (p £ 1) — branes

Xom = X(am_l)(nul), a>1
Expect that T-duality is a symmetry of string theory. X}ﬂn

1
Xim-1)n—1)» MFE™N
1
enki + X(n—l)('n—l)

I

Investigate in context of U(N) D-brane gauge theory. X’lm
Prove T-duality from super-Yang-Mills.

Set 2we/ = 1 for now, will restore later.
13 14



So X1 in the compact direction looks like

X1 X2 X3
X_]_ Xo-—z‘ﬂ‘RI X1 X2 X3
X_o X1 Xo X1 X2
X_3 X_z le X0+27TRI X1

X_3 X_» X_1
where X, = X/,
This is a matrix representation of
X1 =id+ A(F)

on a Fourler decomposition of functions
¢(2) = Ztﬁnei"‘im’
n
with R' = o'/R = 1/(27R).
10 = diag(...,—4nRI, -2xRI,0,27RI,4rRI,...)

and decomposing

A= z e:’ni/R’Xn

L

identifies X, = Xén with modes of A.

15

We can therefore identify

X% ~i0% + A®
under T-duality in the compact direction.
Gives an explicit SYM derivation of T-duality.

0-brane and 1-brane SYM actions on S! are equivalent.

After replacement,
Tr (X1, x°%)?

becomes

- (2:3') /dm Tr (8, X% —i[AL, X2

- (2:}{,) fd;c Tr (DyX9)2

Factor of R = 1/(2nR’) needed to extract zero mode.

Similarly,

%2 1 )f 2
CTr (Do X®)2 - de Tr F
(DoX™) (27#{' oo

Resulting action is 2D SYM with 16 supercharges.

16



Generalizes to arbitrary dimensions:

p-brane & g-brane SYM actions on TlP—4l are equivalent.

After T-duality on two compact directions

([Xa,Xb])2 —— (__1%_) /dzad:cb (Fab)2

4W2R:1R;,
Including constants, transformation is

X® e (270)(i8% + A%)

We will use this relation to study many D-brane config-
urations and their transformations under T-duality.

Essential feature:

T-duality exchanges string winding and momentum, as
expected from string theory.

17

We can generalize to twisted sectors.

Constraints can be expressed abstractly as
UX°U™! = xX* + 6* 2xRI.
This is satisfied formally by
x1 = ;9! 4+ Al U = e2milR
More generally, can include a gauge transformation
UX°U™ ! = g(X*+ 6*12xRI)g™ L.
This is satisfied formally by
x1 =il 4 AL, U= g_e2m’51R

Corresponds to a bundle with nontrivial BC.

For example, if g is a permutation it switches labels of
0-branes on each sheet of covering space.

18



S-duality

IIB string appears to have an S-duality symmetry. S-duality maps group G to dual group G.
Symmetry group is SL(2, Z). Yang-Milis coupling and theta angle can be packaged in
Exchanges strong and weak coupling. T = 9 + L";’

27 g

Exchanges strings and 1-branes.

SIL(2,Z) acts on coupling by
Exchanges 5-branes and NS 5-branes. ( ) 9

_ ar + &
Leaves 3-branes unchanged. L——
On 3-branes, appears to act as SYM N = 4 S-duality. ' where a,b,c,d € Z with ad — bc = 1.
SYM S-duality conjectured by Montonen and Olive. In particular,
— 1
Generalization of Maxwell duality T T
is periodicity of 8.
F o xF
F - B And
e — g T — —1/7

inverts coupling and corresponds to strong-weak duality.

For /(1) theory this is a symmetry.
d Y Dyon masses (BPS) agree with duality.

For non-abelian theories, only seems to be true with Co ; ;
N = 4 supersymmetry. Partition function checked in some cases on compact

manifolds in twisted theory by Vafa and Witten.
Still unproven, but much evidence.

19 20



IV. Branes and Bundles

Review of vector bundles

A vector bundie with structure group ' looks locally like
U x RF.

Transition functions between patches gy, identify
(:l:, f) and (37” f’) where f' = guuvf.

Transition functions satisfy cocycle conditions

Guvrwuwu = 1.

A Yang-Mills connection is associated with a principal
bundle with fiber G. Transforms as

A=g-A-gt—idg-g?

Matter fields are sections of associated vector bundles.

1

Over compact manifolds like T2"™ nontrivial bundles are
characterized by topological invariants like Chern classes

cy = El—Tr F
m

cs =—1—2(Tr FAF—(Tt F)A(Tr F))...
8w
c; are integral cohomology classes.

On D-branes, topological invariants carry brane charges
[ F carries (p— 2)-brane charge.
[ F A F carries (p — 4)-brane charge.

[ FAFAF carries (p - 6)-brane charge ...

Originally understood using string methods
Term in D-brane action
Tr / CAef
Ept1
where C is sum of R-R fields.

For example, on a 4-brane F A F couples to A{}), giving
O-brane charge.

Tr/ AWM AFAF
Lg



Fluxes and T-duality
Compactify on 72, with radii
Ry = L1/(2m), Ry = Lo/ (2n)
Wrapping N 2-branes gives U(N) SYM on T2.
Nontrivial U(N) bundles given by transition functions
21(z2), Q2(x1)

5 ‘ n&-;(x') ;

\

§2,(%)

S

Fundamental matter fields obey

¢(x1 + Ly, z3) = Q1(x9)(zqy,7z3)
#(x1,z9 + L) = Q(x1)¢(z1,20).
Connection satisfies
Ax(zy + Ly,m2) = Q(22)Az(zy,22)0]  (23)

—i (0;21(2)) - 7 H(z2)
etc.

Cocycle condition for a well-defined bundle is
Q5N (1)1 0)22(0)92, (L) = 1.

For compactification on T™ story is same.

Transition functions ; satisfy cocycle condition for all
pairs 1, 7

Example: 72
U(N) bundles over T2 are classified by C1 = [e;.

Curvature is
1 _
—/Tr F=kel
2n

Decomposing

U(N) = (U(1) x SU(N))/Zy
This corresponds to U(1) flux F = ki/N

and an SU(N) bundle with 't Hooft twist e2m*/N.

Twisted bundles satisfy
Q, 1 (L1)07H0)2(0)0 (L) = 2

where Z = ¢2™%/N [ is central in SU(N).



Consider a U(N) theory on T? with flux [ F = 2=.

We can choose boundary conditions

Ql($2) — e21ri(32/L2)TV
Qy(z1) = 1
where
1
V = l.
1

And T = (0,0,...,0,1/N).

These boundary conditions admit a linear connection
with constant curvature

A1 = 0
A, = Fzy +%’£Diag(o, 1/N,...,(N =1)/N)
2
with
2
F=——N.
NLiL,

€, = 1 so T-dualize using X? = (2na/)(i8, + A,).

This gives
20 0
2 472! 1 0O —+1 0
X —_— of —— ] Ll
LQ N 0 . 0
. 0 0 24 (N-1)
Ly

Corresponding to a 1-brane wrapped once around X2
(Dual radius is R, = a'/Ry = 27a'[Ly.)

/

]

Since wrapped 1-branes are T-dual to 0-branes, the orig-
ina!l flux on the 2-brane corresponds to a O-brane.




Notes:

e Similar construction possible for & 0-branes.

L

/ (3,2) wniy

e Chose §27 = 1 for convenience,

Could have used more standard ('t Hooft)

Ql(.’l‘JQ) e ezﬂi(xQ/L:_))(l/N)IU
Q(zy) = V
1 _
2m
— ¢

e?'rri!Nw-lz

Now transiation in covering space gives rotation by V.

Example: T4
Now let's consider an instanton on 7% with sides L.

No U(N) Yang-Mills solution with £ = 1 unless instanton
is pointlike.

Consider k =2, N = 2.

Take transition functions

Qg = Q4 = 1
Ql — e?‘rri(:ﬂ2/L)T3
Q3 — e??ri(I4/L)T3
where
. 1 0
TV o -1
Admits connection
Al = A3 = 0
2rxy
A2 = T3
L2
273
A4 = T3
L2
with curvature
- ris
Fio =f34 = — 73



Since Tr F = 0 there is no 2-brane charge.

Instanton number is
Cyr = 1 d*c FANF =2
872

which we expect corresponds to two O-branes.

Under T-duality in directions 2, 4 we get two 2-branes

Xo(zy,23) = +an?a'zy/L?
Xa(zq,23) = t+4n2a'zy/L?

!,,T

X

2-brane charges correspond to homology 2-cycles.

brane 1 — (13)+ (14) +(23) + (24)
brane 2 — (13) - (14) —(23) + (24)

Total is 2(13) + 2(24).

T-dual to two 4-branes and two O-branes.

Branes from smaller branes

So far we've built (p — 2k)-branes from fluxes.

Now, through T-duality, we'll build (p + 2k)-branes.
Consider again the diagonal (N,1) 1-brane on T?

(Set L; = 1 for the moment)
?ii
H P - L . 08 ;
A S — e o

Satisfies
472/
N

I

[(8y —iAy), X% =

T-dual on X2 to N 2-branes with unit flux
—2m
N

I

[(8y —iA1), (82 —iAQ)] = —iF =

T-dual on X! to N 0-branes satisfying

[XI,X2] — 87T30!'21:I
N

10



Normalizing radii of T2 to 1,

N O-branes on T2 with matrices X satisfying Strings and electric fields

1 w2y — o
T (X5, X°) = 2mi We can give a O-brane on S momentum.

carry a unit of 2-brane charge.

§ T
— Q

Momentum proportional to X1
Note: impossible for finite N without compactification. Under T-duality
X1 /(27ra')A1

Generalizes naturally to higher dimensions.

N 0-branes on T* with Thus, momentum « electric flux.
Tre . X X XkX! = gn? : . -

réjp X XTXTXT = 8n This corresponds to string momentum « winding.
carry a unit of 4-brane charge, etc. Momentum and T-dual string winding are gquantized

Conditions can be mixed. 2-branes wrapped on 1,2 with through QM.

Tr (Flz[X:’,X“] _ (D1X3)(D2X4) + (Dlx4)(D2X3)) — 82 Unlike fluxes which are topologically quantized.
has a unit of 4-brane charge on dimensions {(1234).

11 12



V. Born-Infeld Theory

For M(atrix) theory, SYM is starting point.

Inadequate for describing details of type Il D-branes.

e Static gauge

\

o Small field, slope

(Y

| A
!

— 1

2 2

Estring = L= 1Yy Ly + L3
2
L2

Evym = 1oLy Lp(F?) = constant - 1 (ﬁ:)

Yang-Mills energy is leading correction to T L1-
13

Complete description of D-brane physics requires Born-
Infeld

S = —TpfdP+1§ detY2(G + B+ 2nd'F) + ferm. + CS
However, there are complications:
o Difficult to supersymmetrize (x-symmetry)

e Correct non-abelian Born-Infeld action unknown

¢ Nonlocal interactions

Simplified version: static gauge, abelian, flat background

Dimensionalty reduce

5= - [ dloz\/-— det (muy + Fuw — 227 w80 A + ATPAuANT 0,

to p + 1 dimensions (Aganagic/Popescu/Schwarz)

14



After dimensional reduction,

5 = pr/deE det /2 (n,5+8a X205 X 2 +2ma Fyp)+ferm.

Generally, difficuit to extend to non-abelian case.
Possible when F and X% are constant and commute.

Can use to describe simple aspects of multi-brane con-
figurations:

e Energy
e Fluctuation spectra

e Scattering amplitudes

In particular, consider configurations of p-branes with
1. X% =0 for all transverse a, A=20

2. Fup constant for all o,

3. [Fap, ¥yl = 0 for all «, 3,7, 6.

After simultaneous diagonalization,

S = —rp/d”+1£Tr \/— det(‘nag + 21r01’Fag)

15

Energies

First, fix normalization constants.

Tp 1 1

Tp = — =
g g'/a’(47r2a')1’/2

where

g=e?

is the string coupling, related to the dilaton field.

From T-duality, we need
T = T;+1(2TFR’)
This is in accord with
g=gVa'/R
which comes from invariance of

g9 = 9\/0'/5’-9-

16



Now consider 2 4-branes with instanton number k& = 2
Let's now use Born-Infeld to calculate the energies of on T* with volume Vy = Ly1LaL3ls
some simple systems. )
As before, we can choose a linear connection
N 2-branes with g units of fiux have Ay =A; = O
2T 2m
=_“" A, = b
LiLaN LyLy
27Wxq
A4 - T3

L3Lg

Fi2

det (8,5 + 2ma Fop) = 1 + 422 Ff,

with curvature

Energy is It

__—T3
L1L,

Faq = 2n
Lalg >

Fi, =

E = N72L1L2ﬁ+4w2a'2f‘122

= \ﬁVTzhLz)z + (g70)?

Energy for a completely separated system of N 2-branes Conditions 1-3 are satisfied. Energy is

and ¢ O-branes would be

NtaLiLy 4+ 970

E = 1aVaTr y/det (555 + 270’ Fog)

= 21'4‘/4\/(1 + an2a/?FZ))(1 + 4n20/2Fd,)
After T-dualizing in direction 2,

B o= i J(VLO? + (anPd /L]

When L,L, = L3L4 configuration is self-dual and

E = 2T4V4+2T0
= 7 ﬂNLl)? + (qLh)? o .
which is precisely the energy of the separated branes.
as desired. Exercise: check that E is r.i, times the total volume of

the two 2-branes after T-dualizing in directions 2, 4.

17 18



. D-brane Fluctuations

Fractional Momenta

Consider a 1-brane wrapped around (N,1) on T2

We expect momentum modes with
2n

EF=""n
)

where

L=+/N?L? 4+ L3
is the length of the 1-brane
and winding modes where

E=—"m
2na’
where

LyLy

2752 2

is the minimal length of a winding string.

d =

19

Dual Yang-Mills picture is N 2-branes with 1 flux quan-
tum.

Boundary conditions

Qy(zy) = e2milz2/l)Ty
Qy(zy) = 1
or
Qy(zy) = e2rilaa/l)A/MIY
Q(zy) = V

give fractional momenta.

More transparent with_latter BC's.
§A (xy,z0 + L) =V 6A;(x1,22) - v1
makes both components periodic in zo with period NL;.

§A;(zy + L1,20) = U - 8A(zy,22) - U™}

makes the j — k diagonal transform by e27i—k)/N
which gives momenta n,n+ 1/N,...,n+ (N —1)/N.

Thus, momentum in both directions is quantized in units
of 1/N.

N2_fold degeneracy is raised.

Same results for any BC's for same bundle.

20



So for Yang-Mills, flux causes fractional quantization.

Corresponds to dual string excitations only in limit

qLl, = an%0/q/L, « N1y

For exact correspondence, need Born-Infeld.

Wwhen F ~ I commutes with everything, computation
simplifies

Fluctuations in Fy, rescaled by (1 + (2o’ F)?) 2
Eluctuations in Fo; rescaled by (1 + (2ma'F)?)~!

Causes overall rescaling of fluctuation spectra by

1 _ 1
P2 2 142
G ()
1L2
2 2
E2 = 1 . (2« 1) +(27r 2))
e (4w2a') Ly L
LyLy

in agreement with string theory.

21

Fluctuation spectra provide a check of non-abelian Born-
Infeld.

One suggestion for NBI was made by Tseytlin:

£ = STry/- det(nu + 270/ Fyw)

where trace is symmetrized after formal expansion.

This can be checked in a background of intersecting
branes dual to a gauge theory background.

/ i

(5] T .

®9Q

A

Consider two 4-branes on T4 with k = 2 O-branes.

tan(6‘1/2) = 21?&’F12
tan(02/2) = 21I’(!'F34

relates angles of T-dual 2-branes to fluxes.

Compare string spectrum in 2-brane background with
Yang-Mills and Born-Infeld spectrum in 4 + 0 back-
ground.

22



String calculation of fluctuation spectra around two 4-
branes at angles 8y, 8, (Berkooz,Douglas,Leigh)

M==0/m -(ny +ky/2}+65/7-(na2+ ka/2)

for certain combinations ky, k, and integer n > 0.

Yang-Mills fluctuation spectra on 7% (van Baal)

M= 2tan(91/2)/1r-(n1+k1/2)+2 tan(62/2)/1r-(n2+k2/2)

When 8, # 8, both spectra have tachyons from

(k1,k2) = (1,-1)or(-1,1)

T his corresponds to unstable background.
Signs of spectra are same, but exact values are different.

Symmetrized trace prescription doesn’'t correct com-
pletely.

In special case #; = #,, n terms agree, not k£ terms.

Discrepancy probably due to [F, F] or DF terms ignored
in Tseytlin's analysis.

Formulation of complete non-abelian Born-Infeld theory
is an open problem.

23

VII. Bound states of D-branes

We've discussed aspects of D-brane geometry, energy
and fluctuations.

Now consider interactions, beginning with bound states.
Several systems of interest:

e p — p' bound states

e p — p bound states

e brane-string bound states

Bound states originally understood from supergravity
and using duality from perturbative string spectrum.

1-brane/string bound states described by Witten using
gauge theory.

Studying bound states has been a major area of interest.

We'll review some important developments which are
easily accessible from gauge theory.



BPS states

Certain extended SUSY algebras contain central terms

{Q,Q}~FP+ 2
For example, in D =4, N =2 U(2) SYM,
{Quir Qsj} = 5ij’r£ﬁP.u + € (608U + (v5)agV)

where

U={(dle V=1()9
are related to electric and magnetic charges after spon-
taneous breaking to U(1).

Since {Qai»@p;} is positive definite it follows that
M2 > U2 4 v2
SO
M > (e +g°
Inequality saturated when {Qar ng} has vanishing eigen-
values.
This implies Q|state) =0 for some @

In this case, ‘“‘short” SUSY multiplet protects mass.

Similar BPS states appear in string theory.

Central terms correspond to R-R charges (D-branes).
States which preserve some SUSY are BPS saturated.
Many ways of describing BPS states:

e Through duality from perturbative string states
Allows counting of states

e Through space-time SUSY algebra
Connects to supergravity solutions

e In Yang-Mills/Born-infeld
Gives explicit description of bound states
But story is more complicated (x symmetry, NBI)

From duality and SUSY algebra, can predict
p — p BPS systems are marginally bound (E = NEp).

p— (p+ 4) BPS systems are marginally bound.

p—(p+2) BPS systems are truly bound (F = ,/Eg + Es+2)-

1-brane/string BPS systems are truly bound.



Binding O-branes and 2-branes
Start with classical Yang-Mills in 2 4+ 1 dimensions.
Attach a O-brane to an infinite 2-brane.

Tends to spread out

O-brane charge ~ [ F

Energy ~ [ F2.

Scaling F'(x) = p? F{pz) leaves flux fixed

but gives E' = p?E.

Taking p — O reduces energy, spreads out flux.

Or} a compact space, energy minimized when flux is
uniform.

Return to T2. Already considered uniform flux.
Using Born-Infeld energy,

N 2-branes on T2 with g flux quanta (O-branes)

E = \(NraLiLy)? + (qm0)?

e ¢ T 7 /

/]

T-dual to diagonal 1-brane with

B o= r(NLD)? + (L5)?

Classical bound states ~ constant flux/diagonal 1-brane.
Classical moduli space S1 x S1/Zy.
From positions of 1-brane, /(1) holonomy on 1-brane,

or U(N) holonomy (flat connection) on T2.



0 + 2 bound states saturate BPS bound.

Can try to check SUSY from SYM

s° = —%Fﬁul'”"e

Since
(|—12)2 - _1
sy cannot vanish when Fip ~ I

So the bound state appears to break SUSY.

Catch: IIA has 32 supersymmetries.
Half are broken by a D-brane.

Remaining supersymmetries were originally broken.

State is actually 1/2 supersymmetric.

Careful analysis includes nonlinearly realized SUSY's.

(Green/Gutperie)

Can be extended to Born-Infeld with k-symmetry
(Bergshoeff et al.)

Still somewhat unclear in non-abelian case.

Unbroken SUSY of D-branes
Type Il string theory has N =2 SUSY in 10D.
M are 32 x 32 matrices.

Admit Majorana and Weyl spinors.

Unbroken supersymmetry of a D-brane satisfies
e=[]r*e
i

with product over orthonormal basis on world-volume.

N parallel p-branes have 1/2 supersymmetry unbroken.

Thus, 0 4+ 2 bound state is 1/2 supersymmetric.

Separate O-brane and 2-brane would have
MO = rorir2e

but this is impossible since (M?2)? = —1.

Agrees with BPS saturation of bound state.

0 + 2 system is truly bound when N, q are relatively
prime.



Binding 0-branes and 4-branes

In classical Yang-Mills, a O-brane (instanton) scales freely

[T [ AT T

O-brane charge ~ [ FAF

Energy ~ [ F2.

Scaling F'(z) = p? F(pr) leaves [ F' A F fixed
and gives E' = F.

Changing p has no effect on energy.

Yang-Mills solutions with [ I"A [ nonzero are instantons.

Classical moduli space with size, orientation parameters

On T* considered a system of 2 4-branes and 2 O-branes

Born-Infeld energy was

E = 274\/4\/(1 + 47202 FL)(1 + 4n?a?F3,)

This satisfles
E > 2m3Va+ 279

with equality iff F is self-dual

T-dual 2-brane configuration preserves some supersym-
metry iff angles 6,8, are equal (Berkooz/Douglas/Leigh).

Thus, the minimal energy configuration is indeed BPS.

In Yang-Milis theory, minimal energy instantons are al-
ways self-dual or anti-self-dual.

Follows from

(F+*F)2=2(F2£ FAF)>0



Instantons

(Anti)-self-dual instantons should be BPS for Born-Infeld
To prove this, non-abelian Born-Infeld is necessary.
This may give a hint for formulating NBI.

On any compact 4-manifold exists an (A)SD moduli
space of irreducible instantons.

Important for studying topology of 4-manifolds.
Over S* dimension of moduli space is
ANk-N?2+1
for U(N) k-instantons.
Over T4 dimension is
4[Nk - N2+ 1}

If £ is too small, no irreducible connections.

Dimension of moduli space can be determined by count-
ing 0-modes in a brane background.

Dimension calculabte through index theorem.
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Roughly speaking, classical moduli space of vacua for
0-4 system is moduli space of instantons.

Several complications:

e Shrinking instantons

When an instanton shrinks to a point, the O-brane can
leave the 4-brane.

This cannot be described in gauge theory.

Need a more general description.

One possibility: use two gauge groups U(N) x U(k).
Expand around vacuum on intersection manifold.
Dropping U(N) of 4-branes leaves a U(kj gauge the-

ory with extra hypermuitiplets x corresponding to 0-4
strings.

11



U(k) gauge theory on 0O-brane world-volume is dimen-
sional reduction of N = 2 in 4D with following scalars:

¢: adjoint (in gauge multiplet)
B, C: adjoint (from N = 4 gauge multiplet)
x.X: In U(N)xU(k) and U(N) x U(k) (fund. and anti.).

In 4D language superpotential is
Tr ¢{B,Cl + Tr xéx

¢ and A, give transverse O-brane coordinates X©.

Moduli space of vacua has two branches:

w 7

Covlomy l-\i’\s

Coulomb branch: X% £ 0, x,x =0
Higgs branch: X% =10, x,x # 0.

Shown by Witten (in 5-9 context) that Higgs branch is
precisely the moduli space of instantons on R?, through
ADHM hyperkaehler quotient construction.

Discussed by Douglas for arbitrary p-(p 4+ 4).
Further evidence through probes (Douglas).

12

e No instantons for some N, k.

For example, with N = 2,k = 1, instantons shrink to a
point.

Need sheaves (Douglas/Moore).
Arguments for using sheaves:

Nahm-Mukai: (N,k) moduli space and (k, N) moduli
space are equivalent.

Agrees with T-duality. (Note: doesn't extend to field
theory) _

Only valid for arbitrary k, N in sheaf context.

Sheaves related to infinite-dimensional symmetry alge-
bras, connected to duality symmetries.

Counting BPS states involves cohomology of modutli
space (Vafa)

Precise counting requires resolution of singularities.

13



O-branes and 6-branes

Try to attach a O-brane to a 6-brane

In classical Yang-Mills, O-brane charge ~ [ FAF AF
Energy ~ F?2

From scaling argument, O-brane tends to contract

=

Scaling F'(z) = p2F(pz) leaves [ FAF AF fixed

but gives E' = E/p?.

Taking p — oo reduces energy.

So generically O-brane will shrink and be pushed off.
Yang-Mills energy ~ re(2ma’ )2

O-brane energy ~ rg(4n2a’)3

14

Strangely, there are classical SYM 0 4 6 solutions.
For N = 4, with O-brane charge 4, on “square” T®
can construct solution with

Fyg =2mpy F3q4 =2mpy;  Fse = 2mp3

where

10 0 O 1 0 0 O
o1 0 o 1o -1 0 o
=100 -1 © 2=1 0 0 -1 0
00 0 -1 0 0 0 1

1 0 0 O

o -10 o0

P3=1 0 0 1 0

0 0 0 -1

Classical solution is quadratically stable,
But solution breaks all supersymmetry.
T-dual to 4 3-branes intersecting pairwise on lines
Xgl) = Xﬁl) = 3 Xél) = s
X§2) =1z ng) = —r3 x2 = —Ts
X = oy XP =25 X =25
Xg4) = - X£4) =3 x4 = —zg
Corresponds to metastable non-SUSY black hole.
(Khuri/Ortin,Sheinblatt)

Similar construction for 8 O-branes & 8 8-branes.

15



Binding p-branes to p-branes

World-volume theory of N p-branesis U(N) N =1 SYM
in 10D dimensionally reduced to p 4+ 1 dimensions.

Boson fields are A, and X9,
Moduli space of classical vacua for N p-branes is
(RO-P)N
SN
where Sy arises from Weyl symmetry.

Threshold bound states can arise quantum mechanically
but issues are quite subtle.

Consider “simplest” case: 0-0 binding
(Sethi/Stern)

Related to gravitons in 11D supergravity

Should be a bound state of N O-branes ¥ N.

Supersymmetric quantum mechanics problem

1 1 - ; ot
!1 __T )l 2 - -1 2 1

Sn TP TN XI1P) - T (' (X )

where v represent SQ(9) Clifford algebra (16D)
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In purely bosonic theory, there are flat directions

NS
iz

but the spectrum is discrete.

/4\

Masses scale as X2, giving increasing zero point energy.

In supersymmetric theory, fermions give opposite zero
point energy, allowing possibility of zero energy ground
states.

Proof of existence is rather subtle.

In theory with 8 supercharges (reduction from N =1,
D = 6) there are no zero energy ground states.

Agrees with results of Strominger on conifolds.

Similarly, in dimensional reduction of N' =1 4D SYM
there is no bound state.

Number of bound states can in principle be determined
from an index theory calculation.

Simple index calculation gives a fractional number.

Correct result requires study of long-distance propaga-
tor, and calculation of an associated boundary term.

17



Binding 1-branes and strings

(N, q) states of 1-branes and strings form an SL(2,Z)
multiplet under S-duality in I1B.

String winding number proportional to electric flux on
1-brane.

Dual to O-branes and 2-branes.

Dl L) w D‘ » ! F‘(n
‘Ts ‘ Tll

Poran+ D\ "—'5'""‘ Ddoan + Floy,

Expect truly bound states when N, g relatively prime.

Analyzed by Witten in gauge theory; bound states found.

In gauge theory, string quantization is a quantum effect.

Flux quantum e ~ 1/N (momentum dual to A).

Born-Infeld energy
E~Tr \/1+q262 ~ \/N2+Q2
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VIII. D-brane Interactions

Now consider interactions of separated D-branes.

/1(

Long-distance (supergravity) interactions from massiess
closed strings.

Short-distance (gauge theory) interactions from mass-
iess open strings.

Different truncations of full string spectrum.

No a priori reason gauge theory should correctly describe
long distance physics.

Sometimes may agree because protected by SUSY.
Original computations of D-brane forces from string the-
ory (Polchinski, Bachas, Lifschytz)

Study here from gauge theory.
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p-p potential

First consider a pair of parallel p-branes.

In Yang-Mills or Born-Infeld theory this is a U(2) gauge
theory with a nonzero scalar VEV

) =dira+ 2= 5 5)

BPS configuration with Born-Infeld energy 2 Fp.
Therefore there is no force between the branes.
Agrees with string calculation by Polchinski.

In string calculation, delicate balance between NS-NS
and R-R exchanges.

Note that in bosonic theory, branes attract as in 0-0
bosonic system. (Quantum effect.)

20

0-2 potential
Can't describe separate 2/0 system in gauge theory.
But can describe separated 2/(2 + 0) system on T2

[

/ /
L _/

T-dual to separated 1-branes at an angle.
When d = 0, BPS bound state with

Fpound = /(272122 + 73

= [T

\Af%l. d

[~

When d large, flux must live on one brane.

-y 2
Fiseparate = "'2"32 + \/(TzL )2 + Tg

21



Classical potential unstable at close distances

‘1

N —
4, J
smoothed by quantum effects.

Attraction agrees with string calculation.

Brane-anti-brane forces
Exhibit tachyonic instability (Banks-Susskind)
Consider two 2-branes with fluxes +2m

a7 =

T-dual to perpendicular 1-branes.

Yang-Muilis solution with tachyonic instability.
BC's mean fluctuations are theta functions.

Can analyze instability precisely.
(Hashimoto/WT,Gava/Narain/Sarmadi)
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0-4 potential

Consider 3 separate 4-branes, with an instanton on two.

L7

BPS state in moduli space of U(3) instantons
E = 314Va + 70
So no potential between O-brane and 4-branes

Agrees with string theory calcutation.

0-6 potential
Takes extra energy to combine O-branes and 6-branes.
Repulsive interaction at long and short distances.

0-8 potential

Simitar story would naively imply 0-8 repulsion.
Extra complication related to R-R fields. |
String creation (Hanany/Witten)

0-brane produces “haif string”, giving charge density on
8-brane volume.

23



D-brane scattering
Consider 0-brane/0-brane scattering
For static O-branes, configuration space is fiat
(R?)?
Z;

Protected by supersymmetry.

When relative velocity v is nonzero, SUSY broken.
Scattering calculation gives v-dependent potential.
Quadratic term in v would correct metric.

Consider Yang-Mills with background

X2t) = ( g 8 )
Xl(t) — ( Té)t 8 )
s‘l
oly..-- -2
v }5

Integrating out massive off-diagonal fields, get
V(b)Y ~ v* /b7
No correction to metric.
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IX. M(atrix) theory

M-theory

M-theory is a conjectured 11D theory
Low energy limit is 11D supergravity.
11D supergravity has fields:

e,: vielbein (44 components)

Yu' Majorana fermion gravitino (128 components)
Auvp: 3-form potential (84 components)

M-theory contains 2D supermembrane and 5-brane.

M-theory is strong coupling limit of A string.

M-theory/S! ~ IIA string
R = 92/3lp = gls
KK photon (g,11) ~ RR gauge field Ay
p11 supergraviton ~ O-brane
wrapped membrane ~ IIA string
unwrapped membrane ~ IIA RR 2-brane
wrapped 5-brane ~ [IA RR 4-brane

unwrapped 5-brane ~ IIA NS 5-brane



T-duality in M-theory (Schwarz, Sen, Aharony)

Label dimensions 0,1,...,9,11.

Tpg

M-—2H2 -m
Ri4 Ry,

IA-— 5—TIA

T-dualize lIA on 8, 9 — Ty acting on 8, 9, 11.

e Ty is symmetric on 8, 9, 11 (with 8 « 9 exchange).

L TM V= ReRgRll — I/V.

e T); exchanges membrane wrapping and momentum

N T

T
—| &

-y
Example: membrane on 9, 11 «» g8-momentum

N7 N R
AN

- &
Example: membrane on 8, g — ll-momentum

Infinite momentum frame

Infinite momentum frame ~ light-cone frame
Choose a longitudinal direction (X! in this case)
Boost system until everything has large py;.

Can integrate out anything with negative or vanishing
p11. giving simplified theory.

General idea;
Por
?:-

If all in and out states have large p;; then intermediate
states without large p;; are very suppressed.

Zero momentum degrees of freedom can cause compli-
cations, particularly moduli.

IMF system has Galilean invariance
pL —PL T PLIYL
Massless particle has Galilean energy
2
e
E = =
2p1a

If X! is compact, py; = N/R is quantized.

Note: boosting in a compact direction is tricky.



M(atrix) conjecture

The following conjecture was made by B i
anks, F
Shenker and Susskind: ’ schler.

M-theory i_n the IMF is exactly described by the
N — oo limit of 0-brane quantum mechanics

1 Vg Y ]
C = 3 XXa+ ) Tr[x% X2 + 2676 + ro[X°,6])
a<bh

Original evidence included:

o Only O-branes carry py;

o 10D Super-Galilean invariance

o Correct graviton scattering amplitudes

o Supermembrane arises from O-branes.

Supporting evidence has continued to appear.

We'll discuss several classes of evidence:

e Construction of M-theory objects from 0-branes

e Appearance of M-theory symmetries in O-brane QM

s Reproduction of IMF M-theory interactions

M(atrix) compactification
Several ways to think of compactifying M(atrix) theory

Can simply consider M(atrix) theory on an arbitrary
manifold to be the large N limit of O-branes on that

manifold.

So far, O-brane guantum mechanics only really under-
stood on tori and orbifolds.

Some progress on arbitrary manifolds
(Douglas/OQoguri/Shenker, etc.)

Another approach to compactification:

Consider a superselection sector of M(atrix) theory

For example, take infinite matrices satisfying

vxeu~l= x4 6%2rRI1.

for some “translation’” operator U/

Corresponds to 81 compactification of M(atrix) theory

Also corresponds to SYM in 1 4 1 dimensions.

Thus, M(atrix) theory “contains” SYM for all dimen-
sions d < 10.



Supergraviton
O-branes live in a supermultiplet of 256 states
Corresponds to KK modes of graviton, 3-form, gravitino

256 = 44 + 84 4+ 128

In 11D massless states.
In 10D, mass is 1/R, BPS states

Supergravitons with py; = N/R correspond to bound
states of N O-branes. :

These bound states are BPS and exist (Sethi/Stern)

In IMF, we want to take N — oo

Decoupling of negative p;; «— decoupling of anti-O-branes
To get M-theory, we need R — oo

O-branes are “partons” of holomorphic principle

Second quantization is automatic in M(atrix) theory.

M} 0 O

o M, - O

0o . . 0
0 0 M

Describes a state of k supergravitons.

If M are Ny x N matrices, kth pyy1 is Ng/R

Supermembrane
One way to see supermembrane from O-branes:
After compactification on T2 with radii Ry, Ry,
A O-brane configuration with

Tr [XY, X?] = 2n(R  Ry)i
carries a charge corresponding to a 2-brane.

The 2-brane of IIA is the transverse membrane from
M-theory.

Scaling

x! R, Y?
X2 = R,Y?

we can take the large R limit, and get matrices satisfying

[}/1, )/2] — @
N

which describe a membrane in the decompactified limit.
Extra energy of this membrane scales as 1/N.
Agrees with membrane tension.

This is automatic from earlier discussion of 0 + 2 bound
states, and Yang-Mills/Born-Infeld relation.



Historical devetopment

Supermembrane connection to 0-brane QM ori
' originall
found by de Wit, Hoppe and Nicolai. J Y

They quantized supermembrane.

In light-cone yauge, supermembrane has residual invari-
ance under area-preserving diffeomorphisms.

Area-preserving diffeomorphism group of sphere is a limit
as N — oo of SU(N). (Generalizes to higher genus)

Hamiltonian of supermembrane can be regularized and
becomes precisely 0-brane quantum mechanics model.

Term

{Xx*, x7)2
becomes

(X' x7)2

in matrix system.

0O-brane quantum mechanics was first considered several
years earlier, by Claudson/Halpern, Flume, Baake et al.

de Wit, Luscher and Nicolai noted continuous spectrum,

Apparent pathology corresponds to second quantization.
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5-branes in M(atrix) theory

Two kinds of 5-branes can appear:

Longitudinal 5-branes, appearing as 4-branes in IIA
Transverse S5-branes, appearing as NS 5-branes in lIA
First, we discuss longitudinal 5-branes.

Longitudinal 5-branes first incorporated by Berkooz and
Douglas

Described in terms of hypermultiplets in O-brane theory
Not a dynamical description of 5-brane

But showed correct Berry's phase on membrane.

Intrinsic longitudinal 5-brane analogous to membrane.

4-brane charge on T* described by

Ly e XX XX
82
Can decompactify and get noncompact 4-brane.
Explicit construction: Banks-Casher instanton
X* =1:0% 4+ A

for an instanton on S%.



Another way to understand membrane and 5-brane charges
in M(atrix) theory is to consider the supersymmetry al-

gebra. M-theory T-duality inverts a 3-torus.
The 11 dimensional SUSY algebra is

(Q,Q} ~ PH + ZF1F2 4 ZH1H5

T-duality in M(atrix) theory

How can we see this in M(atrix) theory?

M(atrix) theory on T3 equivalent to N = 4 SYM on T3.

Central terms correspond to 2-brane and 5-brane charges. Ty duality on dimensions 7, 8, 9 is SYM S-duality

Supersymmetry algebra of M(atrix) theory explicitly com-

puted by Banks, Seiberg and Shenker. Evidence:

Previous related calculations dropped Tr [X‘,Xj] since

they vanish for finite N o Coupling constant r — —1/7

BSS find : } SYM coupling constant is
{Q,Q} ~ PH 28 +Zab+_ zabcd )
r=am o tV789
The charge 92

zab ~ [Xa‘ Xb]
corresponds to membrane charge.

e Flux exchange

Membranes ~ magnetic flux
The charge

Labed X[“XbXCXd] Tr [X“,Xb] ~ ]z’B"b
corresponds to longitudinal 5-brane charge, as above.
Momentum ~ electric flux
b rva 1b ) .
2% ~ {P% X%, X7} Trl'l“:TrX“rv/TrAﬂ.—:/TrE“

corresponds to longitudinal membranes (strings)
Dual to Poynting vector F® b,

The charge

¢ Magnetic energy ~ membrane tension
Apparently no charge for transverse 5-brane.
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Transverse 5-brane

Given the realization of M-theory T-duality, we can con-
struct a transverse 5-brane.

Compactify M-theory on dimensions 789.
Wrap a membrane on dimensions 56

T-duality on 789 takes the membrane to a 5-brane.

A2 {0 n.__‘_r__':_.__g'. Mg(fﬂu)
R, L)

1’
01 (s0) FA—22_3FA 14(Cae

Thus, to construct a transverse 5-brane in M(atrix) the-
ory, we begin with a membrane in dimensions 56,

(X%, X8 ~ 2mi
where X°, X6 are adjoint fields in A = 4 SYM on T3 xR.

Performing SYM S-duality gives a transverse S5-brane.

Puzzles:
How to make construction of state explicit?
Why isn’'t charge in SUSY algebra?
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